1
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
2
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Scimone C, Donato L, Alibrandi S, Conti A, Bortolotti C, Germanò A, Alafaci C, Vinci SL, D'Angelo R, Sidoti A. Methylome analysis of endothelial cells suggests new insights on sporadic brain arteriovenous malformation. Heliyon 2024; 10:e35126. [PMID: 39170526 PMCID: PMC11336478 DOI: 10.1016/j.heliyon.2024.e35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Arteriovenous malformation of the brain (bAVM) is a vascular phenotype related to brain defective angiogenesis. Involved vessels show impaired expression of vascular differentiation markers resulting in the arteriolar to venule direct shunt. In order to clarify aberrant gene expression occurring in bAVM, here we describe results obtained by methylome analysis performed on endothelial cells (ECs) isolated from bAVM specimens, compared to human cerebral microvascular ECs. Results were validated by quantitative methylation-specific PCR and quantitative realtime-PCR. Differential methylation events occur in genes already linked to bAVM onset, as RBPJ and KRAS. However, among differentially methylated genes, we identified EPHB1 and several other loci involved in EC adhesion as well as in EC/vascular smooth muscle cell (VSMC) crosstalk, suggesting that only endothelial dysfunction might not be sufficient to trigger the bAVM phenotype. Moreover, aberrant methylation pattern was reported for many lncRNA genes targeting transcription factors expressed during neurovascular development. Among these, the YBX1 that was recently shown to target the arteridin coding gene. Finally, in addition to the conventional CpG methylation, we further considered the role of impaired CHG methylation, mainly occurring in brain at embryo stage. We showed as differentially CHG methylated genes are clustered in pathways related to EC homeostasis, as well as to VSMC-EC crosstalk, suggesting as impairment of this interaction plays a prominent role in loss of vascular differentiation, in bAVM phenotype.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| |
Collapse
|
4
|
Zhang B, Zhu Y, Zhang Z, Wu F, Ma X, Sheng W, Dai R, Guo Z, Yan W, Hao L, Huang G, Ma D, Hao B, Ma J. SMC3 contributes to heart development by regulating super-enhancer associated genes. Exp Mol Med 2024; 56:1826-1842. [PMID: 39085358 PMCID: PMC11372143 DOI: 10.1038/s12276-024-01293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 08/02/2024] Open
Abstract
Abnormal cardiac development has been observed in individuals with Cornelia de Lange syndrome (CdLS) due to mutations in genes encoding members of the cohesin complex. However, the precise role of cohesin in heart development remains elusive. In this study, we aimed to elucidate the indispensable role of SMC3, a component of the cohesin complex, in cardiac development and its underlying mechanism. Our investigation revealed that CdLS patients with SMC3 mutations have high rates of congenital heart disease (CHD). We utilized heart-specific Smc3-knockout (SMC3-cKO) mice, which exhibit varying degrees of outflow tract (OFT) abnormalities, to further explore this relationship. Additionally, we identified 16 rare SMC3 variants with potential pathogenicity in individuals with isolated CHD. By employing single-nucleus RNA sequencing and chromosome conformation capture high-throughput genome-wide translocation sequencing, we revealed that Smc3 deletion downregulates the expression of key genes, including Ets2, in OFT cardiac muscle cells by specifically decreasing interactions between super-enhancers (SEs) and promoters. Notably, Ets2-SE-null mice also exhibit delayed OFT development in the heart. Our research revealed a novel role for SMC3 in heart development via the regulation of SE-associated genes, suggesting its potential relevance as a CHD-related gene and providing crucial insights into the molecular basis of cardiac development.
Collapse
Affiliation(s)
- Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Yongchang Zhu
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Zhang
- Shanghai Pediatric Congenital Heart Disease Institute and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feizhen Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Xiaojing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Wei Sheng
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Ranran Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Zhenglong Guo
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Weili Yan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Guoying Huang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| | - Bingtao Hao
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Henan Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China.
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital; Institute of Medical Genetics & Genomics; Key Laboratory of Birth Defects, Children's Hospital; Medical Science Data Center at Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
6
|
Yrigoin K, Davis GE. Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes. Front Cell Dev Biol 2024; 12:1389607. [PMID: 38961866 PMCID: PMC11219904 DOI: 10.3389/fcell.2024.1389607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Mural cells are critically important for the development, maturation, and maintenance of the blood vasculature. Pericytes are predominantly observed in capillaries and venules, while vascular smooth muscle cells (VSMCs) are found in arterioles, arteries, and veins. In this study, we have investigated functional differences between human pericytes and human coronary artery smooth muscle cells (CASMCs) as a model VSMC type. We compared the ability of these two mural cells to invade three-dimensional (3D) collagen matrices, recruit to developing human endothelial cell (EC)-lined tubes in 3D matrices and induce vascular basement membrane matrix assembly around these tubes. Here, we show that pericytes selectively invade, recruit, and induce basement membrane deposition on EC tubes under defined conditions, while CASMCs fail to respond equivalently. Pericytes dramatically invade 3D collagen matrices in response to the EC-derived factors, platelet-derived growth factor (PDGF)-BB, PDGF-DD, and endothelin-1, while minimal invasion occurs with CASMCs. Furthermore, pericytes recruit to EC tube networks, and induce basement membrane deposition around assembling EC tubes (narrow and elongated tubes) when these cells are co-cultured. In contrast, CASMCs are markedly less able to perform these functions showing minimal recruitment, little to no basement membrane deposition, with wider and shorter tubes. Our new findings suggest that pericytes demonstrate much greater functional ability to invade 3D matrix environments, recruit to EC-lined tubes and induce vascular basement membrane matrix deposition in response to and in conjunction with ECs.
Collapse
Affiliation(s)
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
7
|
Harvey AB, Wolters RA, Deepe RN, Tarolli HG, Drummond JR, Trouten A, Zandi A, Barth JL, Mukherjee R, Romeo MJ, Vaena SG, Tao G, Muise-Helmericks R, Ramos PS, Norris RA, Wessels A. Epicardial deletion of Sox9 leads to myxomatous valve degeneration and identifies Cd109 as a novel gene associated with valve development. J Mol Cell Cardiol 2024; 186:16-30. [PMID: 37935281 PMCID: PMC10843603 DOI: 10.1016/j.yjmcc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Collapse
Affiliation(s)
- Andrew B Harvey
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Renélyn A Wolters
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Raymond N Deepe
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Hannah G Tarolli
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jenna R Drummond
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Allison Trouten
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Auva Zandi
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA.
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Silvia G Vaena
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
8
|
Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:817-831. [PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
9
|
Zhao J, Zhao J. Maternal and zygotic ZFP57 regulate coronary vascular formation and myocardium maturation in mouse embryo. Dev Dyn 2024; 253:144-156. [PMID: 36004502 DOI: 10.1002/dvdy.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Genomic and epigenomic dynamics both play critical roles during embryogenesis. Zfp57 maintains genomic imprinting with both maternal and zygotic functions. In our previous study, we found that maternal and zygotic Zfp57 modulate NOTCH signaling during cardiac development. In this study, we investigated Zfp57 mutants from E11.5 to E13.5 to delineate its function during cardiac development. RESULTS Here, we describe novel roles of maternal and zygotic Zfp57 during cardiovascular system development. We found that maternal and zygotic Zfp57 was required for coronary vascular development. Maternal and zygotic loss of Zfp57 perturbed the sprouting of the sinus venosus-derived endothelial cells and led to underdeveloped coronary vasculature, meanwhile, there was an ectopic overproduction of blood islands over the ventricles. Furthermore, loss of Zfp57 and failed vasculature disturbed myocardium maturation. Loss of maternal and zygotic Zfp57 resulted in hyper trabeculation and failed myocardium compaction. Zfp57 zygotic mutant (M+ Z- ) hearts displayed noncompaction cardiomyopathy at E18.5. CONCLUSIONS Our results suggest that maternal and zygotic ZFP57 are essential for coronary vascular formation and myocardium maturation in mice. Our research provides evidence for the role of genomic imprinting during embryogenesis.
Collapse
Affiliation(s)
- Junzheng Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjie Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Rosowski S, Remmert C, Marder M, Akishiba M, Bushe J, Feuchtinger A, Platen A, Ussar S, Theis F, Wiedenmann S, Meier M. Single-cell characterization of neovascularization using hiPSC-derived endothelial cells in a 3D microenvironment. Stem Cell Reports 2023; 18:1972-1986. [PMID: 37714147 PMCID: PMC10656300 DOI: 10.1016/j.stemcr.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
The formation of vascular structures is fundamental for in vitro tissue engineering. Vascularization can enable the nutrient supply within larger structures and increase transplantation efficiency. We differentiated human induced pluripotent stem cells toward endothelial cells in 3D suspension culture. To investigate in vitro neovascularization and various 3D microenvironmental approaches, we designed a comprehensive single-cell transcriptomic study. Time-resolved single-cell transcriptomics of the endothelial and co-evolving mural cells gave insights into cell type development, stability, and plasticity. Transfer to a 3D hydrogel microenvironment induced neovascularization and facilitated tracing of migrating, coalescing, and tubulogenic endothelial cell states. During maturation, we monitored two pericyte subtypes evolving mural cells. Profiling cell-cell interactions between pericytes and endothelial cells revealed angiogenic signals during tubulogenesis. In silico discovered ligands were tested for their capability to attract endothelial cells. Our data, analyses, and results provide an in vitro roadmap to guide vascularization in future tissue engineering.
Collapse
Affiliation(s)
- Simon Rosowski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misao Akishiba
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Judith Bushe
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Alina Platen
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; University Leipzig, Center for Biotechnology and Biomedicine, Institute of Biochemistry, Leipzig, Germany.
| |
Collapse
|
11
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
12
|
Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q. Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 2023; 50:676-687. [PMID: 36841529 DOI: 10.1016/j.jgg.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
During vertebrate embryonic development, neural crest-derived ectomesenchyme within the maxillary prominences undergoes precisely coordinated proliferation and differentiation to give rise to diverse craniofacial structures, such as tooth and palate. However, the transcriptional regulatory networks underpinning such an intricate process have not been fully elucidated. Here, we perform single-cell RNA-Seq to comprehensively characterize the transcriptional dynamics during mouse maxillary development from embryonic day (E) 10.5-E14.5. Our single-cell transcriptome atlas of ∼28,000 cells uncovers mesenchymal cell populations representing distinct differentiating states and reveals their developmental trajectory, suggesting that the segregation of dental from the palatal mesenchyme occurs at E11.5. Moreover, we identify a series of key transcription factors (TFs) associated with mesenchymal fate transitions and deduce the gene regulatory networks directed by these TFs. Collectively, our study provides important resources and insights for achieving a systems-level understanding of craniofacial morphogenesis and abnormality.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yijun Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Nayoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianfei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiqi Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Spanjersberg TCF, Oosterhoff LA, Kruitwagen HS, van den Dungen NAM, Vernooij JCM, Asselbergs FW, Mokry M, Spee B, Harakalova M, van Steenbeek FG. Locational memory of macrovessel vascular cells is transcriptionally imprinted. Sci Rep 2023; 13:13028. [PMID: 37563195 PMCID: PMC10415317 DOI: 10.1038/s41598-023-38880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Vascular pathologies show locational predisposition throughout the body; further insights into the transcriptomics basis of this vascular heterogeneity are needed. We analyzed transcriptomes from cultured endothelial cells and vascular smooth muscle cells from nine adult canine macrovessels: the aorta, coronary artery, vena cava, portal vein, femoral artery, femoral vein, saphenous vein, pulmonary vein, and pulmonary artery. We observed that organ-specific expression patterns persist in vitro, indicating that these genes are not regulated by blood flow or surrounding cell types but are likely fixed in the epigenetic memory. We further demonstrated the preserved location-specific expression of GATA4 protein in cultured cells and in the primary adult vessel. On a functional level, arterial and venous endothelial cells differed in vascular network morphology as the arterial networks maintained a higher complexity. Our findings prompt the rethinking of the extrapolation of results from single-origin endothelial cell systems.
Collapse
Affiliation(s)
- Talitha C F Spanjersberg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Loes A Oosterhoff
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands.
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Kakkat S, Pramanik P, Singh S, Singh AP, Sarkar C, Chakroborty D. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int J Mol Sci 2023; 24:ijms24086984. [PMID: 37108147 PMCID: PMC10138415 DOI: 10.3390/ijms24086984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and complications are often seen in patients with prostate cancer (PCa) and affect their clinical management. Despite acceptable safety profiles and patient compliance, androgen deprivation therapy (ADT), the mainstay of PCa treatment and chemotherapy, has increased cardiovascular risks and metabolic syndromes in patients. A growing body of evidence also suggests that patients with pre-existing cardiovascular conditions show an increased incidence of PCa and present with fatal forms of the disease. Therefore, it is possible that a molecular link exists between the two diseases, which has not yet been unraveled. This article provides insight into the connection between PCa and CVDs. In this context, we present our findings linking PCa progression with patients' cardiovascular health by performing a comprehensive gene expression study, gene set enrichment (GSEA) and biological pathway analysis using publicly available data extracted from patients with advanced metastatic PCa. We also discuss the common androgen deprivation strategies and CVDs most frequently reported in PCa patients and present evidence from various clinical trials that suggest that therapy induces CVD in PCa patients.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Paramahansa Pramanik
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
15
|
Engwerda A, Abbott KM, Hitzert MM, van Ravenswaaij-Arts CMA, Kerstjens-Frederikse WS. The role of TBX18 in congenital heart defects in humans not confirmed. Eur J Hum Genet 2023; 31:138-141. [PMID: 36418409 PMCID: PMC9905074 DOI: 10.1038/s41431-022-01242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marrit M Hitzert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- ATN/Jonx, Groningen, The Netherlands
| | | |
Collapse
|
16
|
Wang T, Chen X, Wang K, Ju J, Yu X, Wang S, Liu C, Wang K. Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Front Cardiovasc Med 2023; 10:1085629. [PMID: 36923960 PMCID: PMC10008892 DOI: 10.3389/fcvm.2023.1085629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes. Therefore, emerging lineage-tracing techniques advance the study of cardiovascular-related cellular plasticity. In this review, we illustrate the principles and methods of the emerging Cre-loxP-based genetic lineage tracing technology for trajectory monitoring of distinct cell lineages in the heart. The comprehensive demonstration of the differentiation process of single-cell progeny using genetic lineage tracing technology has made outstanding contributions to cardiac development and homeostasis, providing new therapeutic strategies for tissue regeneration in congenital and cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shaocong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
18
|
Steele RE, Sanders R, Phillips HM, Bamforth SD. PAX Genes in Cardiovascular Development. Int J Mol Sci 2022; 23:7713. [PMID: 35887061 PMCID: PMC9324344 DOI: 10.3390/ijms23147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The mammalian heart is a four-chambered organ with systemic and pulmonary circulations to deliver oxygenated blood to the body, and a tightly regulated genetic network exists to shape normal development of the heart and its associated major arteries. A key process during cardiovascular morphogenesis is the septation of the outflow tract which initially forms as a single vessel before separating into the aorta and pulmonary trunk. The outflow tract connects to the aortic arch arteries which are derived from the pharyngeal arch arteries. Congenital heart defects are a major cause of death and morbidity and are frequently associated with a failure to deliver oxygenated blood to the body. The Pax transcription factor family is characterised through their highly conserved paired box and DNA binding domains and are crucial in organogenesis, regulating the development of a wide range of cells, organs and tissues including the cardiovascular system. Studies altering the expression of these genes in murine models, notably Pax3 and Pax9, have found a range of cardiovascular patterning abnormalities such as interruption of the aortic arch and common arterial trunk. This suggests that these Pax genes play a crucial role in the regulatory networks governing cardiovascular development.
Collapse
Affiliation(s)
| | | | | | - Simon D. Bamforth
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle NE1 3BZ, UK; (R.E.S.); (R.S.); (H.M.P.)
| |
Collapse
|
19
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
20
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
21
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
22
|
Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Curr Biol 2022; 32:289-303.e6. [PMID: 34793695 PMCID: PMC8792248 DOI: 10.1016/j.cub.2021.10.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
Despite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), the latter of which has "mouse-like" arms but extremely long metatarsals of the feet. Intersecting gene-expression differences in metatarsals and forearms of the two species revealed that about 10% of orthologous genes are associated with the disproportionately rapid elongation of neonatal jerboa feet. These include genes and enriched pathways not previously associated with endochondral elongation as well as those that might diversify skeletal proportion in addition to their known requirements for bone growth throughout the skeleton. We also identified transcription regulators that might act as "nodes" for sweeping differences in genome expression between species. Among these, Shox2, which is necessary for proximal limb elongation, has gained expression in jerboa metatarsals where it has not been detected in other vertebrates. We show that Shox2 is sufficient to increase mouse distal limb length, and a nearby putative cis-regulatory region is preferentially accessible in jerboa metatarsals. In addition to mechanisms that might directly promote growth, we found evidence that jerboa foot elongation may occur in part by de-repressing latent growth potential. The genes and pathways that we identified here provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Pushpanathan Muthuirulan
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stanley J Neufeld
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mai P Tran
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haydee L Gutierrez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Guo Z, Geng M, Qin L, Hao B, Liao S. Epicardium-Derived Tbx18 + CDCs Transplantation Improve Heart Function in Infarcted Mice. Front Cardiovasc Med 2022; 8:744353. [PMID: 35141286 PMCID: PMC8820322 DOI: 10.3389/fcvm.2021.744353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiosphere-derived cells (CDCs) constitute a cardiac stem cell pool, a promising therapeutics in treating myocardial infarction (MI). However, the cell source of CDCs remains unclear. In this study, we isolated CDCs directly from adult mouse heart epicardium named primary epicardium-derived CDCs (pECDCs), which showed a different expression profile compared with primary epicardial cells (pEpiCs). Interestingly, pECDCs highly expressed T-box transcription factor 18 (Tbx18) and showed multipotent differentiation ability in vitro. Human telomerase reverse transcriptase (hTERT) transduction could inhibit aging-induced pECDCs apoptosis and differentiation, thus keeping a better proliferation capacity. Furthermore, immortalized epicardium CDCs (iECDCs) transplantation extensively promote cardiogenesis in the infracted mouse heart. This study demonstrated epicardium-derived CDCs that may derive from Tbx18+ EpiCs, which possess the therapeutic potential to be applied to cardiac repair and regeneration and suggest a new kind of CDCs with identified origination that may be followed in the developing and injured heart.
Collapse
Affiliation(s)
- Zhenglong Guo
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengyuan Geng
- School of Medical Laboratory and Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Tianjin Medical University, Tianjin, China
| | - Litao Qin
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- School of Basic Medical Sciences, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Shixiu Liao
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Zou J, Gopalakrishnan S, Parker CC, Nicod J, Mott R, Cai N, Lionikas A, Davies RW, Palmer AA, Flint J. Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility. G3 (BETHESDA, MD.) 2022; 12:jkab394. [PMID: 34791208 PMCID: PMC8728023 DOI: 10.1093/g3journal/jkab394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Combining samples for genetic association is standard practice in human genetic analysis of complex traits, but is rarely undertaken in rodent genetics. Here, using 23 phenotypes and genotypes from two independent laboratories, we obtained a sample size of 3076 commercially available outbred mice and identified 70 loci, more than double the number of loci identified in the component studies. Fine-mapping in the combined sample reduced the number of likely causal variants, with a median reduction in set size of 51%, and indicated novel gene associations, including Pnpo, Ttll6, and GM11545 with bone mineral density, and Psmb9 with weight. However, replication at a nominal threshold of 0.05 between the two component studies was low, with less than one-third of loci identified in one study replicated in the second. In addition to overestimates in the effect size in the discovery sample (Winner's Curse), we also found that heterogeneity between studies explained the poor replication, but the contribution of these two factors varied among traits. Leveraging these observations, we integrated information about replication rates, study-specific heterogeneity, and Winner's Curse corrected estimates of power to assign variants to one of four confidence levels. Our approach addresses concerns about reproducibility and demonstrates how to obtain robust results from mapping complex traits in any genome-wide association study.
Collapse
Affiliation(s)
- Jennifer Zou
- Department of Computer Science, University of California, Los Angeles, CA 90024, USA
| | - Shyam Gopalakrishnan
- Faculty of Health and Medical Sciences, GLOBE Institute, University of Copenhagen, Copenhagen DK-1353, Denmark
| | - Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | | | - Richard Mott
- UCL Department of Genetics, Evolution & Environment, UCL Genetics Institute, London WC1E 6BT, UK
| | - Na Cai
- Helmholtz Zentrum Muenchen, Helmoltz Pioneer Campus, Neuherberg 85764, Germany
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Robert W Davies
- Department of Statistics, University of Oxford, Oxford OX1 2JD, UK
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Flint
- Department of Biobehavioral Sciences, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
25
|
Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, Bardot ES, Eng CHL, Tyser RCV, Argelaguet R, Guibentif C, Srinivas S, Briscoe J, Simons BD, Hadjantonakis AK, Göttgens B, Reik W, Nichols J, Cai L, Marioni JC. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat Biotechnol 2022; 40:74-85. [PMID: 34489600 PMCID: PMC8763645 DOI: 10.1038/s41587-021-01006-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8-12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal-ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
Collapse
Affiliation(s)
- T Lohoff
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - S Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - A Missarova
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - N Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - J A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genomics Plc, Cambridge, UK
| | - E S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C-H L Eng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - R C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - C Guibentif
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J Briscoe
- The Francis Crick Institute, London, UK
| | - B D Simons
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Reik
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - J Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - L Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
26
|
Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochem J 2021; 479:91-109. [PMID: 34935912 DOI: 10.1042/bcj20210642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.
Collapse
|
27
|
Wong AM, Patel TP, Altman EK, Tugarinov N, Trivellin G, Yanovski JA. Characterization of the adiponectin promoter + Cre recombinase insertion in the Tg(Adipoq-cre)1Evdr mouse by targeted locus amplification and droplet digital PCR. Adipocyte 2021; 10:21-27. [PMID: 33371773 PMCID: PMC7781622 DOI: 10.1080/21623945.2020.1861728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
The Tg(Adipoq-cre)1Evdr mouse has become an important tool in adipose tissue biology. However, the exact genomic transgene integration site has not been established. Using Targeted Locus Amplification (TLA) we found the transgene had integrated on mouse chromosome 9 between exons 6 and 7 of Tbx18. We detected transgene-transgene fusion; therefore, we used droplet digital polymerase chain reaction to identify Cre copy number. In two separate experiments, we digested with BAMHI and with HindIII to separate potentially conjoined Cre sequences. We found one copy of intact Cre present in each experiment, indicating transgene-transgene fusion in other parts of the BAC that would not contribute to tissue-specific Cre expression. Cre copy number for Tg(Adipoq-cre)1Evdr mice can be potentially used to identify homozygous mice.
Collapse
Affiliation(s)
- Adrian M. Wong
- Section on Growth and Obesity and Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Tushar P. Patel
- Section on Growth and Obesity and Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth K. Altman
- Section on Growth and Obesity and Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Nicol Tugarinov
- Section on Growth and Obesity and Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Giampaolo Trivellin
- Section on Genetics and Endocrinology, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center – IRCCS, Rozzano (MI), Italy
| | - Jack A. Yanovski
- Section on Growth and Obesity and Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Farrar JS, Lownik JC, Way GW, Rodriguez MC, Celi FS, Martin RK. Identification of the transgene insertion site for an adipocyte-specific adiponectin-cre model and characterization of the functional consequences. Adipocyte 2021; 10:91-100. [PMID: 33565916 PMCID: PMC7889145 DOI: 10.1080/21623945.2021.1880083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/12/2022] Open
Abstract
The Adipoq-Cre transgenic mouse is widely used in the development of adipocyte-specific genetic manipulations for the study of obesity and type 2 diabetes. In the process of developing a new mouse model utilizing the adipocyte selective Adipoq-Cre transgenic mouse, strong genetic linkage between a gene of interest, Adam10, and the Adipoq-Cre transgene was discovered. Whole-genome sequencing of the Adipoq-Cre transgenic mouse model identified the genomic insertion site within the Tbx18 gene locus on chromosome 9 and this insertion causes a significant decrease in Tbx18 gene expression in adipose tissue. Insertion of genes Kng2, Kng1, Eif4a2 and Rfc4 also occurred in the Adipoq-Cre transgenic mouse, and these passenger genes may have functional consequences in various tissues.
Collapse
Affiliation(s)
- Jared S. Farrar
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph C. Lownik
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Grayson W. Way
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Matthew C. Rodriguez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S. Celi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
29
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
30
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
31
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
32
|
George RM, Firulli AB. Deletion of a Hand1 lncRNA-Containing Septum Transversum Enhancer Alters lncRNA Expression but Is Not Required for Hand1 Expression. J Cardiovasc Dev Dis 2021; 8:jcdd8050050. [PMID: 34064373 PMCID: PMC8147853 DOI: 10.3390/jcdd8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 01/18/2023] Open
Abstract
We have previously identified a Hand1 transcriptional enhancer that drives expression within the septum transversum, the origin of the cells that contribute to the epicardium. This enhancer directly overlaps a common exon of a predicted family of long non-coding RNAs (lncRNA) that are specific to mice. To interrogate the necessity of this Hand1 enhancer, as well as the importance of these novel lncRNAs, we deleted the enhancer sequences, including the common exon shared by these lncRNAs, using genome editing. Resultant homozygous Hand1 enhancer mutants (Hand1ΔST/ΔST) present with no observable phenotype. Assessment of lncRNA expression reveals that Hand1ΔST/ΔST mutants effectively eliminate detectable lncRNA expression. Expression analysis within Hand1ΔST/ΔST mutant hearts indicates higher levels of Hand1 than in controls. The generation of Hand1 compound heterozygous mutants with the Hand1LacZ null allele (Hand1ΔST/LacZ) also did not reveal any observable phenotypes. Together these data indicate that deletion of this Hand1 enhancer and by consequence a family of murine-specific lncRNAs does not impact embryonic development in observable ways.
Collapse
|
33
|
Peralta M, Ortiz Lopez L, Jerabkova K, Lucchesi T, Vitre B, Han D, Guillemot L, Dingare C, Sumara I, Mercader N, Lecaudey V, Delaval B, Meilhac SM, Vermot J. Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Rep 2021; 32:107932. [PMID: 32698004 DOI: 10.1016/j.celrep.2020.107932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.
Collapse
Affiliation(s)
- Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laia Ortiz Lopez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Tommaso Lucchesi
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Benjamin Vitre
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Dong Han
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Laurent Guillemot
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Chaitanya Dingare
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginie Lecaudey
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Benedicte Delaval
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
34
|
Mantri M, Scuderi GJ, Abedini-Nassab R, Wang MFZ, McKellar D, Shi H, Grodner B, Butcher JT, De Vlaminck I. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun 2021; 12:1771. [PMID: 33741943 PMCID: PMC7979764 DOI: 10.1038/s41467-021-21892-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - Gaetano J Scuderi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Roozbeh Abedini-Nassab
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Engineering, University of Neyshabur, Neyshabur, Iran
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - David McKellar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
35
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
36
|
Chen Y, Xiao D, Zhang L, Cai CL, Li BY, Liu Y. The Role of Tbx20 in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:638542. [PMID: 33585493 PMCID: PMC7876368 DOI: 10.3389/fcell.2021.638542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tbx20 is a member of the Tbx1 subfamily of T-box-containing genes and is known to play a variety of fundamental roles in cardiovascular development and homeostasis as well as cardiac remodeling in response to pathophysiological stresses. Mutations in TBX20 are widely associated with the complex spectrum of congenital heart defects (CHDs) in humans, which includes defects in chamber septation, chamber growth, and valvulogenesis. In addition, genetic variants of TBX20 have been found to be associated with dilated cardiomyopathy and heart arrhythmia. This broad spectrum of cardiac morphogenetic and functional defects is likely due to its broad expression pattern in multiple cardiogenic cell lineages and its critical regulation of transcriptional networks during cardiac development. In this review, we summarize recent findings in our general understanding of the role of Tbx20 in regulating several important aspects of cardiac development and homeostasis and heart function.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Deyong Xiao
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Lu Zhang
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Chen-Leng Cai
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| |
Collapse
|
37
|
Cai W, Tan J, Yan J, Zhang L, Cai X, Wang H, Liu F, Ye M, Cai CL. Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Rep 2020; 28:190-201.e3. [PMID: 31269439 PMCID: PMC6837841 DOI: 10.1016/j.celrep.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration capacity of neonatal mouse heart is controversial. In addition, whether epicardial cells provide a progenitor pool for de novo heart regeneration is incompletely defined. Following apical resection of the neonatal mouse heart, we observed limited regeneration potential. Fate-mapping of Tbx18MerCreMer mice revealed that newly formed coronary vessels and a limited number of cardiomyocytes were derived from the T-box transcription factor 18 (Tbx18) lineage. However, further lineage tracing with SM-MHCCreERT2 and Nfactc1Cre mice revealed that the new smooth muscle and endothelial cells are in fact derivatives of pre-existing coronary vessels. Our data show that neonatal mouse heart can regenerate but that its potential is limited. Moreover, although epicardial cells are multipotent during embryogenesis, their contribution to heart repair through “stem” or “progenitor” cell conversion is minimal after birth. These observations suggest that early embryonic heart development and postnatal heart regeneration are distinct biological processes. Multipotency of epicardial cells is significantly decreased after birth. The regeneration potential of the newborn mouse heart is controversial, and whether epicardial cells provide progenitors for coronary vascular regeneration is unclear. Cai et al. demonstrate a limited regeneration capacity of the neonatal heart upon injury. Epicardial cells do not convert into functional cardiac cells, including coronary vessels, during repair.
Collapse
Affiliation(s)
- Weibin Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jing Tan
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA
| | - Xiaoqiang Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Haiping Wang
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
38
|
Duan J, Li B, Bhakta M, Xie S, Zhou P, Munshi NV, Hon GC. Rational Reprogramming of Cellular States by Combinatorial Perturbation. Cell Rep 2020; 27:3486-3499.e6. [PMID: 31216470 DOI: 10.1016/j.celrep.2019.05.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Ectopic expression of transcription factors (TFs) can reprogram cell state. However, because of the large combinatorial space of possible TF cocktails, it remains difficult to identify TFs that reprogram specific cell types. Here, we develop Reprogram-Seq to experimentally screen thousands of TF cocktails for reprogramming performance. Reprogram-Seq leverages organ-specific cell-atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Focusing on the cardiac system, we perform Reprogram-Seq on MEFs using an undirected library of 48 cardiac factors and, separately, a directed library of 10 epicardial-related TFs. We identify a combination of three TFs, which efficiently reprogram MEFs to epicardial-like cells that are transcriptionally, molecularly, morphologically, and functionally similar to primary epicardial cells. Reprogram-Seq holds promise to accelerate the generation of specific cell types for regenerative medicine.
Collapse
Affiliation(s)
- Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minoti Bhakta
- Department of Molecular Biology, Department of Internal Medicine, Division of Cardiology, McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiqi Xie
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pei Zhou
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nikhil V Munshi
- Department of Molecular Biology, Department of Internal Medicine, Division of Cardiology, McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390, USA.
| | - Gary C Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, Wärdell E, Custodio J, Reimegård J, Salmén F, Österholm C, Ståhl PL, Sundström E, Åkesson E, Bergmann O, Bienko M, Månsson-Broberg A, Nilsson M, Sylvén C, Lundeberg J. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 2020; 179:1647-1660.e19. [PMID: 31835037 DOI: 10.1016/j.cell.2019.11.025] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
The process of cardiac morphogenesis in humans is incompletely understood. Its full characterization requires a deep exploration of the organ-wide orchestration of gene expression with a single-cell spatial resolution. Here, we present a molecular approach that reveals the comprehensive transcriptional landscape of cell types populating the embryonic heart at three developmental stages and that maps cell-type-specific gene expression to specific anatomical domains. Spatial transcriptomics identified unique gene profiles that correspond to distinct anatomical regions in each developmental stage. Human embryonic cardiac cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of embryonic cardiac gene expression. In situ sequencing was then used to refine these results and create a spatial subcellular map for the three developmental phases. Finally, we generated a publicly available web resource of the human developing heart to facilitate future studies on human cardiogenesis.
Collapse
Affiliation(s)
- Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chenglin Wu
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Eva Wärdell
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joaquin Custodio
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Salmén
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, the Netherlands
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU-Dresden, Dresden, Germany; Karolinska Institutet, Cell and Molecular Biology, Stockholm, Sweden
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christer Sylvén
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
40
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
41
|
Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev Cell 2020; 52:574-590.e6. [PMID: 32084358 PMCID: PMC7063573 DOI: 10.1016/j.devcel.2020.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease. scRNA-seq uncovered 3 developmental epicardial subpopulations (Epi1-3) in the zebrafish Epi1-specific gene, tgm2b, regulates the cell numbers in the main epicardial sheet Epi2-specific gene, sema3fb, restricts the number of tbx18+ cells in the cardiac outflow tract Epi3-specific gene, cxcl12a, guides ptprc/CD45+ myeloid cells to the developing heart
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Roger Patient
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK.
| |
Collapse
|
42
|
Abstract
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | | | - Eric M Small
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
43
|
Cai LX, Alkassis FF, Kasahara H. Defective coronary vessel organization and reduction of VEGF-A in mouse embryonic hearts with gestational mild hypoxia. Dev Dyn 2020; 249:636-645. [PMID: 31900966 DOI: 10.1002/dvdy.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vasculature is formed by responding to homeostatic tissue demands including in developing hearts. Hypoxia generally stimulates vascular formation in which vascular endothelial growth factor A (VEGF-A) plays a critical role. Gestational hypoxia increases the risk of low intrauterine growth and low birth weight, both of which are known to increase the risk of the fetus developing cardiovascular defects. In fact, continuous gestational mild hypoxia (14% O2 ) from the mid-embryonic stage causes cardiac anomalies accompanied by a thinning compact layer in mice in vivo. Because coronary vasculature formation is necessary for compact layers to thicken, we hypothesized that defective coronary vessel organization is related to the thinning compact layer under gestational hypoxia conditions. RESULTS Continuous gestational mild hypoxia (14% O2 ) applied from embryonic day 10.5 (E10.5) reduced the expression of VEGF-A mRNA and proteins by over 60% in E12.5 hearts relative to control normoxic hearts. Formation of CD31-positive vascular plexus, blood islands, and microvessels in embryonic ventricles were stunted by gestational hypoxia compared to control E12.5 hearts. CONCLUSIONS Our results suggest that mild hypoxia (14% O2 ) does not induce coronary vessel organization or VEGF-A expression in developing mouse hearts, opposing the general effects of hypoxia-triggering vascular organization and VEGF-A expression.
Collapse
Affiliation(s)
- Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
44
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
45
|
Tapia-Carrillo D, Tovar H, Velazquez-Caldelas TE, Hernandez-Lemus E. Master Regulators of Signaling Pathways: An Application to the Analysis of Gene Regulation in Breast Cancer. Front Genet 2019; 10:1180. [PMID: 31850059 PMCID: PMC6902642 DOI: 10.3389/fgene.2019.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Analysis of gene regulatory networks allows the identification of master transcriptional factors that control specific groups of genes. In this work, we inferred a gene regulatory network from a large dataset of breast cancer samples to identify the master transcriptional factors that control the genes within signal transduction pathways. The focus in a particular subset of relevant genes constitutes an extension of the original Master Regulator Inference Algorithm (MARINa) analysis. This modified version of MARINa utilizes a restricted molecular signature containing genes from the 25 human pathways in KEGG's signal transduction category. Our breast cancer RNAseq expression dataset consists of 881 samples comprising tumors and normal mammary gland tissue. The top 10 master transcriptional factors found to regulate signal transduction pathways in breast cancer we identified are: TSHZ2, HOXA2, MEIS2, HOXA3, HAND2, HOXA5, TBX18, PEG3, GLI2, and CLOCK. The functional enrichment of the regulons of these master transcriptional factors showed an important proportion of processes related to morphogenesis. Our results suggest that, as part of the aberrant regulation of signaling pathways in breast cancer, pathways similar to the regulation of cell differentiation, cardiovascular system development, and vasculature development may be dysregulated and co-opted in favor of tumor development through the action of these transcription factors.
Collapse
Affiliation(s)
- Diana Tapia-Carrillo
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Graduate Program in Biological Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | | | - Enrique Hernandez-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Center for Complexity Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
46
|
Negi S, Bolt CC, Zhang H, Stubbs L. An extended regulatory landscape drives Tbx18 activity in a variety of prostate-associated cell lineages. Dev Biol 2019; 446:180-192. [PMID: 30594504 DOI: 10.1016/j.ydbio.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved transcription factor, Tbx18, is expressed in a dynamic pattern throughout embryonic and early postnatal life and plays crucial roles in the development of multiple organ systems. Previous studies have indicated that this dynamic function is controlled by an expansive regulatory structure, extending far upstream and downstream of the gene. With the goal of identifying elements that interact with the Tbx18 promoter in developing prostate, we coupled chromatin conformation capture (4C) and ATAC-seq from embryonic day 18.5 (E18.5) mouse urogenital sinus (UGS), where Tbx18 is highly expressed. The data revealed dozens of active chromatin elements distributed throughout a 1.5 million base pair topologically associating domain (TAD). To identify cell types contributing to this chromatin signal, we used lineage tracing methods with a Tbx18 Cre "knock-in" allele; these data show clearly that Tbx18-expressing precursors differentiate into wide array of cell types in multiple tissue compartments, most of which have not been previously reported. We also used a 209 kb Cre-expressing Tbx18 transgene, to partition enhancers for specific precursor types into two rough spatial domains. Within this central 209 kb compartment, we identified ECR1, previously described to regulate Tbx18 expression in ureter, as an active regulator of UGS expression. Together these data define the diverse fates of Tbx18+ precursors in prostate-associated tissues for the first time, and identify a highly active TAD controlling the gene's essential function in this tissue.
Collapse
Affiliation(s)
- Soumya Negi
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| | | | - Huimin Zhang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| | - Lisa Stubbs
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| |
Collapse
|
47
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
48
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
49
|
Tomanek R, Angelini P. Embryology of coronary arteries and anatomy/pathophysiology of coronary anomalies. A comprehensive update. Int J Cardiol 2018; 281:28-34. [PMID: 30587416 DOI: 10.1016/j.ijcard.2018.11.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This paper reviews new findings in both embryology of coronary arteries and in clinical observations of coronary artery anomalies. FOCUS Our presentation emphasizes studies based on: 1) newer methods of coronary development in animals and humans, and 2) intravascular ultrasonography to interpret pathophysiology and guide treatment of coronary anomalies. CONCLUSIONS New data reveal the roles of many cellular interactions and signaling pathways involved in the normal and abnormal formation of the coronary arterial system and the consequences of their defective formation. Pathogenetic developmental mechanisms include dysfunction of the Notch and Hypo signaling pathways, angiogenic and arteriogenic molecules, and neural crest cells. We addressed numerous clinically significant coronary anomalies and their prevalence in a general population (especially those characterized by an ectopic origin with aortic intramural course), and point out the critical relevance of understanding the variable mechanisms of coronary dysfunction, especially, fixed versus phasic stenoses or intermittent spasm, and individual severity of clinical presentations.
Collapse
Affiliation(s)
- Robert Tomanek
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States of America.
| | - Paolo Angelini
- Center for Coronary Artery Anomalies at Texas Heart Institute, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
50
|
Niderla-BieliŃska J, Jankowska-Steifer E, Flaht-Zabost A, Gula G, Czarnowska E, Ratajska A. Proepicardium: Current Understanding of its Structure, Induction, and Fate. Anat Rec (Hoboken) 2018; 302:893-903. [PMID: 30421563 DOI: 10.1002/ar.24028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022]
Abstract
The proepicardium (PE) is a transitory extracardiac embryonic structure which plays a crucial role in cardiac morphogenesis and delivers various cell lineages to the developing heart. The PE arises from the lateral plate mesoderm (LPM) and is present in all vertebrate species. During development, mesothelial cells of the PE reach the naked myocardium either as free-floating aggregates in the form of vesicles or via a tissue bridge; subsequently, they attach to the myocardium and, finally, form the third layer of a mature heart-the epicardium. After undergoing epithelial-to-mesenchymal transition (EMT) some of the epicardial cells migrate into the myocardial wall and differentiate into fibroblasts, smooth muscle cells, and possibly other cell types. Despite many recent findings, the molecular pathways that control not only proepicardial induction and differentiation but also epicardial formation and epicardial cell fate are poorly understood. Knowledge about these events is essential because molecular mechanisms that occur during embryonic development have been shown to be reactivated in pathological conditions, for example, after myocardial infarction, during hypertensive heart disease or other cardiovascular diseases. Therefore, in this review we intended to summarize the current knowledge about PE formation and structure, as well as proepicardial cell fate in animals commonly used as models for studies on heart development. Anat Rec, 302:893-903, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Gula
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.,The Postgraduate School of Molecular Medicine (SMM), Warsaw, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|