1
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. SCIENCE ADVANCES 2024; 10:eadq9183. [PMID: 39536115 PMCID: PMC11559607 DOI: 10.1126/sciadv.adq9183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult Caenorhabditis elegans nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo/CELSR. During postembryonic development, FMI-1 promotes and maintains synaptic connectivity of PHB to a command interneuron, AVA, in both sexes, but a serotonin-dependent transcriptional regulatory cassette antagonizes FMI-1 expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node is the CREB-target LIN-29, a Zn finger transcription factor that integrates four layers of information: sexual specificity, past experience, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | | | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
2
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593207. [PMID: 38766005 PMCID: PMC11100761 DOI: 10.1101/2024.05.08.593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We describe here the molecular mechanisms by which juvenile experience defines patterns of sexually dimorphic synaptic connectivity in the adult nervous system of the nematode C. elegans. We show that starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo. During postembryonic development, FMI-1/Flamingo has the capacity to promote and maintain synaptic connectivity of the PHB nociceptive sensory to a command interneuron, AVA, in both sexes, but the serotonin transcriptional regulatory cassette antagonizes FMI-1/Flamingo expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node in this process is the CREB-target LIN-29, a Zn finger transcription factor which integrates four different layers of information - sexual specificity, past feeding status, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| | - Maryam Majeed
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
- Present address: Allen Institute for Brain Science, Seattle,
USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
3
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. Nucleic Acids Res 2023; 51:9610-9628. [PMID: 37587694 PMCID: PMC10570059 DOI: 10.1093/nar/gkad665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Gene expression is a multistep process and crosstalk among regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant gene expression coordination, we performed a systematic reverse-genetic interaction screen in C. elegans, combining RNA binding protein (RBP) and transcription factor (TF) mutants to generate over 100 RBP;TF double mutants. We identified many unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1, and the homeodomain TF ceh-14. Losing any one of these genes alone has no effect on the health of the organism. However, fust-1;ceh-14 and tdp-1;ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-Seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. A skipped exon in the polyglutamine-repeat protein pqn-41 is aberrantly included in tdp-1 mutants, and genetically forcing this exon to be skipped in tdp-1;ceh-14 double mutants rescues their fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility and a shared molecular role in exon inhibition.
Collapse
Affiliation(s)
- Morgan Taylor
- Southern Methodist University, Dallas, TX 75205, USA
| | - Olivia Marx
- Southern Methodist University, Dallas, TX 75205, USA
| | - Adam Norris
- Southern Methodist University, Dallas, TX 75205, USA
| |
Collapse
|
4
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537345. [PMID: 37131843 PMCID: PMC10153140 DOI: 10.1101/2023.04.18.537345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene expression is a multistep, carefully controlled process, and crosstalk between regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant coordination between transcriptional and post-transcriptional gene regulation, we performed a systematic reverse-genetic interaction screen in C. elegans . We combined RNA binding protein (RBP) and transcription factor (TF) mutants, creating over 100 RBP; TF double mutants. This screen identified a variety of unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1 , and the homeodomain TF ceh-14 . Losing any one of these genes alone has no significant effect on the health of the organism. However, fust-1; ceh-14 and tdp-1; ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. We identify a cassette exon in the polyglutamine-repeat protein pqn-41 which tdp-1 inhibits. Loss of tdp-1 causes the pqn-41 exon to be aberrantly included, and forced skipping of this exon in tdp-1; ceh-14 double mutants rescues fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility in a ceh-14 mutant background and reveal a shared molecular function of fust-1 and tdp-1 in exon inhibition.
Collapse
|
5
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
6
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Leyva-Díaz E, Hobert O. Robust regulatory architecture of pan-neuronal gene expression. Curr Biol 2022; 32:1715-1727.e8. [PMID: 35259341 PMCID: PMC9050922 DOI: 10.1016/j.cub.2022.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
Pan-neuronally expressed genes, such as genes involved in the synaptic vesicle cycle or in neuropeptide maturation, are critical for proper function of all neurons, but the transcriptional control mechanisms that direct such genes to all neurons of a nervous system remain poorly understood. We show here that six members of the CUT family of homeobox genes control pan-neuronal identity specification in Caenorhabditis elegans. Single CUT mutants show barely any effects on pan-neuronal gene expression or global nervous system function, but such effects become apparent and progressively worsen upon removal of additional CUT family members, indicating a critical role of gene dosage. Overexpression of each individual CUT gene rescued the phenotype of compound mutants, corroborating that gene dosage, rather than the activity of specific members of the gene family, is critical for CUT gene family function. Genome-wide binding profiles, as well as mutation of CUT homeodomain binding sites by CRISPR/Cas9 genome engineering show that CUT genes directly control the expression of pan-neuronal features. Moreover, CUT genes act in conjunction with neuron-type-specific transcription factors to control pan-neuronal gene expression. Our study, therefore, provides a previously missing key insight into how neuronal gene expression programs are specified and reveals a highly buffered and robust mechanism that controls the most critical functional features of all neuronal cell types.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
8
|
Aprison EZ, Ruvinsky I. The roles of several sensory neurons and the feedback from egg laying in regulating the germline response to a sex pheromone in C. elegans hermaphrodites. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000523. [PMID: 35128345 PMCID: PMC8811620 DOI: 10.17912/micropub.biology.000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Animals broadcast small molecule pheromones that can alter behavior and physiology in conspecifics. Neuronal circuits that regulate these processes remain largely unknown. In C. elegans, male-enriched ascaroside sex pheromone ascr#10, in addition to behavioral effects, expands the population of germline precursor cells in hermaphrodites. Previously, we identified several sensory neurons required for this effect. We also found that feedback from egg laying acts via serotonergic signaling to license the pheromone response in reproducing adults. Here, using newly available reagents, we confirm and extend several of our previous conclusions: a) the ADL neurons are essential for the ascr#10 response, b) phasmid neurons (PHA and PHB) are unlikely to be involved in the ascr#10 response, c) the mod-1 receptor is the main conduit of the serotonergic feedback from egg laying, and d) serotonin remains the only currently known signal of this feedback. Our findings better define the neuronal circuits that mediate the germline response to the major male pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University
| |
Collapse
|
9
|
Aprison EZ, Ruvinsky I. ODR-1 acts in AWB neurons to determine the sexual identity of C. elegans pheromone blends. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000507. [PMID: 35047764 PMCID: PMC8758999 DOI: 10.17912/micropub.biology.000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022]
Abstract
Valence of animal pheromone blends can vary due to differences in relative abundance of individual components. For example, in C. elegans, whether a pheromone blend is perceived as "male" or "hermaphrodite" is determined by the ratio of concentrations of ascr#10 and ascr#3. The neuronal mechanisms that evaluate this ratio are not currently understood. We present data that suggest that the function of guanylyl cyclase ODR-1 in AWB neurons is required for the effect of ascr#3 that counteracts the activity of ascr#10. This finding defines a new module in the neuronal mechanism that determines the sexual identity of C. elegans pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
10
|
Susoy V, Hung W, Witvliet D, Whitener JE, Wu M, Park CF, Graham BJ, Zhen M, Venkatachalam V, Samuel ADT. Natural sensory context drives diverse brain-wide activity during C. elegans mating. Cell 2021; 184:5122-5137.e17. [PMID: 34534446 PMCID: PMC8488019 DOI: 10.1016/j.cell.2021.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Witvliet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joshua E Whitener
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Core Francisco Park
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Brett J Graham
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Vivek Venkatachalam
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Bayer EA, Stecky RC, Neal L, Katsamba PS, Ahlsen G, Balaji V, Hoppe T, Shapiro L, Oren-Suissa M, Hobert O. Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior. eLife 2020; 9:59614. [PMID: 33021200 PMCID: PMC7538159 DOI: 10.7554/elife.59614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may have implications for the control of sexual differentiation in other animals as well.
Collapse
Affiliation(s)
- Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Rebecca C Stecky
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Lauren Neal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Phinikoula S Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Vishnu Balaji
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Meital Oren-Suissa
- Weizmann Institute of Science, Department of Neurobiology, Rehovot, Israel
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
12
|
Bayer E, Hobert O. A novel null allele of C. elegans gene ceh-14. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550390 PMCID: PMC7282514 DOI: 10.17912/g434-3d85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emily Bayer
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY, USA.,Howard Hughes Medical Institute
| |
Collapse
|
13
|
Ho MCW, Quintero-Cadena P, Sternberg PW. Genome-wide discovery of active regulatory elements and transcription factor footprints in Caenorhabditis elegans using DNase-seq. Genome Res 2017; 27:2108-2119. [PMID: 29074739 PMCID: PMC5741056 DOI: 10.1101/gr.223735.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
Deep sequencing of size-selected DNase I–treated chromatin (DNase-seq) allows high-resolution measurement of chromatin accessibility to DNase I cleavage, permitting identification of de novo active cis-regulatory modules (CRMs) and individual transcription factor (TF) binding sites. We adapted DNase-seq to nuclei isolated from C. elegans embryos and L1 arrest larvae to generate high-resolution maps of TF binding. Over half of embryonic DNase I hypersensitive sites (DHSs) were annotated as noncoding, with 24% in intergenic, 12% in promoters, and 28% in introns, with similar statistics observed in L1 arrest larvae. Noncoding DHSs are highly conserved and enriched in marks of enhancer activity and transcription. We validated noncoding DHSs against known enhancers from myo-2, myo-3, hlh-1, elt-2, and lin-26/lir-1 and recapitulated 15 of 17 known enhancers. We then mined DNase-seq data to identify putative active CRMs and TF footprints. Using DNase-seq data improved predictions of tissue-specific expression compared with motifs alone. In a pilot functional test, 10 of 15 DHSs from pha-4, icl-1, and ceh-13 drove reporter gene expression in transgenic C. elegans. Overall, we provide experimental annotation of 26,644 putative CRMs in the embryo containing 55,890 TF footprints, as well as 15,841 putative CRMs in the L1 arrest larvae containing 32,685 TF footprints.
Collapse
Affiliation(s)
- Margaret C W Ho
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Porfirio Quintero-Cadena
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W Sternberg
- Division of Biology and Bioengineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Aprison EZ, Ruvinsky I. Counteracting Ascarosides Act through Distinct Neurons to Determine the Sexual Identity of C. elegans Pheromones. Curr Biol 2017; 27:2589-2599.e3. [DOI: 10.1016/j.cub.2017.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
|
15
|
Bhati M, Llamosas E, Jacques DA, Jeffries CM, Dastmalchi S, Ripin N, Nicholas HR, Matthews JM. Interactions between LHX3- and ISL1-family LIM-homeodomain transcription factors are conserved in Caenorhabditis elegans. Sci Rep 2017; 7:4579. [PMID: 28676648 PMCID: PMC5496915 DOI: 10.1038/s41598-017-04587-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
LIM-Homeodomain (LIM-HD) transcription factors are highly conserved in animals where they are thought to act in a transcriptional ‘LIM code’ that specifies cell types, particularly in the central nervous system. In chick and mammals the interaction between two LIM-HD proteins, LHX3 and Islet1 (ISL1), is essential for the development of motor neurons. Using yeast two-hybrid analysis we showed that the Caenorhabditis elegans orthologs of LHX3 and ISL1, CEH-14 and LIM-7 can physically interact. Structural characterisation of a complex comprising the LIM domains from CEH-14 and a LIM-interaction domain from LIM-7 showed that these nematode proteins assemble to form a structure that closely resembles that of their vertebrate counterparts. However, mutagenic analysis across the interface indicates some differences in the mechanisms of binding. We also demonstrate, using fluorescent reporter constructs, that the two C. elegans proteins are co-expressed in a small subset of neurons. These data show that the propensity for LHX3 and Islet proteins to interact is conserved from C. elegans to mammals, raising the possibility that orthologous cell specific LIM-HD-containing transcription factor complexes play similar roles in the development of neuronal cells across diverse species.
Collapse
Affiliation(s)
- Mugdha Bhati
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,Teva Pharmaceuticals Australia Pty Ltd, Macquarie Park, NSW, 2113, Australia
| | - Estelle Llamosas
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,School of Women's and Children's Health, University of New South Wales, NSW, Australia
| | - David A Jacques
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,iThree Institute, University of Technology, NSW, 2007, Australia
| | - Cy M Jeffries
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center and School of Pharmacy, Tabritz Univeristy of Medical Science, Tabritz, Iran
| | - Nina Ripin
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,Department of Biology, ETH, Zurich, 8093, Switzerland
| | - Hannah R Nicholas
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
| | - Jacqueline M Matthews
- School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Hench J, Henriksson J, Abou-Zied AM, Lüppert M, Dethlefsen J, Mukherjee K, Tong YG, Tang L, Gangishetti U, Baillie DL, Bürglin TR. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS One 2015; 10:e0126947. [PMID: 26024448 PMCID: PMC4448998 DOI: 10.1371/journal.pone.0126947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems.
Collapse
Affiliation(s)
- Jürgen Hench
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Henriksson
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Akram M. Abou-Zied
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Martin Lüppert
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Dethlefsen
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Krishanu Mukherjee
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Yong Guang Tong
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Lois Tang
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Umesh Gangishetti
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - David L. Baillie
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas R. Bürglin
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| |
Collapse
|
17
|
Kagoshima H, Kohara Y. Co-expression of the transcription factors CEH-14 and TTX-1 regulates AFD neuron-specific genes gcy-8 and gcy-18 in C. elegans. Dev Biol 2015; 399:325-36. [PMID: 25614239 DOI: 10.1016/j.ydbio.2015.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/28/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification.
Collapse
Affiliation(s)
- Hiroshi Kagoshima
- Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Transdisciplinary Research Integration Center, Research Organization of Information and Systems (ROIS), Toranomon 4-3-13, Minato-ku, Tokyo 105-0001, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
18
|
Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 2013; 155:659-73. [PMID: 24243022 DOI: 10.1016/j.cell.2013.09.052] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT, is expressed in 38 of the 118 anatomically defined neuron classes of the C. elegans nervous system. We show that distinct cis-regulatory modules drive expression of eat-4/VGLUT in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in distinct combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|