1
|
Zhou P, Cheng L, Tao H, Hintze M, Wang Y, Pu Q, Qi X, Cai D, Kuerten S, Wang J, Huang R. Fibroblast growth factor 8 promotes in vitro neurite outgrowth of placode-derived petrosal and nodose ganglia to varying degrees. Ann Anat 2024; 256:152323. [PMID: 39209048 DOI: 10.1016/j.aanat.2024.152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Zoology, School of Life Sciences, Lanzhou University, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, China; Grassland Agriculture Engineering Center, Ministry of Education, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Longfei Cheng
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Hengxun Tao
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Yajun Wang
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Qin Pu
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Stefanie Kuerten
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Jianlin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Ruijin Huang
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
3
|
Hamed SA, Ahmed MAAR. The effectiveness of cerebrolysin, a multi-modal neurotrophic factor, for treatment of post-covid-19 persistent olfactory, gustatory and trigeminal chemosensory dysfunctions: a randomized clinical trial. Expert Rev Clin Pharmacol 2023; 16:1261-1276. [PMID: 37950370 DOI: 10.1080/17512433.2023.2282715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND This trial aimed to monitor the outcomes of persistent post-covid-19 smell and taste disorders after cerebrolysin therapy, a NTF, and olfactory and gustatory trainings. RESEARCH DESIGN AND METHODS This was a prospective randomized trial. It included 250 patients (male = 93, female = 157; age: 31.3 ± 8.9 years). Patients were randomized into group 1 (n = 150): received cerebrolysin [5 ml/d (IM), 5d/week] and practiced olfactory and gustatory trainings, and group 2 (n = 100): practiced olfactory and gustatory trainings only, for ≥ 8-24 weeks. Measures of outcomes were: a clinical questionnaire; sniffin' odor, taste and flavor identification tests; and global rating scales for smell and taste. RESULTS The duration of disorders was 11.7 ± 3.7mo (range: 6-24mo). The majority (n = 167; 66.8%) developed parosmia within months (3.6 ± 2.7mo) after anosmia. Objective testing showed anosmia in all and taste, flavor, and trigeminal sensory losses in 18% (n = 45). Analyses for secondary outcome were done on 202 patients (group 1 = 130; group 2 = 72). Recovery was complete in 61.5% (n = 80) with cerebrolysin therapy and partial in 17% (n = 22). There was no recovery with trainings only. There were no predictors for recovery. CONCLUSIONS Cerebrolysin had fast, promising, and constant effect, with cure rate of > 60%. This might be due to its ability to initiate and enhance neuronal regeneration and reorganization of sensory epithelia. TRIAL REGISTRATION NCT04830943.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt
| | | |
Collapse
|
4
|
Hamed SA, Kamal-Eldeen EB, Ahmed MAAR. Evaluation of children and adults with post-COVID-19 persistent smell, taste and trigeminal chemosensory disorders: A hospital based study. World J Clin Pediatr 2023; 12:133-150. [PMID: 37342446 PMCID: PMC10278074 DOI: 10.5409/wjcp.v12.i3.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Smell disorders are the most frequent persistent coronavirus disease 2019 (COVID-19) complications. AIM To describe the patterns and characteristics of persistent smell and taste disorders in Egyptian patients. METHODS Assessment was done to 185 patients (adults = 150, age: 31.41 ± 8.63 years; children = 35; age: 15.66 ± 1.63 years). Otolaryngology and neuropsychiatric evaluations were done. Measurements included: A clinical questionnaire (for smell and taste); sniffin' odor, taste and flavor identification tests and the Questionnaire of Olfactory Disorders-Negative Statements (sQOD-NS). RESULTS Duration of disorders was 11.53 ± 3.97 ms (6-24 ms). Parosmia (n = 119; 64.32%) was developed months after anosmia (3.05 ± 1.87 ms). Objective testing showed anosmia in all, ageusia and flavor loss in 20% (n = 37) and loss of nasal and oral trigeminal sensations in 18% (n = 33) and 20% (n = 37), respectively. Patients had low scoring of sQOD-NS (11.41 ± 3.66). There were no specific differences in other demographics and clinical variables which could distinguish post-COVID-19 smell and taste disorders in children from adults. CONCLUSION The course of small and taste disorders are supportive of the nasal and oral neuronal compromises. Post-COVID-19 taste and trigeminal disorders were less frequent compared to smell disorders. Post-COVID-19 flavor disorders were solely dependent on taste and not smell disorders. There were no demographics, clinical variables at onset or specific profile of these disorders in children compared to adults.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| | | | | |
Collapse
|
5
|
New Insights into the Identity of the DFNA58 Gene. Genes (Basel) 2022; 13:genes13122274. [PMID: 36553541 PMCID: PMC9777997 DOI: 10.3390/genes13122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is the most common sensory deficit, affecting 466 million people worldwide. The vast and diverse genes involved reflect the complexity of auditory physiology, which requires the use of animal models in order to gain a fuller understanding. Among the loci with a yet-to-be validated gene is the DFNA58, in which ~200 Kb genomic duplication, including three protein-coding genes (PLEK, CNRIP1, and PPP3R1's exon1), was found to segregate with autosomal dominant hearing loss. Through whole genome sequencing, the duplication was found to be in tandem and inserted in an intergenic region, without the disruption of the topological domains. Reanalysis of transcriptomes data studies (zebrafish and mouse), and RT-qPCR analysis of adult zebrafish target organs, in order to access their orthologues expression, highlighted promising results with Cnrip1a, corroborated by zebrafish in situ hybridization and immunofluorescence. Mouse data also suggested Cnrip1 as the best candidate for a relevant role in auditory physiology, and its importance in hearing seems to have remained conserved but the cell type exerting its function might have changed, from hair cells to spiral ganglion neurons.
Collapse
|
6
|
Rajan SG, Saxena A. Scents from the past: Lineage history and terminal identity in the olfactory system. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220037. [PMID: 36519073 PMCID: PMC9746709 DOI: 10.1002/ntls.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Sriivatsan G. Rajan
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Yang H, Ryu J, Lim C, Choi JW, Park YJ, Jang SW, Shim S. SOXE group transcription factors regulates the expression of FoxG1 during inner ear development. Biochem Biophys Res Commun 2022; 623:96-103. [PMID: 35878429 DOI: 10.1016/j.bbrc.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
The transcription factor FOXG1 plays an important role in inner ear development; however, the cis-regulatory mechanisms controlling the inner-ear-specific expression of FOXG1 are poorly understood. In this study, we aimed to identify the element that specifically regulates FoxG1 expression in the otic vesicle, which develops into the inner ear, through comparative genome analysis between vertebrate species and chromatin immunoprecipitation. The cis-regulatory element (E2) identified showed high evolutionary conservation among vertebrates in the genomic DNA of FoxG1 spanning approximately 3 Mbp. We identified core sequences important for the activity of the otic-vesicle-specific enhancer through in vitro and in vivo reporter assays for various E2 enhancer mutants and determined the consensus sequence for SOX DNA binding. In addition, SoxE, a subfamily of the Sox family, was simultaneously expressed in the otic vesicles of developing embryos and showed a similar protein expression pattern as that of FoxG1. Furthermore, SOXE transcription factors induced specific transcriptional activity through the FoxG1 Otic enhancer (E2b). These findings suggest that the interaction between the otic enhancer of FoxG1 and SOXE transcription factor, in which the otic expression of FoxG1 is evolutionarily well-conserved, is important during early development of the inner ear, a sensory organ important for survival in nature.
Collapse
Affiliation(s)
- Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chungun Lim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jae-Won Choi
- Division of BT Convergence, Cheongju University, Cheongju, 28503, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Vet Sci 2022; 9:vetsci9020092. [PMID: 35202345 PMCID: PMC8879510 DOI: 10.3390/vetsci9020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.
Collapse
|
9
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
11
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
12
|
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, Kispert A, Trowe MO. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 2021; 148:dev.195651. [PMID: 33795231 DOI: 10.1242/dev.195651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.
Collapse
Affiliation(s)
- Marina Kaiser
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
13
|
Cheung KY, Jesuthasan SJ, Baxendale S, van Hateren NJ, Marzo M, Hill CJ, Whitfield TT. Olfactory Rod Cells: A Rare Cell Type in the Larval Zebrafish Olfactory Epithelium With a Large Actin-Rich Apical Projection. Front Physiol 2021; 12:626080. [PMID: 33716772 PMCID: PMC7952648 DOI: 10.3389/fphys.2021.626080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
We report the presence of a rare cell type, the olfactory rod cell, in the developing zebrafish olfactory epithelium. These cells each bear a single actin-rich rod-like apical projection extending 5–10 μm from the epithelial surface. Live imaging with a ubiquitous Lifeact-RFP label indicates that the olfactory rods can oscillate. Olfactory rods arise within a few hours of the olfactory pit opening, increase in numbers and size during larval stages, and can develop in the absence of olfactory cilia. Olfactory rod cells differ in morphology from the known classes of olfactory sensory neuron, but express reporters driven by neuronal promoters. A sub-population of olfactory rod cells expresses a Lifeact-mRFPruby transgene driven by the sox10 promoter. Mosaic expression of this transgene reveals that olfactory rod cells have rounded cell bodies located apically in the olfactory epithelium and have no detectable axon. We offer speculation on the possible function of these cells in the Discussion.
Collapse
Affiliation(s)
- King Yee Cheung
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Suresh J Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas J van Hateren
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mar Marzo
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Christopher J Hill
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
LaMantia AS. Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development. Front Physiol 2020; 11:610970. [PMID: 33362582 PMCID: PMC7759552 DOI: 10.3389/fphys.2020.610970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchephalic and rhombencephalic neural crest cells generate the craniofacial skeleton, special sensory organs, and subsets of cranial sensory receptor neurons. They do so while preserving the anterior-posterior (A-P) identity of their neural tube origins. This organizational principle is paralleled by central nervous system circuits that receive and process information from facial structures whose A-P identity is in register with that in the brain. Prior to morphogenesis of the face and its circuits, however, neural crest cells act as "inductive ambassadors" from distinct regions of the neural tube to induce differentiation of target craniofacial domains and establish an initial interface between the brain and face. At every site of bilateral, non-axial secondary induction, neural crest constitutes all or some of the mesenchymal compartment for non-axial mesenchymal/epithelial (M/E) interactions. Thus, for epithelial domains in the craniofacial primordia, aortic arches, limbs, the spinal cord, and the forebrain (Fb), neural crest-derived mesenchymal cells establish local sources of inductive signaling molecules that drive morphogenesis and cellular differentiation. This common mechanism for building brains, faces, limbs, and hearts, A-P axis specified, neural crest-mediated M/E induction, coordinates differentiation of distal structures, peripheral neurons that provide their sensory or autonomic innervation in some cases, and central neural circuits that regulate their behavioral functions. The essential role of this neural crest-mediated mechanism identifies it as a prime target for pathogenesis in a broad range of neurodevelopmental disorders. Thus, the face and the brain "predict" one another, and this mutual developmental relationship provides a key target for disruption by developmental pathology.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Laboratory of Developmental Disorders and Genetics and Center for Neurobiology Research, Fralin Biomedical Research Institute, Department of Pediatrics, Virginia Tech-Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Alsina B. Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Curr Opin Cell Biol 2020; 67:79-85. [PMID: 32950922 DOI: 10.1016/j.ceb.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Vertebrates sense a large variety of sensory stimuli that ranges from temperature, volatile and nonvolatile chemicals, touch, pain, light, sound and gravity. To achieve this, they use specialized cells present in sensory organs and cranial ganglia. Much of our understanding of the transcription factors and mechanisms responsible for sensory cell specification comes from cell-lineage tracing and genetic experiments in different species, but recent advances in single-cell transcriptomics, high-resolution imaging and systems biology approaches have allowed to study these processes in an unprecedented resolution. Here I will point to the transcription factor programs driving cell diversity in the different sensory organs of vertebrates to then discuss in vivo data of how cell specification is coupled with tissue morphogenesis.
Collapse
Affiliation(s)
- Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev Biol 2020; 457:43-56. [PMID: 31526806 PMCID: PMC6938654 DOI: 10.1016/j.ydbio.2019.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
SOX2 is essential for maintaining neurosensory stem cell properties, although its involvement in the early neurosensory development of cranial placodes remains unclear. To address this, we used Foxg1-Cre to conditionally delete Sox2 during eye, ear, and olfactory placode development. Foxg1-Cre mediated early deletion of Sox2 eradicates all olfactory placode development, and disrupts retinal development and invagination of the lens placode. In contrast to the lens and olfactory placodes, the ear placode invaginates and delaminates NEUROD1 positive neurons. Furthermore, we show that SOX2 is not necessary for early ear neurogenesis, since the early inner ear ganglion is formed with near normal central projections to the hindbrain and peripheral projections to the undifferentiated sensory epithelia of E11.5-12.5 ears. However, later stages of ear neurosensory development, in particular, the late forming auditory system, critically depend on the presence of SOX2. Our data establish distinct differences for SOX2 requirements among placodal sensory organs with similarities between olfactory and lens but not ear placode development, consistent with the unique neurosensory development and molecular properties of the ear.
Collapse
Affiliation(s)
| | - Iva Macova
- Institute of Biotechnology CAS, Vestec, Czechia
| | | | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
17
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
18
|
Drake PM, Jourdeuil K, Franz-Odendaal TA. An overlooked placode: Recharacterizing the papillae in the embryonic eye of reptilia. Dev Dyn 2019; 249:164-172. [PMID: 31665553 DOI: 10.1002/dvdy.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
The papillae in the chicken embryonic eye, described as scleral papillae in the well-known Hamburger and Hamilton (1951) staging table, are one of the key anatomical features used to stage reptilian (including bird) embryos from HH30-36. These papillae are epithelial thickenings of the conjunctiva and are situated above the mesenchymal sclera. Here, we present evidence that the conjunctival papillae, which are required for the induction and patterning of the underlying scleral ossicles, require epithelial pre-patterning and have a placodal stage similar to other placode systems. We also suggest modifications to the Hamburger Hamilton staging criteria that incorporate this change in terminology (from "scleral" to "conjunctival" papillae) and provide a more detailed description of this anatomical feature that includes its placode stage. This enables a more complete and accurate description of chick embryo staging. The acknowledgment of a placode phase, which shares molecular and morphological features with other cutaneous placodes, will direct future research into the early inductive events leading to scleral ossicle formation.
Collapse
Affiliation(s)
- Paige M Drake
- Department of Medical Neuroscience, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Karyn Jourdeuil
- Department of Animal and Avian Sciences, University of Maryland at College Park, College Park, Maryland
| | | |
Collapse
|
19
|
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 2019; 8:F1000 Faculty Rev-345. [PMID: 30984379 PMCID: PMC6439788 DOI: 10.12688/f1000research.17717.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, USA
| | | | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
20
|
Jenkins BA, Fontecilla NM, Lu CP, Fuchs E, Lumpkin EA. The cellular basis of mechanosensory Merkel-cell innervation during development. eLife 2019; 8:42633. [PMID: 30794158 PMCID: PMC6386521 DOI: 10.7554/elife.42633] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Touch sensation is initiated by mechanosensory neurons that innervate distinct skin structures; however, little is known about how these neurons are patterned during mammalian skin development. We explored the cellular basis of touch-receptor patterning in mouse touch domes, which contain mechanosensory Merkel cell-neurite complexes and abut primary hair follicles. At embryonic stage 16.5 (E16.5), touch domes emerge as patches of Merkel cells and keratinocytes clustered with a previously unsuspected population of Bmp4-expressing dermal cells. Epidermal Noggin overexpression at E14.5 disrupted touch-dome formation but not hair-follicle specification, demonstrating a temporally distinct requirement for BMP signaling in placode-derived structures. Surprisingly, two neuronal populations preferentially targeted touch domes during development but only one persisted in mature touch domes. Finally, Keratin-17-expressing keratinocytes but not Merkel cells were necessary to establish innervation patterns during development. These findings identify key cell types and signaling pathways required for targeting Merkel-cell afferents to discrete mechanosensory compartments.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
- Department of DermatologyColumbia UniversityNew YorkUnited States
| | - Natalia M Fontecilla
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| | - Catherine P Lu
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
21
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Abstract
Melanocyte development is orchestrated by a complex interconnecting regulatory network of genes and synergistic interactions. Piebaldism and Waardenburg syndrome are neurocristopathies that arise from mutations in genes involved in this complex network. Our understanding of melanocyte development, Piebaldism, and Waardenburg syndrome has improved dramatically over the past decade. The diagnosis and classification of Waardenburg syndrome, first proposed in 1992 and based on phenotype, have expanded over the past three decades to include genotype. This review focuses on the current understanding of human melanocyte development and the evaluation and management of Piebaldism and Waardenburg syndrome. Management is often challenging and requires a multidisciplinary approach.
Collapse
|
23
|
Blin M, Tine E, Meister L, Elipot Y, Bibliowicz J, Espinasa L, Rétaux S. Developmental evolution and developmental plasticity of the olfactory epithelium and olfactory skills in Mexican cavefish. Dev Biol 2018; 441:242-251. [PMID: 29709597 DOI: 10.1016/j.ydbio.2018.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
The fish Astyanax mexicanus comes in two forms: the normal surface-dwelling (SF) and the blind depigmented cave-adapted (CF) morphs. Among many phenotypic differences, cavefish show enhanced olfactory sensitivity to detect amino-acid odors and they possess large olfactory sensory organs. Here, we questioned the relationship between the size of the olfactory organ and olfactory capacities. Comparing olfactory detection abilities of CF, SF and F1 hybrids with various olfactory epithelium (OE) sizes in behavioral tests, we concluded that OE size is not the only factor involved. Other possibilities were envisaged. First, olfactory behavior was tested in SF raised in the dark or after embryonic lens ablation, which leads to eye degeneration and mimics the CF condition. Both absence of visual function and absence of visual organs improved the SF olfactory detection capacities, without affecting the size of their OE. This suggested that developmental plasticity occurs between the visual and the olfactory modalities, and can be recruited in SF after visual deprivation. Second, the development of the olfactory epithelium was compared in SF and CF in their first month of life. Proliferation, cell death, neuronal lifespan, and olfactory progenitor cell cycling properties were identical in the two morphs. By contrast, the proportions of the three main olfactory sensory neurons subtypes (ciliated, microvillous and crypt) in their OE differed. OMP-positive ciliated neurons were more represented in SF, TRPC2-positive microvillous neurons were proportionately more abundant in CF, and S100-positive crypt cells were found in equal densities in the two morphs. Thus, general proliferative properties of olfactory progenitors are identical but neurogenic properties differ and lead to variations in the neuronal composition of the OE in SF and CF. Together, these experiments suggest that there are at least two components in the evolution of cavefish olfactory skills: (1) one part of eye-dependent developmental phenotypic plasticity, which does not depend on the size of the olfactory organ, and (2) one part of developmental evolution of the OE, which may stem from embryonic specification of olfactory neurons progenitor pools.
Collapse
Affiliation(s)
- Maryline Blin
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Eugène Tine
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Lydvina Meister
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Yannick Elipot
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Jonathan Bibliowicz
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Luis Espinasa
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
25
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
26
|
Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM, Miller JM, Duncan RK. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 2017; 12:e0180427. [PMID: 28672008 PMCID: PMC5495534 DOI: 10.1371/journal.pone.0180427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/15/2017] [Indexed: 01/13/2023] Open
Abstract
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel J. Tuck
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Long He
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Departments of Otorhinolaryngology, Guangzhou First Peoples' Hospital and First Affiliated Hospital, School of Medicine, Jinan University, Guangdong, China
| | - Arjun Rastogi
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
| | - Christina White
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Liqian Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Diane M. Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan J. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Che Chan
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Benjamin R. Loomis
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph M. Corey
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Josef M. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - R. Keith Duncan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
27
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
28
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
29
|
Riddiford N, Schlosser G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 2016; 5. [PMID: 27576864 PMCID: PMC5035141 DOI: 10.7554/elife.17666] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.
Collapse
Affiliation(s)
- Nick Riddiford
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| |
Collapse
|
30
|
Schäck L, Budde S, Lenarz T, Krettek C, Gross G, Windhagen H, Hoffmann A, Warnecke A. Induction of neuronal-like phenotype in human mesenchymal stem cells by overexpression of Neurogenin1 and treatment with neurotrophins. Tissue Cell 2016; 48:524-32. [PMID: 27423984 DOI: 10.1016/j.tice.2016.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/18/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
AIM OF THE STUDY The induced expression of the transcription factors neurogenin1 (Neurog1) or neuronal differentiation 1 (NeuroD1) has previously been shown to initiate neuronal differentiation in embryonic stem cells (ESC). Human bone marrow-derived mesenchymal stem cells (hBMSCs) are ethically non-controversial stem cells. However, they are not pluripotent. In cochlear implantation, regeneration or replacement of lost spiral ganglion neurons may be a measure for the improvement of implant function. Thus, the aim of the study was to investigate whether the expression of Neurog1 or NeuroD1 is sufficient for induction of neuronal differentiation in hBMSCs. MATERIALS AND METHODS Human BMSCs were transduced with lentivirus expressing NeuroD1 or Neuorg1. Transduced cells were then treated with small molecules that enhanced neuronal differentiation. Markers of neuronal differentiation were evaluated. RESULTS Using quantitative reverse transcription PCR, the up-regulation of transcription factors expressed by developing primary auditory neurons, such as BRN3a (POU4F1) and GATA3, was quantified after induction of Neurog-1 expression. In addition, the expression of the receptor NTRK2 was induced by treatment with its specific ligand BDNF. The induction of expression of the vesicular glutamate transporter 1 was identified on gene and protein level. NeuroD1 seemed not sufficient to induce and maintain neuronal differentiation. CONCLUSIONS Induction of neuronal differentiation by overexpression of Neurog1 initiated important steps for the development of glutamatergic neurons such as the spiral ganglion neurons. However, it seems not sufficient to maintain the glutamatergic spiral ganglion neuron-like phenotype.
Collapse
Affiliation(s)
- Luisa Schäck
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Budde
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Christian Krettek
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Henning Windhagen
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
31
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
32
|
Libertini G, Ferrara N. Aging of perennial cells and organ parts according to the programmed aging paradigm. AGE (DORDRECHT, NETHERLANDS) 2016; 38:35. [PMID: 26957493 PMCID: PMC5005898 DOI: 10.1007/s11357-016-9895-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
If aging is a physiological phenomenon-as maintained by the programmed aging paradigm-it must be caused by specific genetically determined and regulated mechanisms, which must be confirmed by evidence. Within the programmed aging paradigm, a complete proposal starts from the observation that cells, tissues, and organs show continuous turnover: As telomere shortening determines both limits to cell replication and a progressive impairment of cellular functions, a progressive decline in age-related fitness decline (i.e., aging) is a clear consequence. Against this hypothesis, a critic might argue that there are cells (most types of neurons) and organ parts (crystalline core and tooth enamel) that have no turnover and are subject to wear or manifest alterations similar to those of cells with turnover. In this review, it is shown how cell types without turnover appear to be strictly dependent on cells subjected to turnover. The loss or weakening of the functions fulfilled by these cells with turnover, due to telomere shortening and turnover slowing, compromises the vitality of the served cells without turnover. This determines well-known clinical manifestations, which in their early forms are described as distinct diseases (e.g., Alzheimer's disease, Parkinson's disease, age-related macular degeneration, etc.). Moreover, for the two organ parts (crystalline core and tooth enamel) without viable cells or any cell turnover, it is discussed how this is entirely compatible with the programmed aging paradigm.
Collapse
Affiliation(s)
- Giacinto Libertini
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
33
|
Baxendale S, Whitfield TT. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 2016; 134:165-209. [PMID: 27312494 DOI: 10.1016/bs.mcb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders.
Collapse
Affiliation(s)
- S Baxendale
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
34
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
35
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
36
|
Abstract
Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.
Collapse
|
37
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
38
|
|
39
|
Maier EC, Whitfield TT. RA and FGF signalling are required in the zebrafish otic vesicle to pattern and maintain ventral otic identities. PLoS Genet 2014; 10:e1004858. [PMID: 25473832 PMCID: PMC4256275 DOI: 10.1371/journal.pgen.1004858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement. The vertebrate inner ear is a complex three-dimensional structure with hearing and balance functions. To form a functional ear in the embryo, it is crucial that the right cells develop at the right time and in the right place. These cells include the sensory hair cells that detect sound and movement, neurons that relay sensory information to the brain, and structural cells. We have investigated patterning and maintenance events in the developing ear of the zebrafish embryo. We show that two signalling pathways, FGF and Retinoic Acid (RA), act in an antagonistic manner to regulate the numbers of sensory hair cells that develop, together with the expression of a key gene, otx1b, required for the development of structural cells. However, the two signalling pathways act in concert to regulate the emergence of neuronal cells. Our data also indicate that FGF and RA signalling form a feedback loop, placing them at the heart of the regulatory network that ensures correct patterning is maintained in the ear. Both FGF and RA signalling are employed to generate hair cells and neurons for replacement therapies to treat hearing loss. Understanding the roles of FGF and RA signalling underpins the development of such therapies.
Collapse
Affiliation(s)
- Esther C. Maier
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T. Whitfield
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
41
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
42
|
Schlosser G. Early embryonic specification of vertebrate cranial placodes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:349-63. [PMID: 25124756 DOI: 10.1002/wdev.142] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cranial placodes contribute to many sensory organs and ganglia of the vertebrate head. The olfactory, otic, and lateral line placodes form the sensory receptor cells and neurons of the nose, ear, and lateral line system; the lens placode develops into the lens of the eye; epibranchial, profundal, and trigeminal placodes contribute sensory neurons to cranial nerve ganglia; and the adenohypophyseal placode gives rise to the anterior pituitary, a major endocrine control organ. Despite these differences in fate, all placodes are now known to originate from a common precursor, the preplacodal ectoderm (PPE). The latter is a horseshoe-shaped domain of ectoderm surrounding the anterior neural plate and neural crest and is defined by expression of transcription factor Six1, its cofactor Eya1, and other members of the Six and Eya families. Studies in zebrafish, Xenopus, and chick reveal that the PPE is specified together with other ectodermal territories (epidermis, neural crest, and neural plate) during early embryogenesis. During gastrulation, domains of ventrally (e.g., Dlx3/Dlx5, GATA2/GATA3, AP2, Msx1, FoxI1, and Vent1/Vent2) and dorsally (e.g., Zic1, Sox3, and Geminin) restricted transcription factors are established in response to a gradient of BMP and help to define non-neural and neural competence territories, respectively. At neural plate stages, the PPE is then induced in the non-neural competence territory by signals from the adjacent neural plate and mesoderm including FGF, BMP inhibitors, and Wnt inhibitors. Subsequently, signals from more localized signaling centers induce restricted expression domains of various transcription factors within the PPE, which specify multiplacodal areas and ultimately individual placodes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
43
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|