1
|
Schmidt C, Boissonnet T, Dohle J, Bernhardt K, Ferrando-May E, Wernet T, Nitschke R, Kunis S, Weidtkamp-Peters S. A practical guide to bioimaging research data management in core facilities. J Microsc 2024; 294:350-371. [PMID: 38752662 DOI: 10.1111/jmi.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.
Collapse
Affiliation(s)
- Christian Schmidt
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom Boissonnet
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dohle
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Karen Bernhardt
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Elisa Ferrando-May
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tobias Wernet
- Life Imaging Center, University of Freiburg, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, University of Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Susanne Kunis
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
2
|
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F. Vertebrate Embryonic Cleavage Pattern Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:117-171. [PMID: 27975272 PMCID: PMC6500441 DOI: 10.1007/978-3-319-46095-6_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.
Collapse
Affiliation(s)
- Andrew Hasley
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Shawn Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael Danilchik
- Department of Integrative Biosciences, L499, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Martin Wühr
- Department of Molecular Biology & The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Icahn Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Tohsato Y, Ho KHL, Kyoda K, Onami S. SSBD: a database of quantitative data of spatiotemporal dynamics of biological phenomena. Bioinformatics 2016; 32:3471-3479. [PMID: 27412095 PMCID: PMC5181557 DOI: 10.1093/bioinformatics/btw417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022] Open
Abstract
Motivation: Rapid advances in live-cell imaging analysis and mathematical modeling have produced a large amount of quantitative data on spatiotemporal dynamics of biological objects ranging from molecules to organisms. There is now a crucial need to bring these large amounts of quantitative biological dynamics data together centrally in a coherent and systematic manner. This will facilitate the reuse of this data for further analysis. Results: We have developed the Systems Science of Biological Dynamics database (SSBD) to store and share quantitative biological dynamics data. SSBD currently provides 311 sets of quantitative data for single molecules, nuclei and whole organisms in a wide variety of model organisms from Escherichia coli to Mus musculus. The data are provided in Biological Dynamics Markup Language format and also through a REST API. In addition, SSBD provides 188 sets of time-lapse microscopy images from which the quantitative data were obtained and software tools for data visualization and analysis. Availability and Implementation: SSBD is accessible at http://ssbd.qbic.riken.jp. Contact:sonami@riken.jp
Collapse
Affiliation(s)
- Yukako Tohsato
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Kenneth H L Ho
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Koji Kyoda
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| |
Collapse
|
4
|
Gualda E, Moreno N, Tomancak P, Martins GG. Going "open" with mesoscopy: a new dimension on multi-view imaging. PROTOPLASMA 2014; 251:363-372. [PMID: 24442669 DOI: 10.1007/s00709-013-0599-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.
Collapse
Affiliation(s)
- Emilio Gualda
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | | | |
Collapse
|