1
|
Minto MS, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BMC Biol 2024; 22:189. [PMID: 39218853 PMCID: PMC11367862 DOI: 10.1186/s12915-024-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa S Minto
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27710, USA
- Omics, Epidemiology and Analytics Program, RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Vijyendra Ramesh
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Minto M, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574185. [PMID: 38260638 PMCID: PMC10802290 DOI: 10.1101/2024.01.04.574185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during CGN differentiation. Results We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally-regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. Conclusion Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa Minto
- Duke University, Program in Computational Biology and Bioinformatics, Durham, NC 27710
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709
| | | | | | - Anne E. West
- Duke University, Department of Neurobiology, Durham, NC 27710
| |
Collapse
|
3
|
Wang X, Xu J, Sun Y, Cao S, Zeng H, Jin N, Shou M, Tang S, Chen Y, Huang M. Hedgehog pathway orchestrates the interplay of histone modifications and tailors combination epigenetic therapies in breast cancer. Acta Pharm Sin B 2023; 13:2601-2612. [PMID: 37425067 PMCID: PMC10326305 DOI: 10.1016/j.apsb.2023.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 07/11/2023] Open
Abstract
Epigenetic therapies that cause genome-wide epigenetic alterations, could trigger local interplay between different histone marks, leading to a switch of transcriptional outcome and therapeutic responses of epigenetic treatment. However, in human cancers with diverse oncogenic activation, how oncogenic pathways cooperate with epigenetic modifiers to regulate the histone mark interplay is poorly understood. We herein discover that the hedgehog (Hh) pathway reprograms the histone methylation landscape in breast cancer, especially in triple-negative breast cancer (TNBC). This facilitates the histone acetylation caused by histone deacetylase (HDAC) inhibitors and gives rise to new therapeutic vulnerability of combination therapies. Specifically, overexpression of zinc finger protein of the cerebellum 1 (ZIC1) in breast cancer promotes Hh activation, facilitating the switch of H3K27 methylation (H3K27me) to acetylation (H3K27ac). The mutually exclusive relationship of H3K27me and H3K27ac allows their functional interplay at oncogenic gene locus and switches therapeutic outcomes. Using multiple in vivo breast cancer models including patient-derived TNBC xenograft, we show that Hh signaling-orchestrated H3K27me and H3K27ac interplay tailors combination epigenetic drugs in treating breast cancer. Together, this study reveals the new role of Hh signaling-regulated histone modifications interplay in responding to HDAC inhibitors and suggests new epigenetically-targeted therapeutic solutions for treating TNBC.
Collapse
Affiliation(s)
- Xiaomin Wang
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Sun
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyuwei Cao
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanlin Zeng
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nan Jin
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuai Tang
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Huang
- Cancer Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Heilig AK, Nakamura R, Shimada A, Hashimoto Y, Nakamura Y, Wittbrodt J, Takeda H, Kawanishi T. Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis. eLife 2022; 11:71845. [PMID: 35522214 PMCID: PMC9075960 DOI: 10.7554/elife.71845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal axial muscles, or epaxial muscles, are a fundamental structure covering the spinal cord and vertebrae, as well as mobilizing the vertebrate trunk. To date, mechanisms underlying the morphogenetic process shaping the epaxial myotome are largely unknown. To address this, we used the medaka zic1/zic4-enhancer mutant Double anal fin (Da), which exhibits ventralized dorsal trunk structures resulting in impaired epaxial myotome morphology and incomplete coverage over the neural tube. In wild type, dorsal dermomyotome (DM) cells reduce their proliferative activity after somitogenesis. Subsequently, a subset of DM cells, which does not differentiate into the myotome population, begins to form unique large protrusions extending dorsally to guide the epaxial myotome dorsally. In Da, by contrast, DM cells maintain the high proliferative activity and mainly form small protrusions. By combining RNA- and ChIP-sequencing analyses, we revealed direct targets of Zic1, which are specifically expressed in dorsal somites and involved in various aspects of development, such as cell migration, extracellular matrix organization, and cell-cell communication. Among these, we identified wnt11 as a crucial factor regulating both cell proliferation and protrusive activity of DM cells. We propose that dorsal extension of the epaxial myotome is guided by a non-myogenic subpopulation of DM cells and that wnt11 empowers the DM cells to drive the coverage of the neural tube by the epaxial myotome.
Collapse
Affiliation(s)
- Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuka Hashimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuta Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
6
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
7
|
Cho SY, Protzman RA, Kim YO, Vaidya B, Oh MJ, Kwon J, Kim D. Elucidation of mechanism for host response to VHSV infection at varying temperatures in vitro and in vivo through proteomic analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 88:244-253. [PMID: 30802632 DOI: 10.1016/j.fsi.2019.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Seasonal temperature has a major influence on the infectivity of pathogens and the host immune system. Viral hemorrhagic septicemia virus (VHSV) is one such pathogen that only causes the mortality of fish at low temperatures. This study aims to discover the host defense mechanism and pathway for resistance to VHSV at higher temperatures. We first observed the VHSV infection patterns at low and higher temperatures in fathead minnow (FHM) cells (20 °C and 28 °C) and zebrafish (15 °C and 25 °C). In comparison to the 20 °C infection, FHM cells infected at 28 °C showed decreased apoptosis, increased cell viability, and reduced VHSV N gene expression. In zebrafish, infection at 25 °C caused no mortality and significantly reduced the N gene copy number in comparison to infection at 15 °C. To explore the antiviral infection mechanisms induced by high temperature in vitro and in vivo, the changes in the proteomic profile were measured through UPLC-MSE analysis. ACADL, PTPN6, TLR1, F7, A2M, and GLI2 were selected as high temperature-specific biomarkers in the FHM cell proteome; and MYH9, HPX, ANTXR1, APOA1, HBZ, and MYH7 were selected in zebrafish. Increased immune response, anticoagulation effects, and the formation of lymphocytes from hematopoietic stem cells were analyzed as functions that were commonly induced by high temperature in vitro and in vivo. Among these biomarkers, GLI2 was predicted as an upstream regulator. When treated with GANT58, a GLI-specific inhibitor, cell viability was further reduced due to GLI2 inhibition during VHSV infection at varying temperatures in FHM cells, and the mortality in zebrafish was induced earlier at the low temperature. Overall, this study discovered a new mechanism for VHSV infection in vitro and in vivo that is regulated by GLI2 protein.
Collapse
Affiliation(s)
- Se-Young Cho
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Rachael A Protzman
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea; Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeong O Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
8
|
Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ. Gli2 is required for the induction and migration of Xenopus laevis neural crest. Mech Dev 2018; 154:219-239. [PMID: 30086335 DOI: 10.1016/j.mod.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023]
Abstract
The neural crest (NC) is a multipotent migratory embryonic population that is formed during late gastrulation and gives rise to a wide array of derivatives, including cells from the peripheral nervous system (PNS), the craniofacial bones and cartilages, peripheral glial cells, and melanocyte cells, among others. In this work we analyzed the role of the Hedgehog signaling pathway effector gli2 in Xenopus NC. We provide evidence that the gli2 gene is expressed in the prospective, premigratory and migratory NC. The use of a specific morpholino against gli2 and the pharmacological specific inhibitor GANT61 in different experimental approaches allowed us to determine that gli2 is required for the induction and specification of NC cells as a transcriptional activator. Moreover, gli2 also acts by reducing apoptosis in the NC without affecting its cell proliferation status. We also demonstrated that gli2 is required cell-autonomously for NC migration, and for the formation of NC derivatives such as the craniofacial cartilages, melanocytes and the cranial ganglia. Altogether, our results showed that gli2 is a key transcriptional activator to accomplish the proper specification and development of Xenopus NC cells.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| | - María Belén Palacio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
9
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Baribault C, Ehrlich KC, Ponnaluri VKC, Pradhan S, Lacey M, Ehrlich M. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics 2018; 13:275-289. [PMID: 29498561 PMCID: PMC5997157 DOI: 10.1080/15592294.2018.1445900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development.
Collapse
Affiliation(s)
- Carl Baribault
- a Tulane Cancer Center , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,b Department of Mathematics , Tulane University , New Orleans , LA 70118 , USA
| | - Kenneth C Ehrlich
- c Center for Bioinformatics and Genomics , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA
| | | | | | - Michelle Lacey
- b Department of Mathematics , Tulane University , New Orleans , LA 70118 , USA
| | - Melanie Ehrlich
- a Tulane Cancer Center , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,c Center for Bioinformatics and Genomics , Tulane University Health Sciences Center , New Orleans , LA 70112 , USA.,e Hayward Genetics Center Tulane University Health Sciences Center , New Orleans , LA 70112 , USA
| |
Collapse
|
11
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Abstract
Zic family genes encode five C2H2-type zinc finger domain-containing proteins that have many roles in animal development and maintenance. Recent phylogenetic analyses showed that Zic family genes are distributed in metazoans (multicellular animals), except Porifera (sponges) and Ctenophora (comb jellies). The sequence comparisons revealed that the zinc finger domains were absolutely conserved among the Zic family genes. Zic zinc finger domains are similar to, but distinct from those of the Gli, Glis, and Nkl gene family, and these zinc finger protein families are proposed to have been derived from a common ancestor gene. The Gli-Glis-Nkl-Zic superfamily and some other eukaryotic zinc finger proteins share a tandem CWCH2 (tCWCH2) motif, a hallmark for inter-zinc finger interaction between two adjacent C2H2 zinc fingers. In Zic family proteins, there exist additional evolutionally conserved domains known as ZOC and ZFNC, both of which may have appeared before cnidarian-bilaterian divergence. Comparison of the exon-intron boundaries in the Zic zinc finger domains revealed an intron (A-intron) that was absolutely conserved in bilaterians (metazoans with bilateral symmetry) and a placozoan (a simple nonparasitic metazoan). In vertebrates, there are five to seven Zic paralogs among which Zic1, Zic2, and Zic3 are generated through a tandem gene duplication and carboxy-terminal truncation in a vertebrate common ancestor, sharing a conserved carboxy-terminal sequence. Several hypotheses have been proposed to explain the Zic family phylogeny, including their origin, unique features in the first and second zinc finger motif, evolution of the nuclear localization signal, significance of the animal taxa-selective degeneration, gene multiplication in the vertebrate lineage, and involvement in the evolutionary alteration of the animal body plan.
Collapse
|
13
|
Zic Family Proteins in Emerging Biomedical Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:233-248. [DOI: 10.1007/978-981-10-7311-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Lilja KC, Zhang N, Magli A, Gunduz V, Bowman CJ, Arpke RW, Darabi R, Kyba M, Perlingeiro R, Dynlacht BD. Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS One 2017; 12:e0176190. [PMID: 28441415 PMCID: PMC5404880 DOI: 10.1371/journal.pone.0176190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSC) hold great promise for the treatment of human skeletal muscle diseases. However, it remains challenging to convert PSC to skeletal muscle cells, and the mechanisms by which the master regulatory transcription factor, Pax7, promotes muscle stem (satellite) cell identity are not yet understood. We have taken advantage of PSC-derived skeletal muscle precursor cells (iPax7), wherein the induced expression of Pax7 robustly initiates the muscle program and enables the in vitro generation of precursors that seed the satellite cell compartment upon transplantation. Remarkably, we found that chromatin accessibility in myogenic precursors pre-figures subsequent activation of myogenic differentiation genes. We also found that Pax7 binding is generally restricted to euchromatic regions and excluded from H3K27 tri-methylated regions in muscle cells, suggesting that recruitment of this factor is circumscribed by chromatin state. Further, we show that Pax7 binding induces dramatic, localized remodeling of chromatin characterized by the acquisition of histone marks associated with enhancer activity and induction of chromatin accessibility in both muscle precursors and lineage-committed myoblasts. Conversely, removal of Pax7 leads to rapid reversal of these features on a subset of enhancers. Interestingly, another cluster of Pax7 binding sites is associated with a durably accessible and remodeled chromatin state after removal of Pax7, and persistent enhancer accessibility is associated with subsequent, proximal binding by the muscle regulatory factors, MyoD1 and myogenin. Our studies provide new insights into the epigenetic landscape of skeletal muscle stem cells and precursors and the role of Pax7 in satellite cell specification.
Collapse
Affiliation(s)
- Karin C. Lilja
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Nan Zhang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Volkan Gunduz
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Christopher J. Bowman
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Robert W. Arpke
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Radbod Darabi
- The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Rita Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Brian D. Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cao S, Du J, Lv Y, Lin H, Mao Z, Xu M, Liu M, Liu Y. PAX3 inhibits β-Tubulin-III expression and neuronal differentiation of neural stem cell. Biochem Biophys Res Commun 2017; 485:307-311. [PMID: 28223217 DOI: 10.1016/j.bbrc.2017.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
Abstract
PAX3 functions at the nodal point in neural stem cell maintenance and differentiation. Using bioinformatics methods, we identified PAX3 as a potential regulator of β-Tubulin-III (TUBB3) gene transcription, and the results indicated that PAX3 might be involved in neural stem cell (NSC) differentiation by orchestrating the expression of cytoskeletal proteins. In the present study, we reported that PAX3 could inhibit the differentiation of NSCs and the expression of TUBB3. Further, using luciferase and electrophoretic mobility shift assays, we demonstrated that PAX3 could bind to the promoter region of TUBB3 and inhibit TUBB3 transcription. Finally, we confirmed that PAX3 could bind to the promoter region of endogenous TUBB3 in the native chromatin of NSCs. These findings indicated that PAX3 is a pivotal factor targeting various molecules during differentiation of NSCs in vitro.
Collapse
Affiliation(s)
- Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jinfeng Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hengrong Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
16
|
Contreras GA, Thelen K, Ayala-Lopez N, Watts SW. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location. Physiol Rep 2016; 4:e12993. [PMID: 27738018 PMCID: PMC5064145 DOI: 10.14814/phy2.12993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
There are sex associated differences in the risk for cardiovascular comorbidities in obesity and metabolic syndrome. A common clinical finding in these diseases is the expansion of perivascular adipose tissues (PVAT) which is associated with alterations in their role as regulators of vessel function. PVAT hyperplasia and hypertrophy are dependent on the biology of populations of adipocyte progenitor cells (APC). It is currently unclear if PVAT enlargement diverges between males and females and the mechanisms linking APC biology with sexual dimorphism remain poorly understood. This study tested the hypothesis that vessel location and sexual dimorphism affect the distribution and adipogenic capacity of APC in cardiovascular disease risk relevant PVAT sites. PVAT from thoracic aorta (aPVAT) and mesenteric resistance arteries (mPVAT) was collected from 10-week-old female and male Sprague-Dawley rats. Differences in APC distribution in stromal vascular fraction cells from PVAT were determined. APC were defined as cells expressing CD34, CD44, and platelet derived growth factor α In both sexes aPVAT had fewer APC compared to mPVAT and perigonadal adipose tissue (GON). Sex-related differences were observed in the expression of CD34, where females had fewer CD34+ cells in PVATs. APC proliferation and adipogenic capacity in vitro were not affected by sex. However, APC from aPVAT had a lower proliferation capacity compared to mPVAT These data demonstrate that the distribution of APC within PVAT exhibits sexual dimorphism and is affected by anatomical location.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Yang Q, Yu J, Yu B, Huang Z, Zhang K, Wu D, He J, Mao X, Zheng P, Chen D. PAX3 + skeletal muscle satellite cells retain long-term self-renewal and proliferation. Muscle Nerve 2016; 54:943-951. [PMID: 27014961 DOI: 10.1002/mus.25117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Different populations of satellite cells (SCs) have been identified, but their functional difference remains unclear. METHODS We used cell-surface markers and paired box transcription factor 3 (Pax3)/paired box transcription factor 7 (Pax7) expression to separate SC populations. In addition, self-renewal, proliferation, and differentiation abilities of each population were analyzed. RESULTS Pax3+ /Pax7- SCs exhibited higher proliferation ability characterized by forming clusters of myogenic colonies with more self-renewing cells after several passages, while Pax3- /Pax7+ SCs had faster differentiation. The myotubes derived from Pax3+ /Pax7- SCs tended to express slow-myosin heavy chain and exhibited rhythmic contraction, while myotubes originating from Pax3- /Pax7+ SCs primarily formed fast-myosin heavy chains characterized by transitory contraction. CONCLUSIONS Pax3+ /Pax7- SCs exhibited the ability of long-term self-renewal and proliferation, whereas Pax3- /Pax7+ SCs demonstrated faster differentiation. Muscle Nerve 54: 943-951, 2016.
Collapse
Affiliation(s)
- Qiumei Yang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
18
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
19
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
20
|
Mayran A, Pelletier A, Drouin J. Pax factors in transcription and epigenetic remodelling. Semin Cell Dev Biol 2015; 44:135-44. [PMID: 26234816 DOI: 10.1016/j.semcdb.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
Abstract
The nine Pax transcription factors that constitute the mammalian family of paired domain (PD) factors play key roles in many developmental processes. As DNA binding transcription factors, they exhibit tremendous variability and complexity in their DNA recognition patterns. This is ascribed to the presence of multiple DNA binding structural domains, namely helix-turn-helix (HTH) domains. The PD contains two HTH subdomains and four of the nine Pax factors have an additional HTH domain, the homeodomain (HD). We now review these diverse DNA binding modalities together with their properties as transcriptional activators and repressors. The action of Pax factors on gene expression is also exerted through recruitment of chromatin remodelling complexes that introduce either activating or repressive chromatin marks. Interestingly, the recent demonstration that Pax7 has pioneer activity, the unique property to "open" chromatin, further underlines the mechanistic versatility and the developmental importance of these factors.
Collapse
Affiliation(s)
- Alexandre Mayran
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Audrey Pelletier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
21
|
Gregory LC, Humayun KN, Turton JPG, McCabe MJ, Rhodes SJ, Dattani MT. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation. J Clin Endocrinol Metab 2015; 100:2158-64. [PMID: 25871839 PMCID: PMC4454798 DOI: 10.1210/jc.2014-4484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. OBJECTIVE/HYPOTHESIS To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. METHOD We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. RESULTS We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. CONCLUSION We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life.
Collapse
Affiliation(s)
- L C Gregory
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - K N Humayun
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - J P G Turton
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - M J McCabe
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - S J Rhodes
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - M T Dattani
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
22
|
Gregory LC, Gaston-Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, McCabe MJ, Panagiotakopoulos L, Saldanha JW, Spoudeas HA, Torpiano J, Rossi M, Raine J, Canham N, Martinez-Barbera JP, Dattani MT. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf) 2015; 82:728-38. [PMID: 25327282 DOI: 10.1111/cen.12637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. OBJECTIVES/METHODS We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). RESULTS Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. CONCLUSIONS Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH.
Collapse
Affiliation(s)
- L C Gregory
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
24
|
Bae CJ, Park BY, Lee YH, Tobias JW, Hong CS, Saint-Jeannet JP. Identification of Pax3 and Zic1 targets in the developing neural crest. Dev Biol 2013; 386:473-83. [PMID: 24360908 DOI: 10.1016/j.ydbio.2013.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is a multipotent population of migratory cells unique to the vertebrate embryo, contributing to the development of multiple organ systems. Transcription factors pax3 and zic1 are among the earliest genes activated in NC progenitors, and they are both necessary and sufficient to promote NC fate. In order to further characterize the function of these transcription factors during NC development we have used hormone inducible fusion proteins in a Xenopus animal cap assay, and DNA microarray to identify downstream targets of Pax3 and Zic1. Here we present the results of this screen and the initial validation of these targets using quantitative RT-PCR, in situ hybridization and morpholinos-mediated knockdown. Among the targets identified we found several well-characterized NC-specific genes, including snail2, foxd3, gbx2, twist, sox8 and sox9, which validate our approach. We also obtained several factors with no known function in Xenopus NC, which represent novel regulators of NC fate. The comprehensive characterization of Pax3 and Zic1 targets function in the NC gene regulatory network, are essential to understanding the mechanisms regulating the emergence of this important cell population.
Collapse
Affiliation(s)
- Chang-Joon Bae
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju, Republic of Korea
| | - John W Tobias
- Bioinformatics Group, Molecular Profiling Facility, University of Pennsylvania, Philadelphia, PA, USA
| | - Chang-Soo Hong
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea.
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|