1
|
Webb CH, Wang Y. Cardiac regeneration in goldfish (Carassius auratus) associated with increased expression of key extracellular matrix molecules. Anat Rec (Hoboken) 2025; 308:1378-1390. [PMID: 39092661 DOI: 10.1002/ar.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Cardiac regeneration is a natural phenomenon that occurs in many species outside of humans. The goldfish (Carassius auratus) is an understudied model of cardiac wound response, despite its ubiquity as pets as well as its relationship to the better-studied zebrafish. In this study, we examined the response of the goldfish heart to a resection injury. We found that by 70 days post-injury, goldfish scarlessly heal cardiac wounds under a certain size, with local cardiomyocyte proliferation driving the restoration of the myocardial layer. We also found the upregulation of extracellular matrix components related to cardiac regeneration in the injury site. This upregulation correlated with the level of cardiomyocyte proliferation occurring in the injury site, indicating an association between the two that warrants further exploration.
Collapse
Affiliation(s)
- Charles H Webb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Li L, Lu M, Guo L, Zhang X, Liu Q, Zhang M, Gao J, Xu M, Lu Y, Zhang F, Li Y, Zhang R, Liu X, Pan S, Zhang X, Li Z, Chen Y, Su X, Zhang N, Guo W, Yang T, Chen J, Qin Y, Zhang Z, Cui W, Yu L, Gu Y, Yang H, Xu X, Wang J, Burns CE, Burns CG, Han K, Zhao L, Fan G, Su Y. An organ-wide spatiotemporal transcriptomic and cellular atlas of the regenerating zebrafish heart. Nat Commun 2025; 16:3716. [PMID: 40253397 PMCID: PMC12009352 DOI: 10.1038/s41467-025-59070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Adult zebrafish robustly regenerate injured hearts through a complex orchestration of molecular and cellular activities. However, this remarkable process, which is largely non-existent in humans, remains incompletely understood. Here, we utilize integrated spatial transcriptomics (Stereo-seq) and single-cell RNA-sequencing (scRNA-seq) to generate a spatially-resolved molecular and cellular atlas of regenerating zebrafish heart across eight stages. We characterize the cascade of cardiomyocyte cell states responsible for producing regenerated myocardium and explore a potential role for tpm4a in cardiomyocyte re-differentiation. Moreover, we uncover the activation of ifrd1 and atp6ap2 genes as a unique feature of regenerative hearts. Lastly, we reconstruct a 4D "virtual regenerating heart" comprising 569,896 cells/spots derived from 36 scRNA-seq libraries and 224 Stereo-seq slices. Our comprehensive atlas serves as a valuable resource to the cardiovascular and regeneration scientific communities and their ongoing efforts to understand the molecular and cellular mechanisms underlying vertebrate heart regeneration.
Collapse
Affiliation(s)
- Lei Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Meina Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Lidong Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qun Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Meiling Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Junying Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Mengyang Xu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yijian Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yao Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Ruihua Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiawei Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Shanshan Pan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xianghui Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Zhen Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Yadong Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiaoshan Su
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nannan Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Wenjie Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Yating Qin
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Wei Cui
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Lindong Yu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Han
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
| | - Long Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China.
- BGI Research, Sanya, 572025, China.
- BGI Research, Hangzhou, 310030, China.
| | - Ying Su
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Gao J, Yu L, Qi H, Qi J, Zheng Z. The Application of scRNA-Seq in Heart Development and Regeneration. Genesis 2025; 63:e70013. [PMID: 40300044 DOI: 10.1002/dvg.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/01/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a rapidly developing and useful technique for elucidating biological mechanisms and characterizing individual cells. Tens of millions of patients worldwide suffer from heart injuries and other types of heart disease. Neonatal mammalian hearts and certain adult vertebrate species, such as zebrafish, can fully regenerate after myocardial injury. However, the adult mammalian heart is unable to regenerate the damaged myocardium. scRNA-seq provides many new insights into pathological and normal hearts and facilitates our understanding of cellular responses to cardiac injury and repair at different stages, which may provide critical clues for effective therapies for adult heart regeneration. In this review, we summarize the application of scRNA-seq in heart development and regeneration and describe how important molecular mechanisms can be harnessed to promote heart regeneration.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lindong Yu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haoran Qi
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Qi
- Laboratory Department, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, China
| | - Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
5
|
Rao A, Russell A, Segura-Bermudez J, Franz C, Dockery R, Blatnik A, Panten J, Zevallos M, McNulty C, Pietrzak M, Goldman JA. A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program. Development 2025; 152:DEV204458. [PMID: 39803985 PMCID: PMC11883283 DOI: 10.1242/dev.204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 02/18/2025]
Abstract
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.
Collapse
Affiliation(s)
- Anupama Rao
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Andrew Russell
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jose Segura-Bermudez
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Charles Franz
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Rejenae Dockery
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Anton Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jacob Panten
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mateo Zevallos
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Carson McNulty
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph Aaron Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Cortada E, Yao J, Xia Y, Dündar F, Zumbo P, Yang B, Rubio-Navarro A, Perder B, Qiu M, Pettinato AM, Homan EA, Stoll L, Betel D, Cao J, Lo JC. Cross-species single-cell RNA-seq analysis reveals disparate and conserved cardiac and extracardiac inflammatory responses upon heart injury. Commun Biol 2024; 7:1611. [PMID: 39627536 PMCID: PMC11615278 DOI: 10.1038/s42003-024-07315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The immune system coordinates the response to cardiac injury and controls regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Adult mice and humans lack the ability to fully recover while adult zebrafish spontaneously regenerate after heart injury. Here we profile the inflammatory response to heart cryoinjury in zebrafish and coronary artery ligation in mouse using single cell transcriptomics. We interrogate the extracardiac reaction to cardiomyocyte necrosis to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages play a critical role in determining tissue homeostasis by healing versus scarring. We identify distinct transcriptional clusters of monocytes/macrophages (mono/Mϕ) in each species and find analogous pairs in zebrafish and mice. However, the reaction to myocardial injury is largely disparate between mice and zebrafish. The dichotomous response to heart damage between the murine and zebrafish mono/Mϕ and/or the presence of distinct zebrafish mono/Mϕ subtypes may underlie the impaired regenerative process in adult mammals and humans. Our study furnishes a direct cross-species comparison of immune responses between regenerative and profibrotic myocardial injury models, providing a useful resource to the fields of regenerative biology and cardiovascular research.
Collapse
Affiliation(s)
- Eric Cortada
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Boris Yang
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Anthony M Pettinato
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Edwin A Homan
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Division of Hematology and Medical, Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Wang ZY, Mehra A, Wang QC, Gupta S, Ribeiro da Silva A, Juan T, Günther S, Looso M, Detleffsen J, Stainier DYR, Marín-Juez R. flt1 inactivation promotes zebrafish cardiac regeneration by enhancing endothelial activity and limiting the fibrotic response. Development 2024; 151:dev203028. [PMID: 39612288 PMCID: PMC11634031 DOI: 10.1242/dev.203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
VEGFA administration has been explored as a pro-angiogenic therapy for cardiovascular diseases including heart failure for several years, but with little success. Here, we investigate a different approach to augment VEGFA bioavailability: by deleting the VEGFA decoy receptor VEGFR1 (also known as FLT1), one can achieve more physiological VEGFA concentrations. We find that after cryoinjury, zebrafish flt1 mutant hearts display enhanced coronary revascularization and endocardial expansion, increased cardiomyocyte dedifferentiation and proliferation, and decreased scarring. Suppressing Vegfa signaling in flt1 mutants abrogates these beneficial effects of flt1 deletion. Transcriptomic analyses of cryoinjured flt1 mutant hearts reveal enhanced endothelial MAPK/ERK signaling and downregulation of the transcription factor gene egr3. Using newly generated genetic tools, we observe egr3 upregulation in the regenerating endocardium, and find that Egr3 promotes myofibroblast differentiation. These data indicate that with enhanced Vegfa bioavailability, the endocardium limits myofibroblast differentiation via egr3 downregulation, thereby providing a more permissive microenvironment for cardiomyocyte replenishment after injury.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Armaan Mehra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Qian-Chen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jan Detleffsen
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5 Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, H3T 1J4 Montréal, QC, Canada
| |
Collapse
|
9
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat Commun 2024; 15:9666. [PMID: 39516197 PMCID: PMC11549343 DOI: 10.1038/s41467-024-54060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. The role of Interleukin 11 (IL11) in heart regeneration remains controversial, as both regenerative and fibrotic functions have been reported. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. Notably, il11a induction in uninjured hearts also activates the quiescent epicardium to produce epicardial progenitor cells, which later differentiate into cardiac fibroblasts. Consequently, prolonged il11a induction indirectly leads to persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Uribe-Montes LC, Sanabria-Camargo CA, Piñeros-Romero CC, Otálora-Tarazona S, Ávila-Jiménez E, Acosta-Virgüez E, Garavito-Aguilar ZV. Fibronectin and Hand2 influence tubulogenesis during pronephros development and mesonephros regeneration in zebrafish (Danio rerio). PLoS One 2024; 19:e0307390. [PMID: 39240899 PMCID: PMC11379296 DOI: 10.1371/journal.pone.0307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/08/2024] Open
Abstract
Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context. We utilized early nat and han zebrafish mutant embryos and carrier adults to investigate Fn's role during kidney development and regeneration. The locus natter (nat) encodes Fn and the locus han encodes Hand2, which results in increased Fn deposition. Our results show that Fn impacts identity maintenance and morphogenesis during development and influences conditions for neonephrogenic cluster formation during regeneration. Histological analysis revealed disrupted pronephric structures and increased blood cell accumulation in Fn mutants. Despite normal expression of specification markers (pax2, ATPα1a.1), structural abnormalities were evident. Differences between wild-type and mutation-carriers suggest a haploinsufficiency scenario. These findings reveal a novel function for ECM in renal development and regeneration, with potential implications for understanding and treating kidney diseases.
Collapse
Affiliation(s)
- Lucia Carolina Uribe-Montes
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Camilo Alfonso Sanabria-Camargo
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Cristian Camilo Piñeros-Romero
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Sebastián Otálora-Tarazona
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Estefanía Ávila-Jiménez
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Edwin Acosta-Virgüez
- Departamento de Biología, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Zayra Viviana Garavito-Aguilar
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
12
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
13
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
14
|
Sun JT, Wang ZM, Zhou LH, Yang TT, Zhao D, Bao YL, Wang SB, Gu LF, Chen JW, Shan TK, Wei TW, Wang H, Wang QM, Kong XQ, Xie LP, Gu AH, Zhao Y, Chen F, Ji Y, Cui YQ, Wang LS. PEX3 promotes regenerative repair after myocardial injury in mice through facilitating plasma membrane localization of ITGB3. Commun Biol 2024; 7:795. [PMID: 38951640 PMCID: PMC11217276 DOI: 10.1038/s42003-024-06483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3β signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
Collapse
Affiliation(s)
- Jia-Teng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zi-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu-Hua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tong-Tong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Lin Bao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ling-Feng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Wen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Kai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li-Ping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Qiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China.
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577788. [PMID: 38352555 PMCID: PMC10862709 DOI: 10.1101/2024.01.29.577788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
16
|
Lai ZY, Yang CC, Chen PH, Chen WC, Lai TY, Lu GY, Yang CY, Wang KY, Liu WC, Chen YC, Liu LYM, Chuang YJ. Syndecan-4 is required for early-stage repair responses during zebrafish heart regeneration. Mol Biol Rep 2024; 51:604. [PMID: 38700644 PMCID: PMC11068835 DOI: 10.1007/s11033-024-09531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.
Collapse
Grants
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chung-Chi Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Division of Cardiovascular Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, 325208, Taiwan, ROC
- Cardiovascular Division, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114201, Taiwan, ROC
| | - Po-Hsun Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Chen Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ting-Yu Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Guan-Yun Lu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chiao-Yu Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ko-Ying Wang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Cen Liu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Yu-Chieh Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Lawrence Yu-Min Liu
- Department of Internal Medicine, Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu, 300044, Taiwan, ROC.
- Department of Medicine, MacKay Medical College, New Taipei City, 252005, Taiwan, ROC.
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
17
|
Sun J, Peterson EA, Chen X, Wang J. ptx3a + fibroblast/epicardial cells provide a transient macrophage niche to promote heart regeneration. Cell Rep 2024; 43:114092. [PMID: 38607913 PMCID: PMC11092985 DOI: 10.1016/j.celrep.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Peterson EA, Sun J, Chen X, Wang J. Neutrophils facilitate the epicardial regenerative response after zebrafish heart injury. Dev Biol 2024; 508:93-106. [PMID: 38286185 PMCID: PMC10923159 DOI: 10.1016/j.ydbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Despite extensive studies on endogenous heart regeneration within the past 20 years, the players involved in initiating early regeneration events are far from clear. Here, we assessed the function of neutrophils, the first-responder cells to tissue damage, during zebrafish heart regeneration. We detected rapid neutrophil mobilization to the injury site after ventricular amputation, peaking at 1-day post-amputation (dpa) and resolving by 3 dpa. Further analyses indicated neutrophil mobilization coincides with peak epicardial cell proliferation, and recruited neutrophils associated with activated, expanding epicardial cells at 1 dpa. Neutrophil depletion inhibited myocardial regeneration and significantly reduced epicardial cell expansion, proliferation, and activation. To explore the molecular mechanism of neutrophils on the epicardial regenerative response, we performed scRNA-seq analysis of 1 dpa neutrophils and identified enrichment of the FGF and MAPK/ERK signaling pathways. Pharmacological inhibition of FGF signaling indicated its' requirement for epicardial expansion, while neutrophil depletion blocked MAPK/ERK signaling activation in epicardial cells. Ligand-receptor analysis indicated the EGF ligand, hbegfa, is released from neutrophils and synergizes with other FGF and MAPK/ERK factors for induction of epicardial regeneration. Altogether, our studies revealed that neutrophils quickly motivate epicardial cells, which later accumulate at the injury site and contribute to heart regeneration.
Collapse
Affiliation(s)
- Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Wang X, Yang C, Ma X, Li X, Qi Y, Bai Z, Xu Y, Ma K, Luo Y, Song J, Jia W, He Z, Liu Z. A division-of-labor mode contributes to the cardioprotective potential of mesenchymal stem/stromal cells in heart failure post myocardial infarction. Front Immunol 2024; 15:1363517. [PMID: 38562923 PMCID: PMC10982400 DOI: 10.3389/fimmu.2024.1363517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Treatment of heart failure post myocardial infarction (post-MI HF) with mesenchymal stem/stromal cells (MSCs) holds great promise. Nevertheless, 2-dimensional (2D) GMP-grade MSCs from different labs and donor sources have different therapeutic efficacy and still in a low yield. Therefore, it is crucial to increase the production and find novel ways to assess the therapeutic efficacy of MSCs. Materials and methods hUC-MSCs were cultured in 3-dimensional (3D) expansion system for obtaining enough cells for clinical use, named as 3D MSCs. A post-MI HF mouse model was employed to conduct in vivo and in vitro experiments. Single-cell and bulk RNA-seq analyses were performed on 3D MSCs. A total of 125 combination algorithms were leveraged to screen for core ligand genes. Shinyapp and shinycell workflows were used for deploying web-server. Result 3D GMP-grade MSCs can significantly and stably reduce the extent of post-MI HF. To understand the stable potential cardioprotective mechanism, scRNA-seq revealed the heterogeneity and division-of-labor mode of 3D MSCs at the cellular level. Specifically, scissor phenotypic analysis identified a reported wound-healing CD142+ MSCs subpopulation that is also associated with cardiac protection ability and CD142- MSCs that is in proliferative state, contributing to the cardioprotective function and self-renewal, respectively. Differential expression analysis was conducted on CD142+ MSCs and CD142- MSCs and the differentially expressed ligand-related model was achieved by employing 125 combination algorithms. The present study developed a machine learning predictive model based on 13 ligands. Further analysis using CellChat demonstrated that CD142+ MSCs have a stronger secretion capacity compared to CD142- MSCs and Flow cytometry sorting of the CD142+ MSCs and qRT-PCR validation confirmed the significant upregulation of these 13 ligand factors in CD142+ MSCs. Conclusion Clinical GMP-grade 3D MSCs could serve as a stable cardioprotective cell product. Using scissor analysis on scRNA-seq data, we have clarified the potential functional and proliferative subpopulation, which cooperatively contributed to self-renewal and functional maintenance for 3D MSCs, named as "division of labor" mode of MSCs. Moreover, a ligand model was robustly developed for predicting the secretory efficacy of MSCs. A user-friendly web-server and a predictive model were constructed and available (https://wangxc.shinyapps.io/3D_MSCs/).
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Chao Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaoxue Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Ying Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Keming Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yi Luo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jiyang Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
21
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Ni F, Zhu Q, Li H, Liu F, Chen H. Efficient preparation of high-purity and intact mesenchymal stem cell-derived extracellular vesicles. Anal Bioanal Chem 2024; 416:1797-1808. [PMID: 38355844 DOI: 10.1007/s00216-024-05193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown great promise for regeneration and immunomodulation. However, efficient and scalable methods for their preparation are still lacking. In this study, we present the adoption of a label-free technique known as "EXODUS" to isolate and purify MSC-EVs from the conditioned medium. Our findings indicate that EXODUS can rapidly isolate EVs from 10 mL of conditioned medium with a 5-fold higher yield compared to conventional approaches, including ultracentrifugation (UC) and polyethylene glycol precipitation (PEG) methods. Additionally, pre-storing the conditioned medium at 4°C for 1 week resulted in a ~2-fold higher yield of MSC-EVs compared to the freshly prepared medium. However, storing the purified EV particles at 4°C for 1 month led to a 2-fold reduction in particle concentration. Furthermore, we found that MSC-EVs isolated using EXODUS exhibit higher expression levels of EV markers such as Alix, Flotillin1, CD81, and TSG101 in comparison to PEG and UC methods. We also discovered that MSC-EVs isolated using EXODUS are enriched in response to cytokine, collagen-containing extracellular matrix, and calcium ion binding compared to PEG method and enriched in extracellular structure organization, extracellular matrix, and extracellular matrix structure constituents compared to UC. Finally, we demonstrated that MSC-EVs isolated using EXODUS exhibit greater potential in animal organ development, tissue development, and anatomical structure morphogenesis compared to the UC. These findings suggest that EXODUS is a suitable method for the large-scale preparation of high-quality MSC-EVs for various clinical applications.
Collapse
Affiliation(s)
- Fangfang Ni
- National Engineering Technology Research Center for Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfu Zhu
- National Engineering Technology Research Center for Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hengrui Li
- National Engineering Technology Research Center for Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Liu
- National Engineering Technology Research Center for Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hao Chen
- National Engineering Technology Research Center for Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
23
|
Dong Y, Yang Y, Wang H, Feng D, Nist E, Yapundich N, Spurlock B, Craft M, Qian L, Liu J. Single-cell chromatin profiling reveals genetic programs activating proregenerative states in nonmyocyte cells. SCIENCE ADVANCES 2024; 10:eadk4694. [PMID: 38381829 PMCID: PMC10881044 DOI: 10.1126/sciadv.adk4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Cardiac regeneration requires coordinated participation of multiple cell types whereby their communications result in transient activation of proregenerative cell states. Although the molecular characteristics and lineage origins of these activated cell states and their contribution to cardiac regeneration have been studied, the extracellular signaling and the intrinsic genetic program underlying the activation of the transient functional cell states remain largely unexplored. In this study, we delineated the chromatin landscapes of the noncardiomyocytes (nonCMs) of the regenerating heart at the single-cell level and inferred the cis-regulatory architectures and trans-acting factors that control cell type-specific gene expression programs. Moreover, further motif analysis and cell-specific genetic manipulations suggest that the macrophage-derived inflammatory signal tumor necrosis factor-α, acting via its downstream transcription factor complex activator protein-1, functions cooperatively with discrete transcription regulators to activate respective nonCM cell types critical for cardiac regeneration. Thus, our study defines the regulatory architectures and intercellular communication principles in zebrafish heart regeneration.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong Feng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Nist
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas Yapundich
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Madison Craft
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Weinberger M, Simões FC, Gungoosingh T, Sauka-Spengler T, Riley PR. Distinct epicardial gene regulatory programs drive development and regeneration of the zebrafish heart. Dev Cell 2024; 59:351-367.e6. [PMID: 38237592 DOI: 10.1016/j.devcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK; Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Trishalee Gungoosingh
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK; Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK.
| |
Collapse
|
25
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
26
|
Guo J, Lin K, Wang S, He X, Huang Z, Zheng M. Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury. BMC Oral Health 2024; 24:112. [PMID: 38243239 PMCID: PMC10799447 DOI: 10.1186/s12903-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. METHODS In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. RESULTS These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. CONCLUSION This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Kaijin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Siyi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaozhen He
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Huang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
27
|
Nguyen TM, Geng X, Wei Y, Ye L, Garry DJ, Zhang J. Single-cell RNA sequencing analysis identifies one subpopulation of endothelial cells that proliferates and another that undergoes the endothelial-mesenchymal transition in regenerating pig hearts. Front Bioeng Biotechnol 2024; 11:1257669. [PMID: 38288246 PMCID: PMC10823534 DOI: 10.3389/fbioe.2023.1257669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
Background: In our previous work, we demonstrated that when newborn pigs undergo apical resection (AR) on postnatal day 1 (P1), the animals' hearts were completely recover from a myocardial infarction (MI) that occurs on postnatal day 28 (P28); single-nucleus RNA sequencing (snRNAseq) data suggested that this recovery was achieved by regeneration of pig cardiomyocyte subpopulations in response to MI. However, coronary vasculature also has a key role in promoting cardiac repair. Method: Thus, in this report, we used autoencoder algorithms to analyze snRNAseq data from endothelial cells (ECs) in the hearts of the same animals. Main results: Our results identified five EC clusters, three composed of vascular ECs (VEC1-3) and two containing lymphatic ECs (LEC1-2). Cells from VEC1 expressed elevated levels of each of five cell-cyclespecific markers (Aurora Kinase B [AURKB], Marker of Proliferation Ki-67 [MKI67], Inner Centromere Protein [INCENP], Survivin [BIRC5], and Borealin [CDCA8]), as well as a number of transcription factors that promote EC proliferation, while (VEC3 was enriched for genes that regulate intercellular junctions, participate in transforming growth factor β (TGFβ), bone morphogenic protein (BMP) signaling, and promote the endothelial mesenchymal transition (EndMT). The remaining VEC2 did not appear to participate directly in the angiogenic response to MI, but trajectory analyses indicated that it may serve as a reservoir for the generation of VEC1 and VEC3 ECs in response to MI. Notably, only the VEC3 cluster was more populous in regenerating (i.e., ARP1MIP28) than non-regenerating (i.e., MIP28) hearts during the 1-week period after MI induction, which suggests that further investigation of the VEC3 cluster could identify new targets for improving myocardial recovery after MI. Histological analysis of KI67 and EndMT marker PDGFRA demonstrated that while the expression of proliferation of endothelial cells was not significantly different, expression of EndMT markers was significantly higher among endothelial cells of ARP1MIP28 hearts compared to MIP28 hearts, which were consistent with snRNAseq analysis of clusters VEC1 and VEC3. Furthermore, upregulated secrete genes by VEC3 may promote cardiomyocyte proliferation via the Pi3k-Akt and ERBB signaling pathways, which directly contribute to cardiac muscle regeneration. Conclusion: In regenerative heart, endothelial cells may express EndMT markers, and this process could contribute to regeneration via a endothelial-cardiomyocyte crosstalk that supports cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Thanh Minh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaoxiao Geng
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Garry
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Shin K, Begeman IJ, Cao J, Kang J. leptin b and its regeneration enhancer illustrate the regenerative features of zebrafish hearts. Dev Dyn 2024; 253:91-106. [PMID: 36495292 PMCID: PMC10256838 DOI: 10.1002/dvdy.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| |
Collapse
|
29
|
Zlatanova I, Sun F, Wu RS, Chen X, Lau BH, Colombier P, Sinha T, Celona B, Xu SM, Materna SC, Huang GN, Black BL. An injury-responsive mmp14b enhancer is required for heart regeneration. SCIENCE ADVANCES 2023; 9:eadh5313. [PMID: 38019918 PMCID: PMC10686572 DOI: 10.1126/sciadv.adh5313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roland S. Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan H. Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan C. Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guo N. Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Wei KH, Lin IT, Chowdhury K, Lim KL, Liu KT, Ko TM, Chang YM, Yang KC, Lai SL(B. Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration. eLife 2023; 12:e84679. [PMID: 37498060 PMCID: PMC10411971 DOI: 10.7554/elife.84679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Zebrafish exhibit a robust ability to regenerate their hearts following injury, and the immune system plays a key role in this process. We previously showed that delaying macrophage recruitment by clodronate liposome (-1d_CL, macrophage-delayed model) impairs neutrophil resolution and heart regeneration, even when the infiltrating macrophage number was restored within the first week post injury (Lai et al., 2017). It is thus intriguing to learn the regenerative macrophage property by comparing these late macrophages vs. control macrophages during cardiac repair. Here, we further investigate the mechanistic insights of heart regeneration by comparing the non-regenerative macrophage-delayed model with regenerative controls. Temporal RNAseq analyses revealed that -1d_CL treatment led to disrupted inflammatory resolution, reactive oxygen species homeostasis, and energy metabolism during cardiac repair. Comparative single-cell RNAseq profiling of inflammatory cells from regenerative vs. non-regenerative hearts further identified heterogeneous macrophages and neutrophils, showing alternative activation and cellular crosstalk leading to neutrophil retention and chronic inflammation. Among macrophages, two residential subpopulations (hbaa+ Mac and timp4.3+ Mac 3) were enriched only in regenerative hearts and barely recovered after +1d_CL treatment. To deplete the resident macrophage without delaying the circulating macrophage recruitment, we established the resident macrophage-deficient model by administrating CL earlier at 8 d (-8d_CL) before cryoinjury. Strikingly, resident macrophage-deficient zebrafish still exhibited defects in revascularization, cardiomyocyte survival, debris clearance, and extracellular matrix remodeling/scar resolution without functional compensation from the circulating/monocyte-derived macrophages. Our results characterized the diverse function and interaction between inflammatory cells and identified unique resident macrophages prerequisite for zebrafish heart regeneration.
Collapse
Affiliation(s)
- Ke-Hsuan Wei
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kaushik Chowdhury
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Khai Lone Lim
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Kuan-Ting Liu
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tai-Ming Ko
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Shih-Lei (Ben) Lai
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
31
|
Sun J, Peterson EA, Chen X, Wang J. hapln1a + cells guide coronary growth during heart morphogenesis and regeneration. Nat Commun 2023; 14:3505. [PMID: 37311876 PMCID: PMC10264374 DOI: 10.1038/s41467-023-39323-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Although several tissues and chemokines orchestrate coronary formation, the guidance cues for coronary growth remain unclear. Here, we profile the juvenile zebrafish epicardium during coronary vascularization and identify hapln1a+ cells enriched with vascular-regulating genes. hapln1a+ cells not only envelop vessels but also form linear structures ahead of coronary sprouts. Live-imaging demonstrates that coronary growth occurs along these pre-formed structures, with depletion of hapln1a+ cells blocking this growth. hapln1a+ cells also pre-lead coronary sprouts during regeneration and hapln1a+ cell loss inhibits revascularization. Further, we identify serpine1 expression in hapln1a+ cells adjacent to coronary sprouts, and serpine1 inhibition blocks vascularization and revascularization. Moreover, we observe the hapln1a substrate, hyaluronan, forming linear structures along and preceding coronary vessels. Depletion of hapln1a+ cells or serpine1 activity inhibition disrupts hyaluronan structure. Our studies reveal that hapln1a+ cells and serpine1 are required for coronary production by establishing a microenvironment to facilitate guided coronary growth.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Wu Z, Shi Y, Cui Y, Xing X, Zhang L, Liu D, Zhang Y, Dong J, Jin L, Pang M, Xiao RP, Zhu Z, Xiong JW, Tong X, Zhang Y, Wang S, Tang F, Zhang B. Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration. Protein Cell 2023; 14:350-368. [PMID: 37155312 PMCID: PMC10166170 DOI: 10.1093/procel/pwac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.
Collapse
Affiliation(s)
- Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuan Shi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yueli Cui
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Xing
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Liya Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Da Liu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yutian Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ji Dong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing 100871, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Meijun Pang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Shiqiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
34
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
35
|
Ong LP, Bargehr J, Knight-Schrijver VR, Lee J, Colzani M, Bayraktar S, Bernard WG, Marchiano S, Bertero A, Murry CE, Gambardella L, Sinha S. Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. Stem Cell Reports 2023; 18:936-951. [PMID: 37001515 PMCID: PMC10147941 DOI: 10.1016/j.stemcr.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature. Incorporating hPSC-derived epicardial cells has been shown to improve cardiomyocyte maturation, but the exact mechanisms are unknown. We posited epicardial fibronectin (FN1) as a mediator of epicardial-cardiomyocyte crosstalk and assessed its role in driving hPSC-derived cardiomyocyte maturation in 3D-engineered heart tissues (3D-EHTs). We found that the loss of FN1 with peptide inhibition F(pUR4), CRISPR-Cas9-mediated FN1 knockout, or tetracycline-inducible FN1 knockdown in 3D-EHTs resulted in immature cardiomyocytes with decreased contractile function, and inefficient Ca2+ handling. Conversely, when we supplemented 3D-EHTs with recombinant human FN1, we could recover hPSC-derived cardiomyocyte maturation. Finally, our RNA-sequencing analyses found FN1 within a wider paracrine network of epicardial-cardiomyocyte crosstalk, thus solidifying FN1 as a key driver of hPSC-derived cardiomyocyte maturation in 3D-EHTs.
Collapse
Affiliation(s)
- Lay Ping Ong
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK.
| | - Johannes Bargehr
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Vincent R Knight-Schrijver
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Jonathan Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Maria Colzani
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Semih Bayraktar
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - William G Bernard
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Silvia Marchiano
- Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Charles E Murry
- Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Laure Gambardella
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK
| | - Sanjay Sinha
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, UK; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, ACCI Level 6, Hills Road, Box 110, Cambridge CB2 0QQ, UK.
| |
Collapse
|
36
|
Botos MA, Arora P, Chouvardas P, Mercader N. Transcriptomic data meta-analysis reveals common and injury model specific gene expression changes in the regenerating zebrafish heart. Sci Rep 2023; 13:5418. [PMID: 37012284 PMCID: PMC10070245 DOI: 10.1038/s41598-023-32272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Zebrafish have the capacity to fully regenerate the heart after an injury, which lies in sharp contrast to the irreversible loss of cardiomyocytes after a myocardial infarction in humans. Transcriptomics analysis has contributed to dissect underlying signaling pathways and gene regulatory networks in the zebrafish heart regeneration process. This process has been studied in response to different types of injuries namely: ventricular resection, ventricular cryoinjury, and genetic ablation of cardiomyocytes. However, there exists no database to compare injury specific and core cardiac regeneration responses. Here, we present a meta-analysis of transcriptomic data of regenerating zebrafish hearts in response to these three injury models at 7 days post injury (7dpi). We reanalyzed 36 samples and analyzed the differentially expressed genes (DEG) followed by downstream Gene Ontology Biological Processes (GO:BP) analysis. We found that the three injury models share a common core of DEG encompassing genes involved in cell proliferation, the Wnt signaling pathway and genes that are enriched in fibroblasts. We also found injury-specific gene signatures for resection and genetic ablation, and to a lower extent the cryoinjury model. Finally, we present our data in a user-friendly web interface that displays gene expression signatures across different injury types and highlights the importance to consider injury-specific gene regulatory networks when interpreting the results related to cardiac regeneration in the zebrafish. The analysis is freely available at: https://mybinder.org/v2/gh/MercaderLabAnatomy/PUB_Botos_et_al_2022_shinyapp_binder/HEAD?urlpath=shiny/bus-dashboard/ .
Collapse
Affiliation(s)
- Marius Alexandru Botos
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Prateek Arora
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Panagiotis Chouvardas
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland.
- Centro Nacional de Investigaciones Cardiovasculares CNIC, 28029, Madrid, Spain.
| |
Collapse
|
37
|
Rolland L, Jopling C. The multifaceted nature of endogenous cardiac regeneration. Front Cardiovasc Med 2023; 10:1138485. [PMID: 36998973 PMCID: PMC10043193 DOI: 10.3389/fcvm.2023.1138485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.
Collapse
|
38
|
Tamaki T, Yoshida T, Shibata E, Nishihara H, Ochi H, Kawakami A. Splashed E-box and AP-1 motifs cooperatively drive regeneration response and shape regeneration abilities. Biol Open 2023; 12:286596. [PMID: 36636913 PMCID: PMC9922731 DOI: 10.1242/bio.059810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Injury triggers a genetic program that induces gene expression for regeneration. Recent studies have identified regeneration-response enhancers (RREs); however, it remains unclear whether a common mechanism operates in these RREs. We identified three RREs from the zebrafish fn1b promoter by searching for conserved sequences within the surrounding genomic regions of regeneration-induced genes and performed a transgenic assay for regeneration response. Two regions contained in the transposons displayed RRE activity when combined with the -0.7 kb fn1b promoter. Another non-transposon element functioned as a stand-alone enhancer in combination with a minimum promoter. By searching for transcription factor-binding motifs and validation by transgenic assays, we revealed that the cooperation of E-box and activator protein 1 motifs is necessary and sufficient for regenerative response. Such RREs respond to variety of tissue injuries, including those in the zebrafish heart and Xenopus limb buds. Our findings suggest that the fidelity of regeneration response is ensured by the two signals evoked by tissue injuries. It is speculated that a large pool of potential enhancers in the genome has helped shape the regenerative capacities during evolution.
Collapse
Affiliation(s)
- Teruhisa Tamaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Yoshida
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Pref. 990-9585, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan,Author for correspondence ()
| |
Collapse
|
39
|
Genome Editing and Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:37-52. [DOI: 10.1007/978-981-19-5642-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232415783. [PMID: 36555424 PMCID: PMC9779713 DOI: 10.3390/ijms232415783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
Collapse
|
41
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
43
|
P66Shc (Shc1) Zebrafish Mutant Line as a Platform for Testing Decreased Reactive Oxygen Species in Pathology. J Cardiovasc Dev Dis 2022; 9:jcdd9110385. [DOI: 10.3390/jcdd9110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species (ROS) dysregulation exacerbates many pathologies but must remain within normal ranges to maintain cell function. Since ROS-mediated pathology and routine cell function are coupled, in vivo models evaluating low-ROS background effects on pathology are limited. Some models alter enzymatic antioxidant expression/activity, while others involve small molecule antioxidant administration. These models cause non-specific ROS neutralization, decreasing both beneficial and detrimental ROS. This is detrimental in cardiovascular pathology, despite the negative effects excessive ROS has on these pathologies. Thus, current trends in ROS-mediated pathology have shifted toward selective inhibition of ROS producers that are dysregulated during pathological insults, such as p66Shc. In this study, we evaluated a zebrafish heterozygote p66Shc hypomorphic mutant line as a low-ROS myocardial infarction (MI) pathology model that mimics mammalian MI. Our findings suggest this zebrafish line does not have an associated negative phenotype, but has decreased body mass and tissue ROS levels that confer protection against ROS-mediated pathology. Therefore, this line may provide a low-ROS background leading to new insights into disease.
Collapse
|
44
|
Nguyen T, Yue Z, Slominski R, Welner R, Zhang J, Chen JY. WINNER: A network biology tool for biomolecular characterization and prioritization. Front Big Data 2022; 5:1016606. [PMID: 36407327 PMCID: PMC9672476 DOI: 10.3389/fdata.2022.1016606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND AND CONTRIBUTION In network biology, molecular functions can be characterized by network-based inference, or "guilt-by-associations." PageRank-like tools have been applied in the study of biomolecular interaction networks to obtain further the relative significance of all molecules in the network. However, there is a great deal of inherent noise in widely accessible data sets for gene-to-gene associations or protein-protein interactions. How to develop robust tests to expand, filter, and rank molecular entities in disease-specific networks remains an ad hoc data analysis process. RESULTS We describe a new biomolecular characterization and prioritization tool called Weighted In-Network Node Expansion and Ranking (WINNER). It takes the input of any molecular interaction network data and generates an optionally expanded network with all the nodes ranked according to their relevance to one another in the network. To help users assess the robustness of results, WINNER provides two different types of statistics. The first type is a node-expansion p-value, which helps evaluate the statistical significance of adding "non-seed" molecules to the original biomolecular interaction network consisting of "seed" molecules and molecular interactions. The second type is a node-ranking p-value, which helps evaluate the relative statistical significance of the contribution of each node to the overall network architecture. We validated the robustness of WINNER in ranking top molecules by spiking noises in several network permutation experiments. We have found that node degree-preservation randomization of the gene network produced normally distributed ranking scores, which outperform those made with other gene network randomization techniques. Furthermore, we validated that a more significant proportion of the WINNER-ranked genes was associated with disease biology than existing methods such as PageRank. We demonstrated the performance of WINNER with a few case studies, including Alzheimer's disease, breast cancer, myocardial infarctions, and Triple negative breast cancer (TNBC). In all these case studies, the expanded and top-ranked genes identified by WINNER reveal disease biology more significantly than those identified by other gene prioritizing software tools, including Ingenuity Pathway Analysis (IPA) and DiAMOND. CONCLUSION WINNER ranking strongly correlates to other ranking methods when the network covers sufficient node and edge information, indicating a high network quality. WINNER users can use this new tool to robustly evaluate a list of candidate genes, proteins, or metabolites produced from high-throughput biology experiments, as long as there is available gene/protein/metabolic network information.
Collapse
Affiliation(s)
- Thanh Nguyen
- Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zongliang Yue
- Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Radomir Slominski
- Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Welner
- Comprehensive Arthritis, Musculoskeletal, Bone and Autoimmunity Center (CAMBAC), School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jake Y. Chen
- Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simões MG, Mintcheva J, Aliee H, Schäfer R, Meyer AM, Theis F, Stainier DYR, Panáková D, Junker JP. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet 2022; 54:1227-1237. [PMID: 35864193 PMCID: PMC7613248 DOI: 10.1038/s41588-022-01129-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart. Single-cell RNA sequencing and spatiotemporal analysis of the regenerating zebrafish heart identify transient proregenerative fibroblast-like cells that are derived from the epicardium and the endocardium. Wnt signalling regulates the endocardial fibroblast response.
Collapse
Affiliation(s)
- Bo Hu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Mariana Guedes Simões
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hananeh Aliee
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Alexander M Meyer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Theis
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| |
Collapse
|
46
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
47
|
Sun J, Peterson EA, Wang AZ, Ou J, Smith KE, Poss KD, Wang J. hapln1 Defines an Epicardial Cell Subpopulation Required for Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. Circulation 2022; 146:48-63. [PMID: 35652354 PMCID: PMC9308751 DOI: 10.1161/circulationaha.121.055468] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Certain nonmammalian species such as zebrafish have an elevated capacity for innate heart regeneration. Understanding how heart regeneration occurs in these contexts can help illuminate cellular and molecular events that can be targets for heart failure prevention or treatment. The epicardium, a mesothelial tissue layer that encompasses the heart, is a dynamic structure that is essential for cardiac regeneration in zebrafish. The extent to which different cell subpopulations or states facilitate heart regeneration requires research attention. METHODS To dissect epicardial cell states and associated proregenerative functions, we performed single-cell RNA sequencing and identified 7 epicardial cell clusters in adult zebrafish, 3 of which displayed enhanced cell numbers during regeneration. We identified paralogs of hapln1 as factors associated with the extracellular matrix and largely expressed in cluster 1. We assessed HAPLN1 expression in published single-cell RNA sequencing data sets from different stages and injury states of murine and human hearts, and we performed molecular genetics to determine the requirements for hapln1-expressing cells and functions of each hapln1 paralog. RESULTS A particular cluster of epicardial cells had the strongest association with regeneration and was marked by expression of hapln1a and hapln1b. The hapln1 paralogs are expressed in epicardial cells that enclose dedifferentiated and proliferating cardiomyocytes during regeneration. Induced genetic depletion of hapln1-expressing cells or genetic inactivation of hapln1b altered deposition of the key extracellular matrix component hyaluronic acid, disrupted cardiomyocyte proliferation, and inhibited heart regeneration. We also found that hapln1-expressing epicardial cells first emerge at the juvenile stage, when they associate with and are required for focused cardiomyocyte expansion events that direct maturation of the ventricular wall. CONCLUSIONS Our findings identify a subset of epicardial cells that emerge in postembryonic zebrafish and sponsor regions of active cardiomyogenesis during cardiac growth and regeneration. We provide evidence that, as the heart achieves its mature structure, these cells facilitate hyaluronic acid deposition to support formation of the compact muscle layer of the ventricle. They are also required, along with the function of hapln1b paralog, in the production and organization of hyaluronic acid-containing matrix in cardiac injury sites, enabling normal cardiomyocyte proliferation and muscle regeneration.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Annabel Z Wang
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Jianhong Ou
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Kieko E Smith
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Kenneth D Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| |
Collapse
|
48
|
Sun J, Peterson EA, Jiao C, Chen X, Zhao Y, Wang J. Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Dev Biol 2022; 487:57-66. [PMID: 35490764 PMCID: PMC11017783 DOI: 10.1016/j.ydbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Jiao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
49
|
Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res 2022; 118:1667-1679. [PMID: 34164652 PMCID: PMC9215194 DOI: 10.1093/cvr/cvab214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
While humans lack sufficient capacity to undergo cardiac regeneration following injury, zebrafish can fully recover from a range of cardiac insults. Over the past two decades, our understanding of the complexities of both the independent and co-ordinated injury responses by multiple cardiac tissues during zebrafish heart regeneration has increased exponentially. Although cardiomyocyte regeneration forms the cornerstone of the reparative process in the injured zebrafish heart, recent studies have shown that this is dependent on prior neovascularization and lymphangiogenesis, which in turn require epicardial, endocardial, and inflammatory cell signalling within an extracellular milieu that is optimized for regeneration. Indeed, it is the amalgamation of multiple regenerative systems and gene regulatory patterns that drives the much-heralded success of the adult zebrafish response to cardiac injury. Increasing evidence supports the emerging paradigm that developmental transcriptional programmes are re-activated during adult tissue regeneration, including in the heart, and the zebrafish represents an optimal model organism to explore this concept. In this review, we summarize recent advances from the zebrafish cardiovascular research community with novel insight into the mechanisms associated with endogenous cardiovascular repair and regeneration, which may be of benefit to inform future strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Katherine M Ross Stewart
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sophie L Walker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
50
|
de Sena-Tomás C, Aleman AG, Ford C, Varshney A, Yao D, Harrington JK, Saúde L, Ramialison M, Targoff KL. Activation of Nkx2.5 transcriptional program is required for adult myocardial repair. Nat Commun 2022; 13:2970. [PMID: 35624100 PMCID: PMC9142600 DOI: 10.1038/s41467-022-30468-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Angelika G Aleman
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Caitlin Ford
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Akriti Varshney
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Di Yao
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jamie K Harrington
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
- Murdoch Children's Research Institute & Department of Peadiatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|