1
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Blunk S, Garcia-Verdugo H, O’Sullivan S, Camp J, Haines M, Coalter T, Williams TA, Nagy LM. Functional Divergence of the Tribolium castaneum engrailed and invected Paralogs. INSECTS 2023; 14:691. [PMID: 37623401 PMCID: PMC10455198 DOI: 10.3390/insects14080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss. The consequence of losing or knocking down both paralogs on embryogenesis has not been studied beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed. The most common cuticular phenotype of the double knockdowns was small, limbless, and open dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically: the knockdown of either Tribolium gene alone was typically less severe, with all limbs present, whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype. Morphological abnormalities unique to either single gene knockdown were not found. inv expression was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased midway through development. Thus, while the segmental expression of en/inv is broadly conserved within insects, the functions of en and inv are evolving independently in different lineages.
Collapse
Affiliation(s)
- Summer Blunk
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Hector Garcia-Verdugo
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Sierra O’Sullivan
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - James Camp
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Michael Haines
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Tara Coalter
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Terri A. Williams
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Lisa M. Nagy
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| |
Collapse
|
3
|
Wang JJ, Bai Y, Dong Y. A Rearrangement of the Mitochondrial Genes of Centipedes (Arthropoda, Myriapoda) with a Phylogenetic Analysis. Genes (Basel) 2022; 13:1787. [PMID: 36292672 PMCID: PMC9601646 DOI: 10.3390/genes13101787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/12/2024] Open
Abstract
Due to the limitations of taxon sampling and differences in results from the available data, the phylogenetic relationships of the Myriapoda remain contentious. Therefore, we try to reconstruct and analyze the phylogenetic relationships within the Myriapoda by examining mitochondrial genomes (the mitogenome). In this study, typical circular mitogenomes of Mecistocephalus marmoratus and Scolopendra subspinipes were sequenced by Sanger sequencing; they were 15,279 bp and 14,637 bp in length, respectively, and a control region and 37 typical mitochondrial genes were annotated in the sequences. The results showed that all 13 PCGs started with ATN codons and ended with TAR codons or a single T; what is interesting is that the gene orders of M. marmoratus have been extensively rearranged compared with most Myriapoda. Thus, we propose a simple duplication/loss model to explain the extensively rearranged genes of M. marmoratus, hoping to provide insights into mitogenome rearrangement events in Myriapoda. In addition, our mitogenomic phylogenetic analyses showed that the main myriapod groups are monophyletic and supported the combination of the Pauropoda and Diplopoda to form the Dignatha. Within the Chilopoda, we suggest that Scutigeromorpha is a sister group to the Lithobiomorpha, Geophilomorpha, and Scolopendromorpha. We also identified a close relationship between the Lithobiomorpha and Geophilomorpha. The results also indicate that the mitogenome can be used as an effective mechanism to understand the phylogenetic relationships within Myriapoda.
Collapse
Affiliation(s)
| | | | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
4
|
Janssen R, Schomburg C, Prpic NM, Budd GE. A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS One 2022; 17:e0270790. [PMID: 35802758 PMCID: PMC9269926 DOI: 10.1371/journal.pone.0270790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Christoph Schomburg
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
- Fachgebiet Botanik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Nikola-Michael Prpic
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Taylor SE, Dearden PK. The Nasonia pair-rule gene regulatory network retains its function over 300 million years of evolution. Development 2022; 149:dev199632. [PMID: 35142336 PMCID: PMC8959145 DOI: 10.1242/dev.199632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Insect segmentation is a well-studied and tractable system with which to investigate the genetic regulation of development. Though insects segment their germband using a variety of methods, modelling work implies that a single gene regulatory network can underpin the two main types of insect segmentation. This means limited genetic changes are required to explain significant differences in segmentation mode between different insects. This idea needs to be tested in a wider variety of species, and the nature of the gene regulatory network (GRN) underlying this model has not been tested. Some insects, e.g. Nasonia vitripennis and Apis mellifera segment progressively, a pattern not examined in previous studies of this segmentation model, producing stripes at different times progressively through the embryo, but not from a segment addition zone. Here, we aim to understand the GRNs patterning Nasonia using a simulation-based approach. We found that an existing model of Drosophila segmentation ( Clark, 2017) can be used to recapitulate the progressive segmentation of Nasonia, if provided with altered inputs in the form of expression of the timer genes Nv-caudal and Nv-odd paired. We predict limited topological changes to the pair-rule network and show, by RNAi knockdown, that Nv-odd paired is required for morphological segmentation. Together this implies that very limited changes to the Drosophila network are required to simulate Nasonia segmentation, despite significant differences in segmentation modes, implying that Nasonia use a very similar version of an ancestral GRN used by Drosophila, which must therefore have been conserved for at least 300 million years.
Collapse
Affiliation(s)
| | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, Aotearoa-New Zealand
| |
Collapse
|
6
|
Zoology: The view from 1,000 feet. Curr Biol 2022; 32:R225-R228. [DOI: 10.1016/j.cub.2022.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
8
|
Lev O, Chipman AD. Development of the Pre-gnathal Segments in the Milkweed Bug Oncopeltus fasciatus Suggests They Are Not Serial Homologs of Trunk Segments. Front Cell Dev Biol 2021; 9:695135. [PMID: 34422818 PMCID: PMC8378449 DOI: 10.3389/fcell.2021.695135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
The three anterior-most segments in arthropods contain the ganglia that make up the arthropod brain. These segments, the pre-gnathal segments (PGS), are known to exhibit many developmental differences to other segments, believed to reflect their divergent morphology. We have analyzed the expression and function of the genes involved in the conserved segment-polarity network, including genes from the Wnt and Hedgehog pathways, in the PGS, compared with the trunk segments, in the hemimetabolous insect Oncopeltus fasciatus. Gene function was tested by manipulating expression through RNA interference against components of the two pathways. We show that there are fundamental differences in the expression patterns of the segment polarity genes, in the timing of their expression and in the interactions among them in the process of pre-gnathal segment generation, relative to all other segments. We argue that given these differences, the PGS should not be considered serially homologous to trunk segments. This realization raises important questions about the differing evolutionary ancestry of different regions of the arthropod head.
Collapse
Affiliation(s)
| | - Ariel D. Chipman
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
10
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Regulatory gene function handoff allows essential gene loss in mosquitoes. Commun Biol 2020; 3:540. [PMID: 32999445 PMCID: PMC7528073 DOI: 10.1038/s42003-020-01203-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/02/2020] [Indexed: 11/09/2022] Open
Abstract
Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry, has acquired paired-like expression in the malaria mosquito Anopheles stephensi. Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. Cheatle Jarvela et al. demonstrate in the mosquito Anopheles stephensi that the paired gene was functionally replaced by the gene gooseberry, even though paired is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development.
Collapse
Affiliation(s)
| | | | - Leslie Pick
- Department of Entomology, University of Maryland, Collage Park, MD, USA.
| |
Collapse
|
11
|
Jeon H, Gim S, Na H, Choe CP. A pair-rule function of odd-skipped in germband stages of Tribolium development. Dev Biol 2020; 465:58-65. [PMID: 32687895 DOI: 10.1016/j.ydbio.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sujeong Gim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyejee Na
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
12
|
Janssen R. The embryonic expression pattern of a second, hitherto unrecognized, paralog of the pair-rule gene sloppy-paired in the beetle Tribolium castaneum. Dev Genes Evol 2020; 230:247-256. [PMID: 32430691 PMCID: PMC7260273 DOI: 10.1007/s00427-020-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
In the fly Drosophila melanogaster, a hierarchic segmentation gene cascade patterns the anterior-posterior body axis of the developing embryo. Within this cascade, the pair-rule genes (PRGs) transform the more uniform patterning of the higher-level genes into a metameric pattern that first represents double-segmental units, and then, in a second step, represents a true segmental pattern. Within the PRG network, primary PRGs regulate secondary PRGs that are directly involved in the regulation of the next lower level, the segment-polarity genes (SPGs). While the complement of primary PRGs is different in Drosophila and the beetle Tribolium, another arthropod model organism, both paired (prd) and sloppy-paired (slp), acts as secondary PRGs. In earlier studies, the interaction of PRGs and the role of the single slp ortholog in Tribolium have been investigated in some detail revealing conserved and diverged aspects of PRG function. In this study, I present the identification and the analysis of embryonic expression patterns of a second slp gene (called slp2) in Tribolium. While the previously identified gene, slp, is expressed in a typical PRG pattern, expression of slp2 is more similar to that of the downstream-acting SPGs, and shows expression similarities to slp2 in Drosophila. The previously reported differences between the function of slp in Drosophila and Tribolium may partially account for the function of the newly identified second slp paralog in Tribolium, and it may therefore be advised to conduct further studies on PRG function in the beetle.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
13
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
14
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development 2018; 145:dev.155580. [PMID: 29724758 PMCID: PMC6001374 DOI: 10.1242/dev.155580] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023]
Abstract
Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. While the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete, and Odd-paired expression. In Drosophila these transcription factors are expressed like simple timers within the blastoderm, while in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
| | - Andrew D Peel
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
16
|
Hunnekuhl VS, Akam M. Formation and subdivision of the head field in the centipede Strigamia maritima, as revealed by the expression of head gap gene orthologues and hedgehog dynamics. EvoDevo 2017; 8:18. [PMID: 29075435 PMCID: PMC5654096 DOI: 10.1186/s13227-017-0082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
Background There have been few studies of head patterning in non-insect arthropods, and even in the insects, much is not yet understood. In the fly Drosophila three head gap genes, orthodenticle (otd), buttonhead (btd) and empty spiracles (ems) are essential for patterning the head. However, they do not act through the same pair-rule genes that pattern the trunk from the mandibular segment backwards. Instead they act through the downstream factors collier (col) and cap‘n’collar (cnc), and presumably other unknown factors. In the beetle Tribolium, these same gap and downstream genes are also expressed during early head development, but in more restricted domains, and some of them have been shown to be of minor functional importance. In the spider Parasteatoda tepidariorum, hedgehog (hh) and otd have been shown to play an important role in head segmentation. Results We have investigated the expression dynamics of otx (otd), SP5/btd, ems, and the downstream factors col, cnc and hh during early head development of the centipede Strigamia maritima. Our results reveal the process of head condensation and show that the anteroposterior sequence of specific gene expression is conserved with that in insects. SP5/btd and otx genes are expressed prior to and during head field formation, whereas ems is not expressed until after the initial formation of the head field, in an emerging gap between SP5/btd and otx expression. Furthermore, we observe an early domain of Strigamia hh expression in the head field that splits to produce segmental stripes in the ocular, antennal and intercalary segments. Conclusions The dynamics of early gene expression in the centipede show considerable similarity with that in the beetle, both showing more localised expression of head gap genes than occurs in the fly. This suggests that the broad overlapping domains of head gap genes observed in Drosophila are derived in this lineage. We also suggest that the splitting of the early hh segmental stripes may reflect an ancestral and conserved process in arthropod head patterning. A remarkably similar stripe splitting process has been described in a spider, and in the Drosophila head hh expression starts from a broad domain that transforms into three stripes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0082-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera S Hunnekuhl
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK.,Department of Evolutionary Developmental Genetics, Georg-August-Universität Göttingen, Caspari Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK
| |
Collapse
|
17
|
Lu Y, Chen M, Reding K, Pick L. Establishment of molecular genetic approaches to study gene expression and function in an invasive hemipteran, Halyomorpha halys. EvoDevo 2017; 8:15. [PMID: 29075432 PMCID: PMC5648497 DOI: 10.1186/s13227-017-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Hemiptera is a large clade of insects understudied in terms of developmental biology. Halyomorpha halys, the Brown Marmorated Stink Bug (BMSB, referred to throughout as H. halys), is an invasive hemipteran pest of the mid-Atlantic region of the USA that has rapidly spread to other regions in recent years, devastating a wide range of crops using a piercing and sucking mechanism. Its phylogenetic position, polyphagous habits, and rapid spread in the USA suggested that H. halys would be an ideal system to broaden our knowledge of developmental mechanisms in insects. We and others previously generated transcriptome sequences from different life stages of this insect. Here, we describe tools to examine gene expression patterns in whole-mount H. halys embryos and to test the response of H. halys to RNA interference (RNAi). We show that spatial and temporal patterns of gene expression in H. halys can be effectively monitored by both immunostaining and in situ hybridization. We also show that delivery of dsRNA to adult females knocks down gene function in offspring, using the homeotic gene Sex combs reduced (Scr). Knockdown of Hh-Scr resulted in dramatic malformations of the mouthparts, demonstrating for the first time that RNAi is effective in this species. Our results suggest that, despite difficulties with long-term laboratory culture of H. halys, this species shows promise as a developmental system.
Collapse
Affiliation(s)
- Yong Lu
- Department of Entomology, University of Maryland, College Park, MD 20742 USA.,Present Address: Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Mengyao Chen
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
18
|
Clark E. Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation. PLoS Biol 2017; 15:e2002439. [PMID: 28953896 PMCID: PMC5633203 DOI: 10.1371/journal.pbio.2002439] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/09/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the "pair-rule" genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic "gap" inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
21
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Leite DJ, McGregor AP. Arthropod evolution and development: recent insights from chelicerates and myriapods. Curr Opin Genet Dev 2016; 39:93-100. [DOI: 10.1016/j.gde.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
|
23
|
Toll Genes Have an Ancestral Role in Axis Elongation. Curr Biol 2016; 26:1609-1615. [DOI: 10.1016/j.cub.2016.04.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
|
24
|
Rothschild JB, Tsimiklis P, Siggia ED, François P. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution. PLoS Genet 2016; 12:e1006052. [PMID: 27227405 PMCID: PMC4882032 DOI: 10.1371/journal.pgen.1006052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/23/2016] [Indexed: 12/23/2022] Open
Abstract
Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve. The last common ancestor of the fruit fly (Drosophila) and mosquito (Anopheles) lived more than 200 Million years ago. Can we use available data on insects alive today to infer what their ancestor looked like? In this manuscript, we focus on early embryonic development, when stripes of genetic expression appear and define the location of insect segments (“segmentation”). We use an evolutionary algorithm to reconstruct and predict dynamics of genes controlling stripes in the last common ancestor of fly and mosquito. We predict a new and different combinatorial logic of stripe formation in mosquito compared to fly, which is fully consistent with development of intermediate species such as moth-fly (Clogmia). Our simulations further suggest that the dynamics of gene expression in this last common ancestor were similar to other insects, such as wasps (Nasonia). Our method illustrates how computational methods inspired by machine learning and non-linear physics can be used to infer gene dynamics in species that disappeared millions of years ago.
Collapse
Affiliation(s)
- Jeremy B. Rothschild
- Physics Department, McGill University, Ernest Rutherford Physics Building, Montreal, Quebec, Canada
| | - Panagiotis Tsimiklis
- Physics Department, McGill University, Ernest Rutherford Physics Building, Montreal, Quebec, Canada
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| | - Paul François
- Physics Department, McGill University, Ernest Rutherford Physics Building, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Chen P, Tong XL, Fu MY, Hu H, Song JB, He SZ, Gai TT, Dai FY, Lu C. Molecular mapping and characterization of the silkworm apodal mutant. Sci Rep 2016; 6:18956. [PMID: 26738847 PMCID: PMC4704060 DOI: 10.1038/srep18956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
The morphological diversity of insects is important for their survival; in essence, it results from the differential expression of genes during development of the insect body. The silkworm apodal (ap) mutant has degraded thoracic legs making crawling and eating difficult and the female is sterile, which is an ideal subject for studying the molecular mechanisms of morphogenesis. Here, we confirmed that the infertility of ap female moths is a result of the degradation of the bursa copulatrix. Positional cloning of ap locus and expression analyses reveal that the Bombyx mori sister of odd and bowl (Bmsob) gene is a strong candidate for the ap mutant. The expression of Bmsob is down-regulated, while the corresponding Hox genes are up-regulated in the ap mutant compared to the wild type. Analyses with the dual luciferase assay present a declined activity of the Bmsob promoter in the ap mutant. Furthermore, we demonstrate that Bmsob can inhibit Hox gene expression directly and by suppressing the expression of other genes, including the BmDsp gene. The results of this study are an important contribution to our understanding of the diversification of insect body plan.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ming-Yue Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jiang-Bo Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| |
Collapse
|
26
|
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WGM, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development 2016; 143:2455-63. [DOI: 10.1242/dev.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
Abstract
In short germ arthropods, posterior segments are added sequentially from a growth zone or segment addition zone (SAZ) during embryogenesis. Studies in spiders such as the common house spider, Parasteatoda tepidariorum, have provided insights into the gene regulatory network (GRN) that underlies the development of the SAZ, and revealed the involvement of two important signalling pathways. It was shown that Wnt8 maintains a pool of undifferentiated cells in the SAZ, but this ligand is also required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and subsequently regulate segment addition. Here we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of the segmentation genes even-skipped (eve) and runt-1 (run-1), at least in part via the transcription factor encoded by caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium. Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but not sufficient to regulate the expression of the pair-rule genes eve and run-1. Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods including insects.
Collapse
Affiliation(s)
- Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christian L. B. Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Daniel J. Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Evelyn E. Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St., Lowell, MA 01854, USA
| | - Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Universidade Federal do Rio de Janeiro- UFRJ/NUPEM-Campus Macaé
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Wim G. M. Damen
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
27
|
Pick L. Hox genes, evo-devo, and the case of the ftz gene. Chromosoma 2015; 125:535-51. [PMID: 26596987 DOI: 10.1007/s00412-015-0553-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022]
Abstract
The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
28
|
Xiang J, Forrest IS, Pick L. Dermestes maculatus: an intermediate-germ beetle model system for evo-devo. EvoDevo 2015; 6:32. [PMID: 26478804 PMCID: PMC4609124 DOI: 10.1186/s13227-015-0028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding how genes change during evolution to direct the development of diverse body plans is a major goal of the evo-devo field. Achieving this will require the establishment of new model systems that represent key points in phylogeny. These new model systems must be amenable to laboratory culture, and molecular and functional approaches should be feasible. To date, studies of insects have been best represented by the model system Drosophila melanogaster. Given the enormous diversity represented by insect taxa, comparative studies within this clade will provide a wealth of information about the evolutionary potential and trajectories of alternative developmental strategies. RESULTS Here we established the beetle Dermestes maculatus, a member of the speciose clade Coleoptera, as a new insect model system. We have maintained a continuously breeding culture in the lab and documented Dermestes maculatus embryogenesis using nuclear and phalloidin staining. Anterior segments are specified during the blastoderm stage before gastrulation, and posterior segments are added sequentially during germ band elongation. We isolated and studied the expression and function of the pair-rule segmentation gene paired in Dermestes maculatus. In this species, paired is expressed in stripes during both blastoderm and germ band stages: four primary stripes arise prior to gastrulation, confirming an intermediate-germ mode of development for this species. As in other insects, these primary stripes then split into secondary stripes. To study gene function, we established both embryonic and parental RNAi. Knockdown of Dmac-paired with either method resulted in pair-rule-like segmentation defects, including loss of Engrailed expression in alternate stripes. CONCLUSIONS These studies establish basic approaches necessary to use Dermestes maculatus as a model system. Methods are now available for use of this intermediate-germ insect for future studies of the evolution of regulatory networks controlling insect segmentation, as well as of other processes in development and homeostasis. Consistent with the role of paired in long-germ Drosophila and shorter-germ Tribolium, paired functions as a pair-rule segmentation gene in Dermestes maculatus. Thus, paired retains pair-rule function in insects with different modes of segment addition.
Collapse
Affiliation(s)
- Jie Xiang
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
- />Program in Molecular and Cell Biology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| | - Iain S. Forrest
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| | - Leslie Pick
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
- />Program in Molecular and Cell Biology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| |
Collapse
|
29
|
Almeida FC, Sánchez-Gracia A, Walden KKO, Robertson HM, Rozas J. Positive selection in extra cellular domains in the diversification of Strigamia maritima chemoreceptors. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Franke FA, Schumann I, Hering L, Mayer G. Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev 2015; 17:3-20. [PMID: 25627710 DOI: 10.1111/ede.12110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pax family genes encode a class of transcription factors that regulate various developmental processes. To shed light on the evolutionary history of these genes in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we analyzed the Pax repertoire in the embryonic and adult transcriptomes of the onychophoran Euperipatoides rowelli. Our data revealed homologs of all five major bilaterian Pax subfamilies in this species, including Pax2/5/8, Pax4/6, Pox-neuro, Pax1/9/Pox-meso, and Pax3/7. In addition, we identified a new Pax member, pax-α, which does not fall into any other known Pax subfamily but instead clusters in the heterogenic Pax-α/β clade containing deuterostome, ecdysozoan, and lophotrochozoan gene sequences. These findings suggest that the last common bilaterian ancestor possessed six rather than five Pax genes, which have been retained in the panarthropod lineage. The expression data of Pax orthologs in the onychophoran embryo revealed distinctive patterns, some of which might be related to their ancestral roles in the last common panarthropod ancestor, whereas others might be specific to the onychophoran lineage. The derived roles include, for example, an involvement of pax2/5/8, pox-neuro, and pax3/7 in onychophoran nephridiogenesis, and an additional function of pax2/5/8 in the formation of the ventral and preventral organs. Furthermore, our transcriptomic analyses suggest that at least some Pax genes, including pax6 and pax-α, are expressed in the adult onychophoran head, although the corresponding functions remain to be clarified. The remarkable diversity of the Pax expression patterns highlights the functional and evolutionary plasticity of these genes in panarthropods.
Collapse
Affiliation(s)
- Franziska Anni Franke
- Animal Evolution & Development, , Institute of Biology, University of Leipzig, Talstraße 33, D-04103, Leipzig, Germany
| | | | | | | |
Collapse
|
31
|
Robertson HE, Lapraz F, Rhodes AC, Telford MJ. The complete mitochondrial genome of the geophilomorph centipede Strigamia maritima. PLoS One 2015; 10:e0121369. [PMID: 25794168 PMCID: PMC4368715 DOI: 10.1371/journal.pone.0121369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/31/2015] [Indexed: 12/05/2022] Open
Abstract
Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard ‘cloverleaf’ secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more recent reorganisation in the lineage leading to Strigamia.
Collapse
Affiliation(s)
- Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
| | - Adelaide C. Rhodes
- Center for Genome Research and Biocomputing, 2750 SW Campus Way, Oregon State University, Corvallis, Oregon, United States of America
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, et alChipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, Lawson D, Muzny DM, Worley KC, Gibbs RA, Akam M, Richards S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 2014; 12:e1002005. [PMID: 25423365 PMCID: PMC4244043 DOI: 10.1371/journal.pbio.1002005] [Show More Authors] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
Collapse
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Carlo Brena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel S. T. Hughes
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Abt. Genetik, Rostock, Germany
| | | | - Nadia Znassi
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisca C. Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Claudio R. Alonso
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Zivkos Apostolou
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wallace Arthur
- Department of Zoology, National University of Ireland, Galway, Ireland
| | | | - Kerstin P. Blankenburg
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniela Brites
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Marcus Coyle
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter K. Dearden
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Louis Du Pasquier
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Elizabeth J. Duncan
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Dieter Ebert
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Cornelius Eibner
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Galina Erikson
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | | | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Liezl Francisco
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - William J. Gillis
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Jack E. Green
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Sai Gubbala
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Paul Havlak
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Luke Hayden
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Sophie Helbing
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerome H. L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Julia P. Hunn
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Hunnekuhl
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - LaRonda Jackson
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mehwish Javaid
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin E. Jones
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tobias S. Kaiser
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Divya Kalra
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathan J. Kenny
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christie L. Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - F. Bernhard Kraus
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- Department of Laboratory Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Lv
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Christigale Mandapat
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
| | - Marco Mariotti
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Robert Mata
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tittu Mathew
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Irene Newsham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinh N. Ngo
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fiona Ongeri
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shobha Patil
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro Patraquim
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christopher Pham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas H. Putman
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Olivia Mendivil Ramos
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Adelaide C. Rhodes
- Harte Research Institute, Texas A&M University Corpus Christi, Corpus Christi, Texas, United States of America
| | - Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Nehad Saada
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew M. Schurko
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Kenneth W. Siggens
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - DeNard Simmons
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Stief
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute for Biochemistry and Biology, University Potsdam, Potsdam-Golm, Germany
| | - Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life”, Vienna, Austria
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - James M. Williams
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yuanqing Wu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyan Zou
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Lawson
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Brena C, Akam M. An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 2013; 11:112. [PMID: 24289308 PMCID: PMC3879059 DOI: 10.1186/1741-7007-11-112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
Collapse
Affiliation(s)
- Carlo Brena
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|