1
|
Han C, Wang P, Ye J, Wang R, Shi X, Hu G, Hu X, Shen J, Zhang M, Zhang X, Wu Y. Estrogen increases Setdb1 cytoplasmic localization to stabilize Serpinh1 and improve protein homeostasis in osteoblasts. Mol Cell Endocrinol 2025; 605:112568. [PMID: 40324678 DOI: 10.1016/j.mce.2025.112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Estrogen regulates osteoblast activity at the epigenetic level. Setdb1 is an epigenetic regulator that functions in skeleton homeostasis maintenance. Setdb1 shows nuclear and cytoplasm localization in cells; however, the subcellular distribution of Setdb1 and the role of cytoplasmic Setdb1 in osteoblasts are largely unknown. Here, immunofluorescence staining and immunoblotting analysis showed that the distribution of Setdb1 in the cytoplasm increased upon β-estradiol treatment by increasing nuclear Setdb1 stability in osteoblasts. In β-estradiol-treated MC3T3-E1 cells, knocking-down Atf7ip expression enhanced Setdb1 cytoplasmic localization, but the cytoplasmic distribution of Setdb1 decreased in cells treated with the Setdb1 inhibitor (R,R)-59. Moreover, ovariectomized (OVX) mice lacking Atf7ip in mature osteoblasts showed better bone microstructure than the OVX controls. The proteomic analysis of the cytoplasmic binding of Setdb1 showed that cytoplasmic Setdb1 in osteoblasts mainly functioned to regulate protein homeostasis. Setdb1 binds to Serpinh1, a regulator of pro-collagen folding and maturation, and enhances Serpinh1 stability. Interrupting Setdb1 cytoplasmic localization by treating the cells with Leptomycin B (LMB) or (R,R)-59 led to an accumulation of unfolded protein and the elicitation of endoplasmic reticulum (ER) stress. The findings revealed a previously unrecognized role of cytoplasmic Setdb1 in the regulation of β-estradiol-mediated osteoblast homeostasis, which could enhance the understanding of estrogen's mechanism of action in regulating osteoblasts.
Collapse
Affiliation(s)
- Chunqing Han
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peiwen Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Junxing Ye
- Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijian Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Shi
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Guoqin Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiping Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jin Shen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengqing Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Verdier E, Gaspar N, Marques Da Costa ME, Marchais A. SETDB1 amplification in osteosarcomas: Insights from its role in healthy tissues and other cancer types. Oncotarget 2025; 16:51-62. [PMID: 39945463 PMCID: PMC11823473 DOI: 10.18632/oncotarget.28688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Epigenetic modifications, which reversibly regulate gene expression without altering the DNA sequence, are increasingly described in the literature as essential elements in the processes leading to cancer development. SETDB1 regulates histone 3 (H3) K9 di- and trimethylation, promoting heterochromatin formation, and plays a key role in gene silencing. Epigenetic deregulation of SETDB1 expression appears to be involved in different cancers types, particularly in aggressive, relapsing or treatment-resistant subtypes. Despite advances in research, the full range of mechanisms through which this protein acts remains unclear; however, it is evident that SETDB1 has a pivotal role, particularly in the mesenchymal stem cells differentiation, tumor evasion and treatment resistance. Its role in genetically complex sarcomas, such as osteosarcoma, has not been fully explored, although recent Omics analyses suggest its presence and amplification in osteosarcoma. Given its involvement in osteoblastogenesis and adipogenesis, we discuss the potential of SETDB1 as a key target for new therapeutic strategies in osteosarcoma.
Collapse
Affiliation(s)
- Elodie Verdier
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Nathalie Gaspar
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Maria Eugenia Marques Da Costa
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Antonin Marchais
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
3
|
Rapone R, Del Maestro L, Bouyioukos C, Albini S, Cruz-Tapias P, Joliot V, Cosson B, Ait-Si-Ali S. The cytoplasmic fraction of the histone lysine methyltransferase Setdb1 is essential for embryonic stem cells. iScience 2023; 26:107386. [PMID: 37559904 PMCID: PMC10407132 DOI: 10.1016/j.isci.2023.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
The major lysine methyltransferase (KMT) Setdb1 is essential for self-renewal and viability of mouse embryonic stem cells (mESCs). Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mESCs, where its role remains elusive. Here, we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Yeast two-hybrid analysis revealed that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. We found that cSetdb1 is required for the integrity of Trim71 complex(es) involved in mRNA metabolism and translation. cSetdb1 modulates the abundance of mRNAs and the rate of newly synthesized proteins. Altogether, our data uncovered the cytoplasmic post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.
Collapse
Affiliation(s)
- Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Paola Cruz-Tapias
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Bertrand Cosson
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| |
Collapse
|
4
|
Xu M, Tu Y, Bi W, Lundberg MZ, Klooster I, Fletcher JA, Ou WB. SETDB1 tumour suppressor roles in near-haploid mesothelioma involve TP53. Br J Cancer 2023; 129:531-540. [PMID: 37369845 PMCID: PMC10403575 DOI: 10.1038/s41416-023-02330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Mutational inactivation of the SETDB1 histone methyltransferase is found in a subset of mesothelioma, particularly in cases with near-haploidy and TP53 mutations. However, the tumourigenic consequences of SETDB1 inactivation are poorly understood. METHODS In this study, we investigated SETDB1 tumour suppressor functions in mesothelioma and explored biologic relationships between SETDB1 and TP53. RESULTS Immunoblotting of early passage cultures showed that SETDB1 was undetectable in 7 of 8 near-haploid mesotheliomas whereas SETDB1 expression was retained in each of 13 near-diploid mesotheliomas. TP53 aberrations were present in 5 of 8 near-haploid mesotheliomas compared to 2 of 13 near-diploid mesotheliomas, and BAP1 inactivation was demonstrated only in near-diploid mesotheliomas, indicating that near-haploid and near-diploid mesothelioma have distinct molecular and biologic profiles. Lentiviral SETDB1 restoration in near-haploid mesotheliomas (MESO257 and MESO542) reduced cell viability, colony formation, reactive oxygen species levels, proliferative marker cyclin A expression, and inhibited growth of MESO542 xenografts. The combination of SETDB1 restoration with pemetrexed and/or cisplatin treatment additively inhibited tumour growth in vitro and in vivo. Furthermore, SETDB1 restoration upregulated TP53 expression in MESO542 and MESO257, whereas SETDB1 knockdown inhibited mutant TP53 expression in JMN1B near-haploid mesothelioma cells. Likewise, TP53 knockdown inhibited SETDB1 expression. Similarly, immunoblotting evaluations of ten near-diploid mesothelioma biopsies and analysis of TCGA expression profiles showed that SETDB1 expression levels paralleled TP53 expression. CONCLUSION These findings demonstrate that SETDB1 inactivation in near-haploid mesothelioma is generally associated with complete loss of SETDB1 protein expression and dysregulates TP53 expression. Targeting SETDB1 pathways could be an effective therapeutic strategy in these often untreatable tumours.
Collapse
Affiliation(s)
- Mengting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuqing Tu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhui Bi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meijun Z Lundberg
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhang L, Xu L, Wang Y, Zhang X, Xue T, Sun Q, Tang H, Li M, Cao X, Shi F, Zhang G, Zhang S, Hu Z. Histone methyltransferase Setdb1 mediates osteogenic differentiation by suppressing the expression of miR-212-3p under mechanical unloading. Cell Signal 2023; 102:110554. [PMID: 36476391 DOI: 10.1016/j.cellsig.2022.110554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that multiple mechanisms are involved in bone loss induced by mechanical unloading. Thus far, few study has established the pathophysiological role of histone modification for osteogenic differentiation under mechanical unloading. Here we demonstrated that the histone H3 lysine 9 (H3K9) methyltransferase Setdb1, which was sensitive to mechanical unloading, was increased during osteogenic differentiation of MC3T3-E1 cells for the first time. Knockdown of Setdb1 significantly blocked osteoblast function in vivo and in vitro. Through bioinformatics analysis of candidate miRNAs regulated by H3K9me3, we further identified that Setdb1 inhibited the expression of miR-212-3p by regulating the formation of H3K9me3 in the promoter region. Mechanically, we revealed that miR-212-3p was upregulated under mechanical unloading and suppressed osteogenic differentiation by directly downregulating High mobility group box 1 protein (Hmgb1) expression. Furthermore, we verified the molecular mechanism of the SETDB1/miR-212-3p/HMGB1 pathway in hFOB cells under mechanical unloading. In summary, these data demonstrate the essential function of the Setdb1/miR-212-3p/Hmgb1 pathway in osteogenic differentiation under mechanical unloading, and present a potential protective strategies against bone loss induced by mechanical unloading.
Collapse
Affiliation(s)
- Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, 730050, Lanzhou, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Tong Xue
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Quan Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Hao Tang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Meng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; The Medical College of Yan'an University, 716000 Yan'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
7
|
Kano S, Higashihori N, Thiha P, Takechi M, Iseki S, Moriyama K. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development. Biochem Biophys Res Commun 2022; 598:74-80. [PMID: 35151207 DOI: 10.1016/j.bbrc.2022.01.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
The histone methyltransferase SET domain bifurcated 1 (SETDB1) catalyzes the trimethylation of lysine 9 of histone H3, thereby regulating gene expression. In this study, we used conditional knockout mice, where Setdb1 was deleted only in neural crest cells (Setdb1fl/fl,Wnt1-Cre + mice), to clarify the role of SETDB1 in palatal development. Setdb1fl/fl,Wnt1-Cre + mice died shortly after birth due to a cleft palate with full penetration. Reduced palatal mesenchyme proliferation was seen in Setdb1fl/fl,Wnt1-Cre + mice, which might be a possible mechanism of cleft palate development. Quantitative RT-PCR and in situ hybridization showed that expression of the Pax9, Bmp4, Bmpr1a, Wnt5a, and Fgf10 genes, known to be important for palatal development, were markedly decreased in the palatal mesenchyme of Setdb1fl/fl,Wnt1-Cre + mice. Along with these phenomena, SMAD1/5/9 phosphorylation was decreased by the loss of Setdb1. Our results demonstrated that SETDB1 is indispensable for palatal development partially through its proliferative effect. Taken together with previous reports that PAX9 regulates BMP signaling during palatal development which implies that loss of Setdb1 may be involved in the cleft palate development by decreasing SMAD-dependent BMP signaling through Pax9.
Collapse
Affiliation(s)
- Sakurako Kano
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Norihisa Higashihori
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Phyo Thiha
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masaki Takechi
- Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sachiko Iseki
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
8
|
Shen Q, Xiao Y, Cheng B, Sun Z, Hu Y, Yang H, Luo Y. PRMT1 promotes extracellular matrix degradation and apoptosis of chondrocytes in temporomandibular joint osteoarthritis via the AKT/FOXO1 signaling pathway. Int J Biochem Cell Biol 2021; 141:106112. [PMID: 34715362 DOI: 10.1016/j.biocel.2021.106112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/28/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disease characterized by extracellular matrix (ECM) degradation and chondrocyte apoptosis. The aim of this study was to investigate the role of PRMT1 in TMJOA pathogenesis and its underlying molecular mechanism. Compared to the control group, PRMT1 was highly expressed in IL-1β-treated chondrocytes and articular cartilage following MIA injection into rat TMJs. Furthermore, knocking down PRMT1 considerably inhibited ECM degradation and apoptosis induced by IL-1β. Mechanistic analyses further revealed that PRMT1 knockdown activated the PI3K/AKT signaling pathway and prevented FOXO1 from translocating to the nucleus. Moreover, an inhibitor of AKT (LY294002) rescued the effect of PRMT1 knockdown on IL-1β-induced ECM degradation and apoptosis, and AMI-1, a selective inhibitor of PRMT1, inhibited PRMT1 expression and reversed the pathological progress of TMJOA. Thus, our findings suggest that PRMT1 plays an essential role in ECM degradation and chondrocyte apoptosis in TMJOA via the AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Qinhao Shen
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China; The First Dental Clinic of the Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650221, Yunnan Province, China
| | - Yiwen Xiao
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China; Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Bei Cheng
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China
| | - Yu Hu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming 650500, Yunnan Province, China.
| | - Yingwei Luo
- Department of Periodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China; The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
9
|
Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res 2021; 11:1803-1827. [PMID: 34094655 PMCID: PMC8167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023] Open
Abstract
SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1, ESET, KMT1E) is a H3K9 methyltransferase involved in gene silencing. In recent years, SETDB1 has been implicated as an oncogene in various cancers, highlighting a critical need to better understand the mechanisms underlying SETDB1 amplification, overexpression, and activation. In the following review, we first examine the history of SETDB1, starting from its discovery in 1999 and ending with recent findings. We follow with an outline of the structure and subcellular location of SETDB1, as well as potential mechanisms for regulation of its nuclear transport. Subsequently, we introduce SETDB1's various functions, including its roles in promyelocytic leukemia nuclear body (PML-NB) formation, the methylation and activation of Akt, the silencing of the androgen receptor (AR) gene, retroelement silencing, the inhibition of tumor suppressor p53, and its role in promoting intestinal differentiation and survival. The Cancer Cell Line Encyclopedia (CCLE) screened SETDB1 dependency in 796 cancer cell lines, identifying SETDB1 as a common essential gene in 531 of them, demonstrating that SETDB1 expression is critical for the survival of the majority of cancers. Therefore, we provide a detailed review of the oncogenic effects of SETDB1 overexpression in breast cancer, non-small cell lung cancer, prostate cancer, colorectal cancer, acute myeloid leukemia, glioma, melanoma, pancreatic ductal adenocarcinoma, liver cancer, nasopharyngeal carcinoma, gastric carcinoma, and endometrial cancer. Accordingly, we review several methods that have been used to target SETDB1, such as using Mithramycin A, Mithralog EC-8042, 3'-deazaneplanocin A (DZNep), and paclitaxel. Finally, we conclude by highlighting remaining gaps in knowledge and challenges surrounding SETDB1. Ultimately, our review captures the wide scope of findings on SETDB1's history, function, its implications in cancer, and provides suggestions for future research in the field.
Collapse
Affiliation(s)
- Vanessa J Lazaro-Camp
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| |
Collapse
|
10
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
11
|
Sutter PA, Karki S, Crawley I, Singh V, Bernt KM, Rowe DW, Crocker SJ, Bayarsaihan D, Guzzo RM. Mesenchyme-specific loss of Dot1L histone methyltransferase leads to skeletal dysplasia phenotype in mice. Bone 2021; 142:115677. [PMID: 33022452 PMCID: PMC7744341 DOI: 10.1016/j.bone.2020.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangita Karki
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Ilan Crawley
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Vijender Singh
- Bioinformatics, University of Connecticut, Storrs, CT, United States of America
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA, United States of America
| | - David W Rowe
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Stephen J Crocker
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Rosa M Guzzo
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America.
| |
Collapse
|
12
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
13
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
14
|
Rice SJ, Beier F, Young DA, Loughlin J. Interplay between genetics and epigenetics in osteoarthritis. Nat Rev Rheumatol 2020; 16:268-281. [PMID: 32273577 DOI: 10.1038/s41584-020-0407-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Research into the molecular genetics of osteoarthritis (OA) has been substantially bolstered in the past few years by the implementation of powerful genome-wide scans that have revealed a large number of novel risk loci associated with the disease. This refreshing wave of discovery has occurred concurrently with epigenetic studies of joint tissues that have examined DNA methylation, histone modifications and regulatory RNAs. These epigenetic analyses have involved investigations of joint development, homeostasis and disease and have used both human samples and animal models. What has become apparent from a comparison of these two complementary approaches is that many OA genetic risk signals interact with, map to or correlate with epigenetic mediators. This discovery implies that epigenetic mechanisms, and their effect on gene expression, are a major conduit through which OA genetic risk polymorphisms exert their functional effects. This observation is particularly exciting as it provides mechanistic insight into OA susceptibility. Furthermore, this knowledge reveals avenues for attenuating the negative effect of risk-conferring alleles by exposing the epigenome as an exploitable target for therapeutic intervention in OA.
Collapse
Affiliation(s)
- Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Frank Beier
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Western Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Loughlin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Du X, Ouyang H. [Correlation between histone methylation level and pathological development of osteoarthritis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:682-687. [PMID: 31955544 PMCID: PMC8800784 DOI: 10.3785/j.issn.1008-9292.2019.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis is the most common degenerative cartilage disease. A large number of studies have shown the close association between epigenetics and osteoarthritis. Histone methylation is a type of epigenetic modification, and the link between histone methylation and osteoarthritis has also been revealed. In this article, we summarize the correlation between methylation levels of different histones and osteoarthritis in an attempt to explore the changes and regulation mechanisms of histone methylation in osteoarthritis. It has been shown that there are possible relations between the methylation levels of different amino acids on histone H3 and the pathological development of osteoarthritis; specifically, the rise of methylation level at the lysine 4 would aggravate the pathological development of osteoarthritis, while the the pattern of lysine 9 and 27 would be the opposite. These results indicate the possible existence of a complex network of histone methylation modifications. And the specific regulation of histone methylation levels in different positions may delay or prevent the occurrence and development of osteoarthritis.
Collapse
Affiliation(s)
- Xiaotian Du
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, International Campus of Zhejiang University, Haining 314400, Zhejiang Province, China
| |
Collapse
|
16
|
Tsusaka T, Shimura C, Shinkai Y. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep 2019; 20:e48297. [PMID: 31576654 DOI: 10.15252/embr.201948297] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding of the appropriate regulation of enzymatic activities of histone-modifying enzymes remains poor. The lysine methyltransferase, SETDB1, is one of the enzymes responsible for the methylation of histone H3 at lysine 9 (H3K9) and plays a key role in H3K9 trimethylation-mediated silencing of genes and retrotransposons. Here, we reported that how SETDB1's enzymatic activities can be regulated by the nuclear protein, ATF7IP, a known binding partner of SETDB1. Mechanistically, ATF7IP mediates SETDB1 retention inside the nucleus, presumably by inhibiting its nuclear export by binding to the N-terminal region of SETDB1, which harbors the nuclear export signal motifs, and also by promoting its nuclear import. The nuclear localization of SETDB1 increases its ubiquitinated, enzymatically more active form. Our results provided an insight as to how ATF7IP can regulate the histone methyltransferase activity of SETDB1 accompanied by its nuclear translocation.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| |
Collapse
|
17
|
Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019; 120:523-532. [PMID: 30296494 DOI: 10.1016/j.bone.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022]
Abstract
Within the last decade epigenetics has emerged as fundamental regulator of numerous cellular processes, including those orchestrating embryonic and fetal development. As such, epigenetic factors play especially crucial roles in endochondral ossification, the process by which bone tissue is created, as well during articular cartilage formation. In this review, we summarize the recent discoveries that characterize how DNA methylation, histone post-translational modifications and non-coding RNA (e.g., miRNA and lcnRNA) epigenetically regulate endochondral ossification and chondrogenesis.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | |
Collapse
|
18
|
Ferguson J, Atit RP. A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis 2019; 57:e23248. [PMID: 30155972 PMCID: PMC7433025 DOI: 10.1002/dvg.23248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
The skull bones must grow in a coordinated, three-dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.
Collapse
Affiliation(s)
- James Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| |
Collapse
|
19
|
Yang L, Gee AO, Zielinska-Kwiatkowska A, Chansky HA. Generation and characterization of mice with mesenchyme-specific deletion of the entire ESET histone methyltransferase protein. Genesis 2018; 56. [PMID: 29282851 DOI: 10.1002/dvg.23088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/20/2017] [Accepted: 12/25/2017] [Indexed: 12/24/2022]
Abstract
ESET protein (also known as SETDB1) catalyzes methylation of histone H3 at lysine 9 (H3-K9). In addition to the full-length transcript, mouse ESET gene also gives rise to alternative spicing variants encoding truncated proteins capable of retaining interaction with other epigenetic enzymes. To completely eliminate full-length ESET and its splicing variants, we have generated a conditional ESET allele with exon 4 flanked by two loxP sites for Cre-mediated DNA deletion and downstream frame-shift mutation of the entire coding region. Mating with Prx1-Cre mice and analysis of the resultant embryos revealed that mesenchyme-specific knockout of exon 4 completely eliminates full-length ESET and its truncated protein products, leading to profound defects in both the flat bones and long bones, ectopic hypertrophy of growth plate chondrocytes and downregulation of Indian hedgehog protein. In addition, exon 4 deletion results in reduced thickness of articular cartilage in E17.5 embryos, whereas deletion of exons 15-16 fails to do so. These findings offer us a useful tool to further study epigenetic regulation in a truly ESET-null background, and demonstrate that ESET plays a critical role in the control of chondrocyte hypertrophy and skeletal development.
Collapse
Affiliation(s)
- Liu Yang
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, 98195
| | - Albert O Gee
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, 98195
| | | | - Howard A Chansky
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
20
|
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network. BMC Genomics 2017; 18:983. [PMID: 29262782 PMCID: PMC5738906 DOI: 10.1186/s12864-017-4378-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Background Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. Results In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Conclusions Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders. Electronic supplementary material The online version of this article (10.1186/s12864-017-4378-y) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Liu T, Chen X, Li T, Li X, Lyu Y, Fan X, Zhang P, Zeng W. Histone methyltransferase SETDB1 maintains survival of mouse spermatogonial stem/progenitor cells via PTEN/AKT/FOXO1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1094-1102. [DOI: 10.1016/j.bbagrm.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
22
|
Szychlinska MA, Stoddart MJ, D'Amora U, Ambrosio L, Alini M, Musumeci G. Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function? TISSUE ENGINEERING PART B-REVIEWS 2017; 23:529-539. [PMID: 28514935 DOI: 10.1089/ten.teb.2017.0083] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aging is the most prominent risk factor triggering several degenerative diseases, such as osteoarthritis (OA). Due to its poor self-healing capacity, once injured cartilage needs to be reestablished. This process might be approached through resorting to cell-based therapies and/or tissue engineering. Human mesenchymal stem cells (MSCs) represent a promising approach due to their chondrogenic differentiation potential. Presently, in vitro chondrogenic differentiation of MSCs is limited by two main reasons as follows: aging of MSCs, which determines the loss of cell proliferative and differentiation capacity and MSC-derived chondrocyte hypertrophic differentiation, which limits the use of these cells in cartilage tissue regeneration approach. The effect of aging on MSCs is fundamental for stem cell-based therapy development, especially in older subjects. In the present review we focus on homeostasis alterations occurring in MSC-derived chondrocytes during in vitro aging. Moreover, we deal with potential cell aging regulation approaches, such as cell stimulation through telomerase activators, mechanical strain, and epigenetic regulation. Future investigations in this field might provide new insights into innovative strategies for cartilage regeneration and potentially inspire novel therapeutic approaches for OA treatment.
Collapse
Affiliation(s)
- Marta A Szychlinska
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy
| | - Martin J Stoddart
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Ugo D'Amora
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy .,4 Department of Chemical Science and Materials Technology, National Research Council of Italy , Rome, Italy
| | - Mauro Alini
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Giuseppe Musumeci
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy .,5 Department of Health, Institut des Etudes Universitaries , UniPoliSI, Veyras, Switzerland
| |
Collapse
|
23
|
Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets 2017; 21:319-331. [PMID: 28076698 DOI: 10.1080/14728222.2017.1279604] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epigenetic changes lead to aberrant gene expression in cancer. SETDB1, a histone lysine methyltransferase plays an important role in methylation and gene silencing. Aberrant histone methylation at H3K9 by SETDB1 promotes silencing of tumor suppressor genes and thus contributes to carcinogenesis. Recent studies indicate that SETDB1 is abnormally expressed in various human cancer conditions which contributed to enhanced tumor growth and metastasis. Hence, SETDB1 appears to be a promising epigenetic target for therapeutic intervention. Areas covered: In this article, the structural features, localization and functions of SETDB1 are reviewed. Also, an overview of the role of SETDB1 in cancer and other disease mechanisms, the currently studied inhibitors for SETDB1 are mentioned. Expert opinion: Silencing of tumor suppressor genes due to excessive trimethylation at H3K9 by amplified SETDB1 levels is found in various cancerous conditions. Since epigenetic changes are reversible, SETDB1 holds promise as an important therapeutic target for cancer. Therefore, a better understanding of the role of SETDB1 and its interaction with various proteins in cancer-related mechanisms along with therapeutic interventions specific for SETDB1 may improve targeted cancer therapy.
Collapse
|
24
|
Histone methyltransferase Setdb1 is indispensable for Meckel's cartilage development. Biochem Biophys Res Commun 2016; 482:883-888. [PMID: 27890611 DOI: 10.1016/j.bbrc.2016.11.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
The histone methyltransferase Setdb1 represses gene expression by catalyzing lysine 9 of histone H3 trimethylation. Given that the conventional knockout of Setdb1 is embryo-lethal at the implantation stage, its role in craniofacial development is poorly understood. Here, we investigated the role of Setdb1, using conditional knockout mice-in which Setdb1 was deleted in the Meckel's cartilage (Setdb1 CKO)-and the mouse chondrogenic cell line ATDC5-in which Setdb1 was inhibited by siRNA. Deletion of Setdb1 in Meckel's cartilage, the supportive tissue in the embryonic mandible, led to its enlargement, instead of the degeneration that normally occurs. Chondrocytes from the Meckel's cartilage of Setdb1 CKO mice showed increased size. Furthermore, at embryonic days 16.5 and 18.5, part of the perichondrium was disrupted and mineralization was observed in the Meckel's cartilage. Proliferation analysis showed that inhibition of Setdb1 caused increased proliferation in chondrocytes in the Meckel's cartilage as well as in ATDC5 cells. Quantitative RT-PCR showed decreased expression of chondrogenic genes, such as Sox9, Mmp13, Collagen II, and Aggrecan, as a result of Setdb1 inhibition in ATDC5 cells. Along with these phenomenons, SMAD-dependent BMP signaling was significantly increased by the loss of Setdb1 in both the Meckel's cartilage of Setdb1 CKO mice and ATDC5 cells. Therefore, the abnormal development of Meckel's cartilage in Setdb1 CKO mice is partly due to the enhanced SMAD-dependent BMP signaling. Overall, to our knowledge, the present study is the first to show that epigenetic regulation by Setdb1 is indispensable for the embryonic development of Meckel's cartilage.
Collapse
|
25
|
Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, Ait-Si-Ali S. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov 2016; 2:16037. [PMID: 27790377 PMCID: PMC5067623 DOI: 10.1038/celldisc.2016.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. Ex vivo studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation. In vitro studies in skeletal myoblasts confirmed that Setdb1 suppresses terminal differentiation. Genomic binding analyses showed a release of Setdb1 from selected target genes upon myoblast terminal differentiation, concomitant to a nuclear export of Setdb1 to the cytoplasm. Both genomic release and cytoplasmic Setdb1 relocalisation during differentiation were dependent on canonical Wnt signalling. Transcriptomic assays in myoblasts unravelled a significant overlap between Setdb1 and Wnt3a regulated genetic programmes. Together, our findings revealed Wnt-dependent subcellular relocalisation of Setdb1 as a novel mechanism regulating Setdb1 functions and myogenesis.
Collapse
Affiliation(s)
- Sophie Beyer
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Julien Pontis
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Elija Schirwis
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Valentine Battisti
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Anja Rudolf
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Fabien Le Grand
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| |
Collapse
|
26
|
Shiguetomi-Medina JM, Møller-Madsen B, Rahbek O. Physeal histological morphology after thermal epiphysiodesis using radiofrequency ablation. J Orthop Traumatol 2016; 18:121-126. [PMID: 27709362 PMCID: PMC5429251 DOI: 10.1007/s10195-016-0430-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/22/2016] [Indexed: 12/03/2022] Open
Abstract
Background Several treatments have been described for leg length discrepancy. Epiphysiodesis is the most commonly used because of its effectiveness. Thermal epiphysiodesis using radiofrequency ablation (RFA) alters the growth plate morphology without damaging the adjacent articular cartilage; it is a minimally invasive method that has shown excellent results in animal models. This study describes the macro and micro morphology after the procedure. Materials and methods Epiphysiodesis using RFA was performed in vivo for 8 min (92–98 °C) at two ablation sites (medial and lateral) in one randomly-selected tibia in eight growing pigs. The contralateral tibia was used as control. After 12 weeks, the pigs were killed and the tibiae harvested. The specimens were studied macroscopically and histology samples were obtained. Physeal morphology, thickness and characteristics were then described. Results Macroscopically, the articular cartilage was normal in all the treated tibiae. Microscopically, the physis was detected as a discontinuous line on the treated tibiae while it was continuous in all controls. In the control specimens, the mean thickness of the physis was 625 µm (606–639, SD = 14). All the physeal layers were organized. In the ablated specimens, disorganized layers in a heterogeneous line were observed. Bone bridges were identified at the ablation sites. The central part of the physis looked normal. Next to the bone bridge, the physis was thicker and presented fibrosis. The mean thickness was 820 µm (628–949, SD = 130). No abnormalities in the articular cartilage were observed. Conclusions Thermal epiphysiodesis with RFA disrupts the physeal morphology and causes the formation of bone bridges at the ablation sites. This procedure does not damage the adjacent articular cartilage. The damaged tissue, next to the bone bridges, is characterized by disorganization and fibrosis.
Collapse
Affiliation(s)
- Juan Manuel Shiguetomi-Medina
- Orthopaedics Research Laboratory, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark. .,Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark.
| | - B Møller-Madsen
- Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark
| | - O Rahbek
- Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
27
|
Abstract
Micro ribonucleic acid (microRNA) regulation and expression has become an emerging field in determining the mechanisms regulating a variety of inflammation-mediated diseases. Several studies have focused on specific microRNAs that are differentially expressed in cases of osteoarthritis. Furthermore, several targets of these miRNAs important in disease progression have also been identified. In this review, we focus on microRNA biogenesis, regulation, detection, and quantification with an emphasis on cellular localization and how these concepts may be linked to disease processes such as osteoarthritis. Next, we review the relationships of specific microRNAs to certain features and risk factors associated with osteoarthritis such as inflammation, obesity, autophagy, and cartilage homeostasis. We also identify certain microRNAs that are differentially expressed in osteoarthritis but have unidentified targets and functions in the disease state. Lastly, we identify the potential use of microRNAs for therapeutic purposes and also mention certain remedies that regulate microRNA expression.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
28
|
Hachiya R, Shiihashi T, Shirakawa I, Iwasaki Y, Matsumura Y, Oishi Y, Nakayama Y, Miyamoto Y, Manabe I, Ochi K, Tanaka M, Goda N, Sakai J, Suganami T, Ogawa Y. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci Rep 2016; 6:28845. [PMID: 27349785 PMCID: PMC4924096 DOI: 10.1038/srep28845] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 12/24/2022] Open
Abstract
Proinflammatory cytokine production in macrophages involves multiple regulatory mechanisms, which are affected by environmental and intrinsic stress. In particular, accumulating evidence has suggested epigenetic control of macrophage differentiation and function mainly in vitro. SET domain, bifurcated 1 (Setdb1, also known as Eset) is a histone 3 lysine 9 (H3K9)-specific methyltransferase and is essential for early development of embryos. Here we demonstrate that Setdb1 in macrophages potently suppresses Toll-like receptor 4 (TLR4)-mediated expression of proinflammatory cytokines including interleukin-6 through its methyltransferase activity. As a molecular mechanism, Setdb1-deficiency decreases the basal H3K9 methylation levels and augments TLR4-mediated NF-κB recruitment on the proximal promoter region of interleukin-6, thereby accelerating interleukin-6 promoter activity. Moreover, macrophage-specific Setdb1-knockout mice exhibit higher serum interleukin-6 concentrations in response to lipopolysaccharide challenge and are more susceptible to endotoxin shock than wildtype mice. This study provides evidence that the H3K9 methyltransferase Setdb1 is a novel epigenetic regulator of proinflammatory cytokine expression in macrophages in vitro and in vivo. Our data will shed insight into the better understanding of how the immune system reacts to a variety of conditions.
Collapse
Affiliation(s)
- Rumi Hachiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuya Shiihashi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,Tokyo, 162-8480, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yorihiro Iwasaki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yumiko Oishi
- Department of Cellular and Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-0873, Japan
| | - Ichiro Manabe
- Department of Aging Research, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,Tokyo, 162-8480, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Japan Science and Technology Agency, PRESTO, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
29
|
Pasquarella A, Ebert A, Pereira de Almeida G, Hinterberger M, Kazerani M, Nuber A, Ellwart J, Klein L, Busslinger M, Schotta G. Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development 2016; 143:1788-99. [PMID: 27013243 DOI: 10.1242/dev.130203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/16/2016] [Indexed: 02/04/2023]
Abstract
The H3K9me3-specific histone methyltransferase Setdb1 impacts on transcriptional regulation by repressing both developmental genes and retrotransposons. How impaired retrotransposon silencing may lead to developmental phenotypes is currently unclear. Here, we show that loss of Setdb1 in pro-B cells completely abrogates B cell development. In pro-B cells, Setdb1 is dispensable for silencing of lineage-inappropriate developmental genes. Instead, we detect strong derepression of endogenous murine leukemia virus (MLV) copies. This activation coincides with an unusual change in chromatin structure, with only partial loss of H3K9me3 and unchanged DNA methylation, but strongly increased H3K4me3. Production of MLV proteins leads to activation of the unfolded protein response pathway and apoptosis. Thus, our data demonstrate that B cell development depends on the proper repression of retrotransposon sequences through Setdb1.
Collapse
Affiliation(s)
- Alessandra Pasquarella
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, 82152 Planegg-Martinsried, Germany
| | - Anja Ebert
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Gustavo Pereira de Almeida
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, 82152 Planegg-Martinsried, Germany
| | - Maria Hinterberger
- Ludwig Maximilians University, Institute for Immunology, 80336 München, Germany
| | - Maryam Kazerani
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, 82152 Planegg-Martinsried, Germany
| | - Alexander Nuber
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, 82152 Planegg-Martinsried, Germany
| | - Joachim Ellwart
- Helmholtz Zentrum München, Institute of Molecular Immunology, 81377 München, Germany
| | - Ludger Klein
- Ludwig Maximilians University, Institute for Immunology, 80336 München, Germany
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Deng P, Chen QM, Hong C, Wang CY. Histone methyltransferases and demethylases: regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int J Oral Sci 2015; 7:197-204. [PMID: 26674421 PMCID: PMC5153596 DOI: 10.1038/ijos.2015.41] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3–9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Peng Deng
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Christine Hong
- Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
31
|
Duan L, Liang Y, Ma B, Zhu W, Wang D. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair. Am J Transl Res 2015; 7:2127-2140. [PMID: 26807163 PMCID: PMC4697695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
Loss of hyaline chondrocyte phenotype during the monolayer culture in vitro is a major obstacle for cell-based articular cartilage repair. Increasing evidence implicates an important role of the epigenetic regulation in maintaining the chondrocyte phenotype. DNA methylation, histone modifications and microRNAs have all been shown to contribute to chondrocyte dedifferentiation and hypertrophy. Moreover, the interplay among epigenetic regulators forms a complicated epigenetic network in regulating chondrocyte dedifferentiation. This review provides a detailed overview of the epigenetic regulation in maintaining the chondrocyte phenotype for chondrocyte-based cartilage repair.
Collapse
Affiliation(s)
- Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Yujie Liang
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen 518000, Guangdong Province, China
| | - Bin Ma
- Division of Immunology, University Children’s Hospital ZurichZurich 8032, Switzerland
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| |
Collapse
|
32
|
|
33
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
34
|
Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. ACTA ACUST UNITED AC 2015; 102:74-82. [PMID: 24677724 DOI: 10.1002/bdrc.21062] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.
Collapse
Affiliation(s)
- Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute, London, Ontario, Canada
| | | |
Collapse
|
35
|
Song YJ, Choi JH, Lee H. Setdb1 is required for myogenic differentiation of C2C12 myoblast cells via maintenance of MyoD expression. Mol Cells 2015; 38:362-72. [PMID: 25715926 PMCID: PMC4400312 DOI: 10.14348/molcells.2015.2291] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide micro-array and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven lucif-erase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation.
Collapse
Affiliation(s)
- Young Joon Song
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751,
Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751,
Korea
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751,
Korea
| |
Collapse
|
36
|
Zhang F, Xu L, Xu L, Xu Q, Li D, Yang Y, Karsenty G, Chen CD. JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice. J Mol Cell Biol 2015; 7:23-34. [PMID: 25587042 DOI: 10.1093/jmcb/mjv003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
JMJD3 (KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression. However, the function of JMJD3 in vivo is not well understood. Here we show that JMJD3 is highly expressed in cells of the chondrocyte lineage, especially in prehypertrophic and hypertrophic chondrocytes, during endochondral ossification. Homozygous deletion of Jmjd3 results in severely decreased proliferation and delayed hypertrophy of chondrocytes, and thereby marked retardation of endochondral ossification in mice. Genetically, JMJD3 associates with RUNX2 to promote proliferation and hypertrophy of chondrocytes. Biochemically, JMJD3 associates with and enhances RUNX2 activity by derepression of Runx2 and Ihh transcription through its H3K27me3 demethylase activity. These results demonstrate that JMJD3 is a key epigenetic regulator in the process of cartilage maturation during endochondral bone formation.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Shaanxi 710032, China
| | - Longyong Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longxia Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingzi Yang
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
37
|
Nagel AK, Ball LE. O-GlcNAc modification of the runt-related transcription factor 2 (Runx2) links osteogenesis and nutrient metabolism in bone marrow mesenchymal stem cells. Mol Cell Proteomics 2014; 13:3381-95. [PMID: 25187572 DOI: 10.1074/mcp.m114.040691] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2 is the master switch controlling osteoblast differentiation and formation of the mineralized skeleton. The post-translational modification of Runx2 by phosphorylation, ubiquitinylation, and acetylation modulates its activity, stability, and interactions with transcriptional co-regulators and chromatin remodeling proteins downstream of osteogenic signals. Characterization of Runx2 by electron transfer dissociation tandem mass spectrometry revealed sites of O-linked N-acetylglucosamine (O-GlcNAc) modification, a nutrient-responsive post-translational modification that modulates the action of numerous transcriptional effectors. O-GlcNAc modification occurs in close proximity to phosphorylated residues and novel sites of arginine methylation within regions known to regulate Runx2 transactivation. An interaction between Runx2 and the O-GlcNAcylated, O-GlcNAc transferase enzyme was also detected. Pharmacological inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc from Ser/Thr residues, enhanced basal (39.9%) and BMP2/7-induced (43.3%) Runx2 transcriptional activity in MC3T3-E1 pre-osteoblasts. In bone marrow-derived mesenchymal stem cells differentiated for 6 days in osteogenic media, inhibition of OGA resulted in elevated expression (24.3%) and activity (65.8%) of alkaline phosphatase (ALP) an early marker of bone formation and a transcriptional target of Runx2. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells in the presence of BMP2/7 for 8 days culminated in decreased OGA activity (39.0%) and an increase in the abundance of O-GlcNAcylated Runx2, as compared with unstimulated cells. Furthermore, BMP2/7-induced ALP activity was enhanced by 35.6% in bone marrow-derived mesenchymal stem cells differentiated in the presence of the OGA inhibitor, demonstrating that direct or BMP2/7-induced inhibition of OGA is associated with increased ALP activity. Altogether, these findings link O-GlcNAc cycling to the Runx2-dependent regulation of the early ALP marker under osteoblast differentiation conditions.
Collapse
Affiliation(s)
- Alexis K Nagel
- From the ‡Department of Oral Health Sciences; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Lauren E Ball
- From the ‡Department of Oral Health Sciences; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, 29425
| |
Collapse
|
38
|
Lawson KA, Teteak CJ, Gao J, Li N, Hacquebord J, Ghatan A, Zielinska-Kwiatkowska A, Song G, Chansky HA, Yang L. ESET histone methyltransferase regulates osteoblastic differentiation of mesenchymal stem cells during postnatal bone development. FEBS Lett 2013; 587:3961-7. [PMID: 24188826 DOI: 10.1016/j.febslet.2013.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
To investigate the effects of histone methyltransferase ESET (also known as SETDB1) on bone metabolism, we analyzed osteoblasts and osteoclasts in ESET knockout animals, and performed osteogenesis assays using ESET-null mesenchymal stem cells. We found that ESET deletion severely impairs osteoblast differentiation but has no effect on osteoclastogenesis, that co-transfection of ESET represses Runx2-mediated luciferase reporter while siRNA knockdown of ESET activates the luciferase reporter in mesenchymal cells, and that ESET is required for postnatal expression of Indian hedgehog protein in the growth plate. As the bone phenotype in ESET-null mice is 100% penetrant, these results support ESET as a critical regulator of osteoblast differentiation during bone development.
Collapse
Affiliation(s)
- Kevin A Lawson
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lawson KA, Teteak CJ, Zou J, Hacquebord J, Ghatan A, Zielinska-Kwiatkowska A, Fernandes RJ, Chansky HA, Yang L. Mesenchyme-specific knockout of ESET histone methyltransferase causes ectopic hypertrophy and terminal differentiation of articular chondrocytes. J Biol Chem 2013; 288:32119-32125. [PMID: 24056368 DOI: 10.1074/jbc.m113.473827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The exact molecular mechanisms governing articular chondrocytes remain unknown in skeletal biology. In this study, we have found that ESET (an ERG-associated protein with a SET domain, also called SETDB1) histone methyltransferase is expressed in articular cartilage. To test whether ESET regulates articular chondrocytes, we carried out mesenchyme-specific deletion of the ESET gene in mice. ESET knock-out did not affect generation of articular chondrocytes during embryonic development. Two weeks after birth, there was minimal qualitative difference at the knee joints between wild-type and ESET knock-out animals. At 1 month, ectopic hypertrophy, proliferation, and apoptosis of articular chondrocytes were seen in the articular cartilage of ESET-null animals. At 3 months, additional signs of terminal differentiation such as increased alkaline phosphatase activity and an elevated level of matrix metalloproteinase (MMP)-13 were found in ESET-null cartilage. Staining for type II collagen and proteoglycan revealed that cartilage degeneration became progressively worse from 2 weeks to 12 months at the knee joints of ESET knock-out mutants. Analysis of over 14 pairs of age- and sex-matched wild-type and knock-out mice indicated that the articular chondrocyte phenotype in ESET-null mutants is 100% penetrant. Our results demonstrate that expression of ESET plays an essential role in the maintenance of articular cartilage by preventing articular chondrocytes from terminal differentiation and may have implications in joint diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Kevin A Lawson
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Colin J Teteak
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Junhui Zou
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Jacques Hacquebord
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Andrew Ghatan
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Anna Zielinska-Kwiatkowska
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Russell J Fernandes
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108
| | - Howard A Chansky
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108; the Research and Development Program, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108
| | - Liu Yang
- From the Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98108; the Research and Development Program, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108.
| |
Collapse
|
40
|
McAlinden A, Varghese N, Wirthlin L, Chang LW. Differentially expressed microRNAs in chondrocytes from distinct regions of developing human cartilage. PLoS One 2013; 8:e75012. [PMID: 24040378 PMCID: PMC3767648 DOI: 10.1371/journal.pone.0075012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022] Open
Abstract
There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs (miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However, information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.e. production of progenitor, differentiated or hypertrophic chondrocytes) is lacking. To attempt to bridge this knowledge gap, we have investigated miRNA expression patterns in human embryonic cartilage tissue. Specifically, a developmental time point was selected, prior to endochondral ossification in the embryonic limb, to permit analysis of three distinct populations of chondrocytes. The location of chondroprogenitor cells, differentiated chondrocytes and hypertrophic chondrocytes in gestational day 54-56 human embryonic limb tissue sections was confirmed both histologically and by specific collagen expression patterns. Laser capture microdissection was utilized to separate the three chondrocyte populations and a miRNA profiling study was carried out using TaqMan® OpenArray® Human MicroRNA Panels (Applied Biosystems®). Here we report on abundantly expressed miRNAs in human embryonic cartilage tissue and, more importantly, we have identified miRNAs that are significantly differentially expressed between precursor, differentiated and hypertrophic chondrocytes by 2-fold or more. Some of the miRNAs identified in this study have been described in other aspects of cartilage or bone biology, while others have not yet been reported in chondrocytes. Finally, a bioinformatics approach was applied to begin to decipher developmental cellular pathways that may be regulated by groups of differentially expressed miRNAs during distinct stages of chondrogenesis. Data obtained from this work will serve as an important resource of information for the field of cartilage biology and will enhance our understanding of miRNA-driven mechanisms regulating cartilage and endochondral bone development, regeneration and repair.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
| | - Li-Wei Chang
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| |
Collapse
|