1
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
2
|
Wamaitha SE, Rojas EJ, Monticolo F, Hsu FM, Sosa E, Mackie AM, Oyama K, Custer M, Murphy M, Laird DJ, Shu J, Hennebold JD, Clark AT. Defining the cell and molecular origins of the primate ovarian reserve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634052. [PMID: 39896577 PMCID: PMC11785033 DOI: 10.1101/2025.01.21.634052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The primate ovarian reserve is established during late fetal development and consists of quiescent primordial follicles in the ovarian cortex, each composed of granulosa cells surrounding an oocyte in dictate. As late stages of fetal development are not routinely accessible for study with human tissue, we exploited the evolutionary proximity of the rhesus macaque to investigate primate follicle formation. Similar to human prenatal ovaries, the rhesus also develops multiple types of pre-granulosa (PG) cells, with the majority of primordial follicles derived from PG2 with small variable contributions from PG1. We observed that activated medullary follicles recruit fetal theca cells to establish a two-cell system for sex-steroid hormone production prior to birth, providing a cell-based explanation for mini puberty.
Collapse
Affiliation(s)
- Sissy E. Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Ernesto J. Rojas
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Francesco Monticolo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | - Fei-man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Amanda M. Mackie
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Kiana Oyama
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Maggie Custer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Melinda Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Jon D. Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University; Portland, OR 97239, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Park CJ, Oh JE, Lin P, Zhou S, Bunnell M, Bikorimana E, Spinella MJ, Lim HJ, Ko CJ. A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary. Endocrinology 2025; 166:bqaf006. [PMID: 39834231 PMCID: PMC12054734 DOI: 10.1210/endocr/bqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
This study uncovers a dynamic shift in estrogen receptor expression during granulosa cell (GC) differentiation in the ovary, highlighting a transition from estrogen receptor alpha (ESR1) to estrogen receptor beta (ESR2). Using a transgenic mouse model with Esr1-iCre-mediated Esr2 deletion, we demonstrate that ESR2 expression is absent in GCs derived from ESR1-expressing ovarian surface epithelium (OSE) cells. Single-cell analysis of the OSE-GC lineage reveals a developmental trajectory from Esr1-expressing OSE cells to Foxl2-expressing pre-GCs, culminating in GCs exclusively expressing Esr2. Transcriptome analyses identified vasculature-derived TGFβ1 ligands as key regulators of this transition. Supporting this, TGFβ1 treatment of cultured embryonic ovaries reduced Esr1 expression while promoting Esr2 expression. This study underscores the capability of GCs to switch from ESR1 to ESR2 expression as a fundamental aspect of normal differentiation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sherry Zhou
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
4
|
Jiang W, Sun W, Peng Y, Xu H, Fan H, Jin X, Xiao Y, Wang Y, Yang P, Shu W, Li J. Single-cell RNA sequencing reveals the intercellular crosstalk and the regulatory landscape of stromal cells during the whole life of the mouse ovary. LIFE MEDICINE 2024; 3:lnae041. [PMID: 39872151 PMCID: PMC11748273 DOI: 10.1093/lifemedi/lnae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025]
Abstract
The heterogeneity of ovarian mesenchymal/stromal cells has just been revealed in both mice and humans. However, it remains unclear about the cellular development trace and the intercellular communication network in the whole life of the ovary. In the study, we integrated ours and published single-cell RNA sequencing data from E11.5 (embryonic day 11.5) until M12 (12-month-old) ovaries to show the dynamics of somatic cells along the developmental timeline. The intercellular crosstalk among somatic cell types was depicted with collagen signaling pathway as the most outgoing signals from stromal cells. We identified mesenchymal progenitor cells (CD24+) as the origin of stromal cells. Although their numbers decreased significantly in adults, the cells served as the major signal sender until ovarian senescence. Moreover, the ovarian injury could activate these stem cells and induce stroma remodeling in the aged ovary. Thus, mesenchymal progenitor cells may represent a new strategy to delay ovarian aging in the future.
Collapse
Affiliation(s)
- Wan Jiang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Xin Jin
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Yue Xiao
- The First Affiliated Hospital of Zhejiang University School of Medicine, Center of Reproductive Medicine, Hangzhou 310009, China
| | - Yuxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Pin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Yan Y, Zhang H, Xu R, Luo L, Yin L, Wu H, Zhang Y, Li C, Lu S, Tang Y, Zhao X, Pan M, Wei Q, Peng S, Ma B. Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries. Cell Prolif 2024; 57:e13713. [PMID: 38988058 PMCID: PMC11503257 DOI: 10.1111/cpr.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen has been implicated in multiple biological processes, but the variation underlying estrogen-mediated primordial follicle (PF) formation remains unclear. Here, we show that 17β-estradiol (E2) treatment of neonatal mice led to the inhibition of PF formation and cell proliferation. Single-cell RNA sequencing (scRNA-seq) revealed that E2 treatment caused significant changes in the transcriptome of oocytes and somatic cells. E2 treatment disrupted the synchronised development of oocytes, pre-granulosa (PG) cells and stromal cells. Mechanistically, E2 treatment disrupted several signalling pathways critical to PF formation, especially down-regulating the Kitl and Smad1/3/4/5/7 expression, reducing the frequency and number of cell communication. In addition, E2 treatment influenced key gene expression, mitochondrial function of oocytes, the recruitment and maintenance of PG cells, the cell proliferation of somatic cells, as well as disordered the ovarian microenvironment. This study not only revealed insights into the regulatory role of estrogen during PF formation, but also filled in knowledge of dramatic changes in perinatal hormones, which are critical for the physiological significance of understanding hormone changes and reproductive protection.
Collapse
Affiliation(s)
- Yutong Yan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Rui Xu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Linglin Luo
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Lu Yin
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hao Wu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yiqian Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chan Li
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sihai Lu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaju Tang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoe Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Menghao Pan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Wei
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sha Peng
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Baohua Ma
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
Pei J, Xiong L, Wang X, Guo S, Cao M, Ding Z, Kang Y, Chu M, Wu X, Bao P, Guo X. Dynamic changes in cellular atlases and communication patterns within yak ovaries across diverse reproductive states unveiled by single-cell analysis. Front Cell Dev Biol 2024; 12:1444706. [PMID: 39268087 PMCID: PMC11390571 DOI: 10.3389/fcell.2024.1444706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yaks (Bos grunniens) exhibit exceptional adaptation to the challenging high-altitude environment of the Qinghai-Tibetan plateau, making them the sole bovine species capable of thriving in such exreme conditions. Investigating the cellular and molecular characteristics of yak ovaries across different reproductive states is crucial for gaining insight into their ovarian functions. Herein, the cellular atlases of yak ovaries in different reproductive states were depicted by single-cell RNA-sequencing (scRNA-seq). The cellular atlases of the ovaries were established by identifying specific gene expression patterns of various cell types, including granulosa cells, theca cells, stromal cells, smooth muscle cells, endothelial cells, glial cell, macrophages, natural killer cells, and proliferating cells. The cellular compositions of the ovaries vary among different reproductive states. Furthermore, the granulosa cells comprise six cell subtypes, while theca cells consist of eight cell subtypes. The granulosa cells and theca cells exhibit distinct biological functions throughout different reproductive states. The two cell types were aligned along their respective pseudotime trajectories. Moreover, a cell-to-cell communication network was constructed among distinct cell types within the ovary, spanning the three reproductive states. Notably, during the estrus period, the granulosa cells demonstrated more prominent interactions with other cell types compared to the remaining reproductive states.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Soygur B, Gaylord EA, Foecke MH, Cincotta SA, Horan TS, Wood A, Cohen PE, Laird DJ. Sustained fertility from first-wave follicle oocytes that pause their growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609995. [PMID: 39253445 PMCID: PMC11383281 DOI: 10.1101/2024.08.27.609995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve 1-4. However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring. This small subset of genetically-labeled fetal oocytes, labeled with Sycp3-CreERT2, is distinguished by earlier entry and slower dynamics of meiotic prophase I. While labeled oocytes were initially found in both primordial follicles and growing follicles of the first wave, they disappeared from primordial follicles by puberty. Unexpectedly, these first-wave labeled growing oocytes persisted throughout reproductive lifespan and contributed to offspring at a steady rate beyond 12 months of age, suggesting that follicles can pause mid-growth for extended periods then successfully resume. These results challenge the conclusion from lineage tracing of granulosa cells that first-wave follicles make a limited contribution to fertility5 and furthermore suggest that growth-paused oocytes comprise a second and previously unrecognized ovarian reserve.
Collapse
Affiliation(s)
- Bikem Soygur
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Mariko H. Foecke
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Steven A. Cincotta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tegan S. Horan
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Anna Wood
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
8
|
Wang Y, Zuo K, Zhang C, Miao D, Chen J, Yang H, Wang Z. Histological Characteristics of Follicles, Reproductive Hormones and Transcriptomic Analysis of White King Pigeon Illuminated with Red Light. Animals (Basel) 2024; 14:2320. [PMID: 39199854 PMCID: PMC11350841 DOI: 10.3390/ani14162320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Red light (RL) has been observed to enhance egg production in pigeons, yet the underlying histological characteristics and molecular mechanisms remain less understood. This study included fifty-four pigeons to assess follicular histology, reproductive hormones, and ovarian transcriptomics on the third day of the laying interval under RL and white light (WL). The results showed that the granulosa cell layer was significantly thicker under RL (p < 0.05), whereas the theca cell and connective tissue layers showed no significant differences (p > 0.05). Higher plasma estradiol (E2) levels were recorded in the RL group (p < 0.05), as well as follicle stimulating hormone (FSH), although progesterone (P4) levels were higher under WL (p < 0.05). Moreover, P4 concentrations in follicle yolk significantly decreased under RL (p < 0.01), with higher FSH and E2 levels in F1 yolk and similar increases in SF1 yolk (p < 0.01). Transcriptomic analysis revealed 4991 differentially expressed genes in the pigeon ovary. The protein-protein interaction network highlighted genes like HSD11B1, VEGFD, WNT6, SMAD6, and LGR5 as potential contributors to hierarchical follicle selection under RL. This research provides new insights into the molecular basis by which RL may promote hierarchical follicle selection and improve egg production in pigeons.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (K.Z.); (C.Z.); (D.M.); (J.C.); (H.Y.); (Z.W.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
10
|
Chakravarthi VP, Dilower I, Ghosh S, Borosha S, Mohamadi R, Dahiya V, Vo K, Lee EB, Ratri A, Kumar V, Marsh CA, Fields PE, Rumi MAK. ERβ Regulation of Indian Hedgehog Expression in the First Wave of Ovarian Follicles. Cells 2024; 13:644. [PMID: 38607081 PMCID: PMC11011683 DOI: 10.3390/cells13070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Increased activation of ovarian primordial follicles in Erβ knockout (ErβKO) rats becomes evident as early as postnatal day 8.5. To identify the ERβ-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErβKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErβKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErβKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErβKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErβKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErβKO ovaries. In postnatal day 21.5 ErβKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERβ.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vishnu Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Courtney A. Marsh
- Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| |
Collapse
|
11
|
Ferreira LGA, Kizys MML, Gama GAC, Pachernegg S, Robevska G, Sinclair AH, Ayers KL, Dias-da-Silva MR. COUP-TFII regulates early bipotential gonad signaling and commitment to ovarian progenitors. Cell Biosci 2024; 14:3. [PMID: 38178246 PMCID: PMC10768475 DOI: 10.1186/s13578-023-01182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The absence of expression of the Y-chromosome linked testis-determining gene SRY in early supporting gonadal cells (ESGC) leads bipotential gonads into ovarian development. However, genetic variants in NR2F2, encoding three isoforms of the transcription factor COUP-TFII, represent a novel cause of SRY-negative 46,XX testicular/ovotesticular differences of sex development (T/OT-DSD). Thus, we hypothesized that COUP-TFII is part of the ovarian developmental network. COUP-TFII is known to be expressed in interstitial/mesenchymal cells giving rise to steroidogenic cells in fetal gonads, however its expression and function in ESGCs have yet to be explored. RESULTS By differentiating induced pluripotent stem cells into bipotential gonad-like cells in vitro and by analyzing single cell RNA-sequencing datasets of human fetal gonads, we identified that NR2F2 expression is highly upregulated during bipotential gonad development along with markers of bipotential state. NR2F2 expression was detected in early cell populations that precede the steroidogenic cell emergence and that retain a multipotent state in the undifferentiated gonad. The ESGCs differentiating into fetal Sertoli cells lost NR2F2 expression, whereas pre-granulosa cells remained NR2F2-positive. When examining the NR2F2 transcript variants individually, we demonstrated that the canonical isoform A, disrupted by frameshift variants previously reported in 46,XX T/OT-DSD patients, is nearly 1000-fold more highly expressed than other isoforms in bipotential gonad-like cells. To investigate the genetic network under COUP-TFII regulation in human gonadal cell context, we generated a NR2F2 knockout (KO) in the human granulosa-like cell line COV434 and studied NR2F2-KO COV434 cell transcriptome. NR2F2 ablation downregulated markers of ESGC and pre-granulosa cells. NR2F2-KO COV434 cells lost the enrichment for female-supporting gonadal progenitor and acquired gene signatures more similar to gonadal interstitial cells. CONCLUSIONS Our findings suggest that COUP-TFII has a role in maintaining a multipotent state necessary for commitment to the ovarian development. We propose that COUP-TFII regulates cell fate during gonad development and impairment of its function may disrupt the transcriptional plasticity of ESGCs. During early gonad development, disruption of ESGC plasticity may drive them into commitment to the testicular pathway, as observed in 46,XX OT-DSD patients with NR2F2 haploinsufficiency.
Collapse
Affiliation(s)
- Lucas G A Ferreira
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Marina M L Kizys
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel A C Gama
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Magnus R Dias-da-Silva
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Sosa E, Mumu SK, Alvarado CC, Wu QY, Roberson I, Espinoza A, Hsu FM, Saito K, Hunt TJ, Faith JE, Lowe MG, DiRusso JA, Clark AT. Reconstituted ovaries self-assemble without an ovarian surface epithelium. Stem Cell Reports 2023; 18:2190-2202. [PMID: 37890483 PMCID: PMC10679655 DOI: 10.1016/j.stemcr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional (3D) stem cell models of the ovary have the potential to benefit women's reproductive health research. One such model, the reconstituted ovary (rOvary) self-assembles with pluripotent stem cell-derived germ cells creating a 3D ovarian mimic competent to support the differentiation of functional oocytes inside follicles. In this study, we evaluated the cellular composition of the rOvary revealing the capacity to generate multiple follicles surrounded by NR2F2+ stroma cells. However, the rOvary does not develop a surface epithelium, the source of second-wave pre-granulosa cells, or steroidogenic theca. Therefore, the rOvary models represent the self-assembly of activated follicles in a pre-pubertal ovary poised but not yet competent for hormone production.
Collapse
Affiliation(s)
- Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sinthia Kabir Mumu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian C Alvarado
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Isaias Roberson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaori Saito
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jared E Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew G Lowe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan A DiRusso
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Wamaitha SE, Nie X, Pandolfi EC, Wang X, Yang Y, Stukenborg JB, Cairns BR, Guo J, Clark AT. Single-cell analysis of the developing human ovary defines distinct insights into ovarian somatic and germline progenitors. Dev Cell 2023; 58:2097-2111.e3. [PMID: 37582368 PMCID: PMC10615783 DOI: 10.1016/j.devcel.2023.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erica C Pandolfi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Yang
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Ganapathi M, Matsuoka LS, March M, Li D, Brokamp E, Benito-Sanz S, White SM, Lachlan K, Ahimaz P, Sewda A, Bastarache L, Thomas-Wilson A, Stoler JM, Bramswig NC, Baptista J, Stals K, Demurger F, Cogne B, Isidor B, Bedeschi MF, Peron A, Amiel J, Zackai E, Schacht JP, Iglesias AD, Morton J, Schmetz A, Seidel V, Lucia S, Baskin SM, Thiffault I, Cogan JD, Gordon CT, Chung WK, Bowdin S, Bhoj E. Heterozygous rare variants in NR2F2 cause a recognizable multiple congenital anomaly syndrome with developmental delays. Eur J Hum Genet 2023; 31:1117-1124. [PMID: 37500725 PMCID: PMC10545729 DOI: 10.1038/s41431-023-01434-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael March
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elly Brokamp
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Benito-Sanz
- CIBERER, ISCIII. Institute of Medical and Molecular Genetics (INGEMM), Disorder of Sex Development Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust, Southampton, UK
- Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, UK
| | - Priyanka Ahimaz
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Anshuman Sewda
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Thomas-Wilson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Peninsula Medical School, Faculty of Health, University of Plymouth, PL4 8AA, Plymouth, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | | | - Angela Peron
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Università degli Studi di Milano, Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jeanne Amiel
- INSERM UMR1163, Institut Imagine, Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Elaine Zackai
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John P Schacht
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro D Iglesias
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Verónica Seidel
- Clinical Genetics, Department of Pediatrics, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Stephanie Lucia
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie M Baskin
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA
| | - Joy D Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Bowdin
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals NHS, Foundation Trust, Cambridge, UK
| | - Elizabeth Bhoj
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
16
|
Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch. Cell Death Dis 2023; 14:134. [PMID: 36797258 PMCID: PMC9935506 DOI: 10.1038/s41419-023-05671-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.
Collapse
|
17
|
Laronda MM. Factors within the Developing Embryo and Ovarian Microenvironment That Influence Primordial Germ Cell Fate. Sex Dev 2023; 17:134-144. [PMID: 36646055 PMCID: PMC10349905 DOI: 10.1159/000528209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Primordial germ cell (PGC) fate is dictated by the designation, taxis, and influence of the surrounding embryonic somatic cells. Whereas gonadal sex determination results from a balance of factors within the tissue microenvironment. SUMMARY Our understanding of mammalian ovary development is formed in large part from developmental time courses established using murine models. Genomic tools where genes implicated in the PGC designation or gonadal sex determination have been modulated through complete or conditional knockouts in vivo, and studies in in situ models with inhibitors or cultures that alter the native gonadal environment have pieced together the interplay of pioneering transcription factors, co-regulators and chromosomes critical for the progression of PGCs to oocytes. Tools such as pluripotent stem cell derivation, genomic modifications, and aggregate differentiation cultures have yielded some insight into the human condition. Additional understanding of sex determination, both gonadal and anatomical, may be inferred from phenotypes that arise from de novo or inherited gene variants in humans who have differences in sex development. KEY MESSAGES This review highlights major factors critical for PGC specification and migration, and in ovarian gonad specification by reviewing seminal murine models. These pathways are compared to what is known about the human condition from expression profiles of fetal gonadal tissue, use of human pluripotent stem cells, or disorders resulting from disease variants. Many of these pathways are challenging to decipher in human tissues. However, the impact of new single-cell technologies and whole-genome sequencing to reveal disease variants of idiopathic reproductive tract phenotypes will help elucidate the mechanisms involved in human ovary development.
Collapse
Affiliation(s)
- Monica M. Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, (IL,) USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, (IL,) USA
| |
Collapse
|
18
|
Bridges K, Yao HHC, Nicol B. Loss of Runx1 Induces Granulosa Cell Defects and Development of Ovarian Tumors in the Mouse. Int J Mol Sci 2022; 23:ijms232214442. [PMID: 36430923 PMCID: PMC9697285 DOI: 10.3390/ijms232214442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alterations of the RUNX1 gene are associated with a variety of malignancies, including female-related cancers. The role of RUNX1 as either a tumor suppressor gene or an oncogene is tissue-dependent and varies based on the cancer type. Both the amplification and deletion of the RUNX1 gene have been associated with ovarian cancer in humans. In this study, we investigated the effects of Runx1 loss on ovarian pathogenesis in mice. A conditional loss of Runx1 in the somatic cells of the ovary led to an increased prevalence of ovarian tumors in aged mice. By the age of 15 months, 27% of Runx1 knockout (KO) females developed ovarian tumors that presented characteristics of granulosa cell tumors. While ovaries from young adult mice did not display tumors, they all contained abnormal follicle-like lesions. The granulosa cells composing these follicle-like lesions were quiescent, displayed defects in differentiation and were organized in a rosette-like pattern. The RNA-sequencing analysis further revealed differentially expressed genes in Runx1 KO ovaries, including genes involved in metaplasia, ovarian cancer, epithelial cell development, tight junctions, cell-cell adhesion, and the Wnt/beta-catenin pathway. Together, this study showed that Runx1 is required for normal granulosa cell differentiation and prevention of ovarian tumor development in mice.
Collapse
|
19
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
20
|
Li SY, Bhandary B, Gu X, DeFalco T. Perivascular cells support folliculogenesis in the developing ovary. Proc Natl Acad Sci U S A 2022; 119:e2213026119. [PMID: 36194632 PMCID: PMC9564831 DOI: 10.1073/pnas.2213026119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Supporting cells of the ovary, termed granulosa cells, are essential for ovarian differentiation and oogenesis by providing a nurturing environment for oocyte maintenance and maturation. Granulosa cells are specified in the fetal and perinatal ovary, and sufficient numbers of granulosa cells are critical for the establishment of follicles and the oocyte reserve. Identifying the cellular source from which granulosa cells and their progenitors are derived is an integral part of efforts to understand basic ovarian biology and the etiology of female infertility. In particular, the contribution of mesenchymal cells, especially perivascular cells, to ovarian development is poorly understood but is likely to be a source of new information regarding ovarian function. Here we have identified a cell population in the fetal ovary, which is a Nestin-expressing perivascular cell type. Using lineage tracing and ex vivo organ culture methods, we determined that perivascular cells are multipotent progenitors that contribute to granulosa, thecal, and pericyte cell lineages in the ovary. Maintenance of these progenitors is dependent on ovarian vasculature, likely reliant on endothelial-mesenchymal Notch signaling interactions. Depletion of Nestin+ progenitors resulted in a disruption of granulosa cell specification and in an increased number of germ cell cysts that fail to break down, leading to polyovular ovarian follicles. These findings highlight a cell population in the ovary and uncover a key role for vasculature in ovarian differentiation, which may lead to insights into the origins of female gonad dysgenesis and infertility.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Bidur Bhandary
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
21
|
McKey J, Anbarci DN, Bunce C, Ontiveros AE, Behringer RR, Capel B. Integration of mouse ovary morphogenesis with developmental dynamics of the oviduct, ovarian ligaments, and rete ovarii. eLife 2022; 11:e81088. [PMID: 36165446 PMCID: PMC9621696 DOI: 10.7554/elife.81088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/26/2022] [Indexed: 01/29/2023] Open
Abstract
Morphogenetic events during the development of the fetal ovary are crucial to the establishment of female fertility. However, the effects of structural rearrangements of the ovary and surrounding reproductive tissues on ovary morphogenesis remain largely uncharacterized. Using tissue clearing and lightsheet microscopy, we found that ovary folding correlated with regionalization into cortex and medulla. Relocation of the oviduct to the ventral aspect of the ovary led to ovary encapsulation, and mutual attachment of the ovary and oviduct to the cranial suspensory ligament likely triggered ovary folding. During this process, the rete ovarii (RO) elaborated into a convoluted tubular structure extending from the ovary into the ovarian capsule. Using genetic mouse models in which the oviduct and RO are perturbed, we found the oviduct is required for ovary encapsulation. This study reveals novel relationships among the ovary and surrounding tissues and paves the way for functional investigation of the relationship between architecture and differentiation of the mammalian ovary.
Collapse
Affiliation(s)
- Jennifer McKey
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Dilara N Anbarci
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Corey Bunce
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Alejandra E Ontiveros
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
22
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
23
|
Rossitto M, Déjardin S, Rands CM, Le Gras S, Migale R, Rafiee MR, Neirijnck Y, Pruvost A, Nguyen AL, Bossis G, Cammas F, Le Gallic L, Wilhelm D, Lovell-Badge R, Boizet-Bonhoure B, Nef S, Poulat F. TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nat Commun 2022; 13:4412. [PMID: 35906245 PMCID: PMC9338040 DOI: 10.1038/s41467-022-32061-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
Collapse
Affiliation(s)
- Moïra Rossitto
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Stephanie Déjardin
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Chris M Rands
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Stephanie Le Gras
- GenomEast platform, IGBMC, 1, rue Laurent Fries, 67404 ILLKIRCH Cedex, Illkirch-Graffenstaden, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London, NW1 2 1AT, UK
| | | | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Alain Pruvost
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lionel Le Gallic
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France.
| |
Collapse
|
24
|
Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C, Engelbert J, Marečková M, Gruhn WH, Botting RA, Li T, Crespo B, van Dongen S, Kiselev VY, Prigmore E, Herbert M, Moffett A, Chédotal A, Bayraktar OA, Surani A, Haniffa M, Vento-Tormo R. Single-cell roadmap of human gonadal development. Nature 2022; 607:540-547. [PMID: 35794482 PMCID: PMC9300467 DOI: 10.1038/s41586-022-04918-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023]
Abstract
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Collapse
Affiliation(s)
| | | | | | - João Pedro Alves-Lopes
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | | | | | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Magda Marečková
- Wellcome Sanger Institute, Cambridge, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tong Li
- Wellcome Sanger Institute, Cambridge, UK
| | - Berta Crespo
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | | | | | - Mary Herbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ashley Moffett
- University of Cambridge Centre for Trophoblast Research, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
25
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Mayère C, Regard V, Perea-Gomez A, Bunce C, Neirijnck Y, Djari C, Bellido-Carreras N, Sararols P, Reeves R, Greenaway S, Simon M, Siggers P, Condrea D, Kühne F, Gantar I, Tang F, Stévant I, Batti L, Ghyselinck NB, Wilhelm D, Greenfield A, Capel B, Chaboissier MC, Nef S. Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. SCIENCE ADVANCES 2022; 8:eabm0972. [PMID: 35613264 PMCID: PMC10942771 DOI: 10.1126/sciadv.abm0972] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.
Collapse
Affiliation(s)
- Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Switzerland
| | - Violaine Regard
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Switzerland
| | - Aitana Perea-Gomez
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Cyril Djari
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | | | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Richard Reeves
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Simon Greenaway
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Michelle Simon
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Diana Condrea
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP1014267404 ILLKIRCH CEDEX, France
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Ivana Gantar
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Furong Tang
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Batti
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Norbert B. Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP1014267404 ILLKIRCH CEDEX, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Switzerland
| |
Collapse
|
27
|
Woodman MF, Ozcan MCH, Gura MA, De La Cruz P, Gadson AK, Grive KJ. The Requirement of Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in Mouse Ovarian Development and Fertility †. Biol Reprod 2022; 107:500-513. [PMID: 35512140 PMCID: PMC9382372 DOI: 10.1093/biolre/ioac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme enriched in neuronal and gonadal tissues known to regulate the cellular stores of mono-ubiquitin and protein turnover. While its function in maintaining proper motor neuron function is well-established, investigation into its role in the health and function of reproductive processes is only just beginning to be studied. Single-cell-sequencing analysis of all ovarian cells from the murine perinatal period revealed that Uchl1 is very highly expressed in the developing oocyte population, an observation which was corroborated by high levels of oocyte-enriched UCHL1 protein expression in oocytes of all stages throughout the mouse reproductive lifespan. To better understand the role UCHL1 may be playing in oocytes, we utilized a UCHL1-deficient mouse line, finding reduced number of litters, reduced litter sizes, altered folliculogenesis, morphologically abnormal oocytes, disrupted estrous cyclicity and apparent endocrine dysfunction in these animals compared to their wild-type and heterozygous littermates. These data reveal a novel role of UCHL1 in female fertility as well as overall ovarian function, and suggest a potentially essential role for the ubiquitin proteasome pathway in mediating reproductive health. Summary sentence: Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is required for proper ovarian folliculogenesis, estrous cyclicity, and fertility in the female mouse.
Collapse
Affiliation(s)
- Morgan F Woodman
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Meghan C H Ozcan
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Megan A Gura
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, RI, 02906
| | - Payton De La Cruz
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Brown University, Pathobiology Graduate Program, Providence, RI, 02906
| | - Alexis K Gadson
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Kathryn J Grive
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905
| |
Collapse
|
28
|
Song Y, Hu W, Ge W. Establishment of transgenic zebrafish (Danio rerio) models expressing fluorescence proteins in the oocytes and somatic supporting cells. Gen Comp Endocrinol 2021; 314:113907. [PMID: 34543655 DOI: 10.1016/j.ygcen.2021.113907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
The interaction between gonadal somatic support cells and germ cells plays a crucial role in gonadal development. In fish, the process involves various local growth factors such as growth differentiation factor 9 (Gdf9) and gonadal soma-derived factor (Gsdf), which are both members of the transforming growth factor-β (TGF-β) superfamily. Gdf9, an oocyte-secreted factor, is a potent regulator of folliculogenesis in both mammals and fish. By contrast, Gsdf is expressed by the gonadal somatic cells (i.e., Sertoli cells in the testis and granulosa cells in the ovary) that support germ cell development. In this study, we established two transgenic zebrafish models, and demonstrated that the 2.7-kb proximal promoter region of gdf9 drove mCherry expression specifically in the oocytes, whereas the 2.1-kb proximal promoter region of gsdf drove enhanced green fluorescent protein (eGFP) expression in the Sertoli cells and granulosa cells. These proximal promoters contained sufficient information to respectively mimic the spatiotemporal expression patterns of endogenous gdf9 and gsdf in zebrafish. In the Tg(gdf9:mCherry) fish, mCherry was weakly expressed in the oocytes at primary growth stage but strongly expressed in those entering the secondary growth phase. In the Tg(gsdf:eGFP) fish, eGFP-positive Sertoli cells were distributed around spermatogenic cysts in the testis, whereas eGFP-positive granulosa cells were located at the outer side of the follicle layer in the ovary. The eGFP-positive Sertoli cells and granulosa cells seemed to have originated from the dorsal epithelium of the gonads. These Tg(gdf9:mCherry) and Tg(gsdf:eGFP) zebrafish models are suitable for studying gonadal development and function especially on the interaction between germ cells and supporting somatic cells.
Collapse
Affiliation(s)
- Yanlong Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
29
|
Abstract
In vitro systems capable of reconstituting the process of mouse oogenesis are now being established to help develop further understanding of the mechanisms underlying oocyte/follicle development and differentiation. These systems could also help increase the production of useful livestock or genetically modified animals, and aid in identifying the causes of infertility in humans. Recently, we revealed, using an in vitro system for recapitulating oogenesis, that the activation of the estrogen signaling pathway induces abnormal follicle formation, that blocking estrogen-induced expression of anti-Müllerian hormone is crucial for normal follicle formation, and that the production of α-fetoprotein in fetal liver tissue is involved in normal in vivo follicle formation. In mouse fetuses, follicle formation is not carried out by factors within the ovaries but is instead orchestrated by distal endocrine factors. This review outlines findings from genetics, endocrinology, and in vitro studies regarding the factors that can affect the formation of primordial follicles in mammals.
Collapse
|
30
|
Zhao ZH, Schatten H, Sun QY. High-throughput sequencing reveals landscapes of female germ cell development. Mol Hum Reprod 2021; 26:738-747. [PMID: 32866227 DOI: 10.1093/molehr/gaaa059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
Female germ cell development is a highly complex process that includes meiosis initiation, oocyte growth recruitment, oocyte meiosis retardation and resumption and final meiotic maturation. A series of coordinated molecular signaling factors ensure successful oogenesis. The recent rapid development of high-throughput sequencing technologies allows for the dynamic omics in female germ cells, which is essential for further understanding the regulatory mechanisms of molecular events comprehensively. In this review, we summarize the current literature of multi-omics sequenced by epigenome-, transcriptome- and proteome-associated technologies, which provide valuable information for understanding the regulation of key events during female germ cell development.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
31
|
Soygur B, Laird DJ. Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Front Cell Dev Biol 2021; 9:698315. [PMID: 34381780 PMCID: PMC8351467 DOI: 10.3389/fcell.2021.698315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The ovary is an indispensable unit of female reproduction and health. However, the study of ovarian function in mammals is hindered by unique challenges, which include the desynchronized development of oocytes, irregular distribution and vast size discrepancy of follicles, and dynamic tissue remodeling during each hormonal cycle. Overcoming the limitations of traditional histology, recent advances in optical tissue clearing and three-dimensional (3D) visualization offer an advanced platform to explore the architecture of intact organs at a single cell level and reveal new relationships and levels of organization. Here we summarize the development and function of ovarian compartments that have been delineated by conventional two-dimensional (2D) methods and the limits of what can be learned by these approaches. We compare types of optical tissue clearing, 3D analysis technologies, and their application to the mammalian ovary. We discuss how 3D modeling of the ovary has extended our knowledge and propose future directions to unravel ovarian structure toward therapeutic applications for ovarian disease and extending female reproductive lifespan.
Collapse
Affiliation(s)
| | - Diana J. Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Frost ER, Ford EA, Taylor G, Boeing S, Beckett EL, Roman SD, Lovell-Badge R, McLaughlin EA, Sutherland JM. Two alternative methods for the retrieval of somatic cell populations from the mouse ovary. Mol Hum Reprod 2021; 27:6273354. [PMID: 33973015 PMCID: PMC8211868 DOI: 10.1093/molehr/gaab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Many modern techniques employed to uncover the molecular fundamentals underlying biological processes require dissociated cells as their starting point/substrate. Investigations into ovarian endocrinology or folliculogenesis, therefore, necessitate robust protocols for dissociating the ovary into its constituent cell populations. While in the mouse, methods to obtain individual, mature follicles are well-established, the separation and isolation of single cells of all types from early mouse follicles, including somatic cells, has been more challenging. Herein we present two methods for the isolation of somatic cells in the ovary. These methods are suitable for a range of applications relating to the study of folliculogenesis and mouse ovarian development. First, an enzymatic dissociation utilising collagenase and a temporary, primary cell culture step using neonatal mouse ovaries which yields large quantities of granulosa cells from primordial, activating, and primary follicles. Second, a rapid papain dissociation resulting in a high viability single cell suspension of ovarian somatic cells in less than an hour, which can be applied from embryonic to adult ovarian samples. Collectively these protocols can be applied to a broad array of investigations with unique advantages and benefits pertaining to both.
Collapse
Affiliation(s)
- E R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, UK
| | - E A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - G Taylor
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, UK
| | - S Boeing
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK.,Scientific Computing-Digital Development Team, The Francis Crick Institute, London, UK
| | - E L Beckett
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - S D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW, Australia
| | - R Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, UK
| | - E A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - J M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
33
|
Estermann MA, Williams S, Hirst CE, Roly ZY, Serralbo O, Adhikari D, Powell D, Major AT, Smith CA. Insights into Gonadal Sex Differentiation Provided by Single-Cell Transcriptomics in the Chicken Embryo. Cell Rep 2021; 31:107491. [PMID: 32268081 DOI: 10.1016/j.celrep.2020.03.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Although the genetic triggers for gonadal sex differentiation vary across species, the cell biology of gonadal development was long thought to be largely conserved. Here, we present a comprehensive analysis of gonadal sex differentiation, using single-cell sequencing in the embryonic chicken gonad during sexual differentiation. The data show that chicken embryonic-supporting cells do not derive from the coelomic epithelium, in contrast to other vertebrates studied. Instead, they derive from a DMRT1+/PAX2+/WNT4+/OSR1+ mesenchymal cell population. We find a greater complexity of gonadal cell types than previously thought, including the identification of two distinct sub-populations of Sertoli cells in developing testes and derivation of embryonic steroidogenic cells from a differentiated supporting-cell lineage. Altogether, these results indicate that, just as the genetic trigger for sex differs across vertebrate groups, cell lineage specification in the gonad may also vary substantially.
Collapse
Affiliation(s)
- Martin Andres Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Claire Elizabeth Hirst
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Zahida Yesmin Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Andrew Thomas Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
34
|
Frost ER, Taylor G, Baker MA, Lovell-Badge R, Sutherland JM. Establishing and maintaining fertility: the importance of cell cycle arrest. Genes Dev 2021; 35:619-634. [PMID: 33888561 PMCID: PMC8091977 DOI: 10.1101/gad.348151.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, Frost et al. summarize the current knowledge on the Cip/Kip family of cyclin-dependent kinase inhibitors in mouse gonad development and highlight new roles for cell cycle inhibitors in controlling and maintaining female fertility. Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia.,Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Güneş Taylor
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
35
|
Fukuda K, Muraoka M, Kato Y, Saga Y. Decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles in the mouse†. Biol Reprod 2021; 105:179-191. [PMID: 33847353 DOI: 10.1093/biolre/ioab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Primordial follicles, a finite reservoir of eggs in mammalian ovaries, are composed of a single oocyte and its supporting somatic cells, termed granulosa cells. Although their formation may require reciprocal interplay between oocytes and pre-granulosa cells, precursors of granulosa cells, little is known about the underlying mechanisms. We addressed this issue by decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles. We found that marked gene expression changes, including extracellular matrix, cell adhesion, and several signaling pathways, occur along with primordial follicle formation. Importantly, differentiation of Lgr5-EGFP-positive pre-granulosa cells to FOXL2-positive granulosa cells was delayed in mutant ovaries of the germ cell-specific genes Nanos3 and Figla, accompanied by perturbed gene expression in mutant pre-granulosa cells. These results suggest that proper development of oocytes is required for the differentiation of pre-granulosa cells. Our data provide a valuable resource for understanding the gene regulatory networks involved in the formation of primordial follicles.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
37
|
Cai H, Liu B, Wang H, Sun G, Feng L, Chen Z, Zhou J, Zhang J, Zhang T, He M, Yang T, Guo Q, Teng Z, Xin Q, Zhou B, Zhang H, Xia G, Wang C. SP1 governs primordial folliculogenesis by regulating pregranulosa cell development in mice. J Mol Cell Biol 2021; 12:230-244. [PMID: 31282930 PMCID: PMC7181717 DOI: 10.1093/jmcb/mjz059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
38
|
Estermann MA, Major AT, Smith CA. Gonadal Sex Differentiation: Supporting Versus Steroidogenic Cell Lineage Specification in Mammals and Birds. Front Cell Dev Biol 2020; 8:616387. [PMID: 33392204 PMCID: PMC7775416 DOI: 10.3389/fcell.2020.616387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023] Open
Abstract
The gonads of vertebrate embryos are unique among organs because they have a developmental choice; ovary or testis formation. Given the importance of proper gonad formation for sexual development and reproduction, considerable research has been conducted over the years to elucidate the genetic and cellular mechanisms of gonad formation and sexual differentiation. While the molecular trigger for gonadal sex differentiation into ovary of testis can vary among vertebrates, from egg temperature to sex-chromosome linked master genes, the downstream molecular pathways are largely conserved. The cell biology of gonadal formation and differentiation has long thought to also be conserved. However, recent discoveries point to divergent mechanisms of gonad formation, at least among birds and mammals. In this mini-review, we provide an overview of cell lineage allocation during gonadal sex differentiation in the mouse model, focusing on the key supporting and steroidogenic cells and drawing on recent insights provided by single cell RNA-sequencing. We compare this data with emerging information in the chicken model. We highlight surprising differences in cell lineage specification between species and identify gaps in our current understanding of the cell biology underlying gonadogenesis.
Collapse
|
39
|
Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 2020; 18:e3001025. [PMID: 33351795 PMCID: PMC7787681 DOI: 10.1371/journal.pbio.3001025] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2021] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Wen Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
40
|
Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction 2020; 160:R25-R39. [PMID: 32716007 PMCID: PMC7453977 DOI: 10.1530/rep-19-0501] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Historically, research in ovarian biology has focused on folliculogenesis, but recently the ovarian stroma has become an exciting new frontier for research, holding critical keys to understanding complex ovarian dynamics. Ovarian follicles, which are the functional units of the ovary, comprise the ovarian parenchyma, while the ovarian stroma thus refers to the inverse or the components of the ovary that are not ovarian follicles. The ovarian stroma includes more general components such as immune cells, blood vessels, nerves, and lymphatic vessels, as well as ovary-specific components including ovarian surface epithelium, tunica albuginea, intraovarian rete ovarii, hilar cells, stem cells, and a majority of incompletely characterized stromal cells including the fibroblast-like, spindle-shaped, and interstitial cells. The stroma also includes ovarian extracellular matrix components. This review combines foundational and emerging scholarship regarding the structures and roles of the different components of the ovarian stroma in normal physiology. This is followed by a discussion of key areas for further research regarding the ovarian stroma, including elucidating theca cell origins, understanding stromal cell hormone production and responsiveness, investigating pathological conditions such as polycystic ovary syndrome (PCOS), developing artificial ovary technology, and using technological advances to further delineate the multiple stromal cell types.
Collapse
Affiliation(s)
- Hadrian M Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Tomaszewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith L Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Molly B Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min Xu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
41
|
Lv X, He C, Huang C, Hua G, Chen X, Timm BK, Maclin VM, Haggerty AA, Aust SK, Golden DM, Dave BJ, Tseng YA, Chen L, Wang H, Chen P, Klinkebiel DL, Karpf AR, Dong J, Drapkin RI, Rueda BR, Davis JS, Wang C. Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull (Beijing) 2020; 65:1281-1296. [PMID: 34888112 PMCID: PMC8654108 DOI: 10.1016/j.scib.2020.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the cell-of-origin of ovarian high grade serous cancer (HGSC) is the prerequisite for efficient prevention and early diagnosis of this most lethal gynecological cancer. Recently, a mesenchymal type of ovarian HGSC with the poorest prognosis among ovarian cancers was identified by both TCGA and AOCS studies. The cell-of-origin of this subtype of ovarian cancer is unknown. While pursuing studies to understand the role of the Hippo pathway in ovarian granulosa cell physiology and pathology, we unexpectedly found that the Yes-associated protein 1 (YAP1), the major effector of the Hippo signaling pathway, induced dedifferentiation and reprogramming of the ovarian granulosa cells, a unique type of ovarian follicular cells with mesenchymal lineage and high plasticity, leading to the development of high grade ovarian cancer with serous features. Our research results unveil a potential cell-of-origin for a subtype of HGSC with mesenchymal features.
Collapse
Affiliation(s)
- Xiangmin Lv
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chunbo He
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 47000, China
| | - Cong Huang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guohua Hua
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 47000, China
| | - Xingcheng Chen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Barbara K. Timm
- Heartland Center for Reproductive Medicine, Omaha, NE 68198, USA
| | | | - Abigail A Haggerty
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelly K Aust
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Denae M Golden
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhavana J Dave
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yun-An Tseng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Li Chen
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongbo Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peichao Chen
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - David L Klinkebiel
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ronny I Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
42
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
43
|
Hamanaka K, Takata A, Uchiyama Y, Miyatake S, Miyake N, Mitsuhashi S, Iwama K, Fujita A, Imagawa E, Alkanaq AN, Koshimizu E, Azuma Y, Nakashima M, Mizuguchi T, Saitsu H, Wada Y, Minami S, Katoh-Fukui Y, Masunaga Y, Fukami M, Hasegawa T, Ogata T, Matsumoto N. MYRF haploinsufficiency causes 46,XY and 46,XX disorders of sex development: bioinformatics consideration. Hum Mol Genet 2020; 28:2319-2329. [PMID: 30985895 DOI: 10.1093/hmg/ddz066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Disorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case-control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.
Collapse
Affiliation(s)
| | | | - Yuri Uchiyama
- Department of Human Genetics.,Department of Oncology
| | - Satoko Miyatake
- Department of Human Genetics.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | - Yoshiki Azuma
- Department of Human Genetics.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuka Wada
- Department of Neonatology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Sawako Minami
- Deparment of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
44
|
Hartanti MD, Hummitzsch K, Bonner WM, Bastian NA, Irving-Rodgers HF, Rodgers RJ. Formation of the Bovine Ovarian Surface Epithelium during Fetal Development. J Histochem Cytochem 2020; 68:113-126. [PMID: 31855103 PMCID: PMC7003494 DOI: 10.1369/0022155419896797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/06/2019] [Indexed: 11/22/2022] Open
Abstract
When first formed, the ovary only has an established epithelium at its base or hilum. Later, an epithelium is established around the rest of the ovary. To examine this further, we conducted scanning electron microscopy of the surface of bovine fetal ovaries and immunohistochemistry of ovarian cross-sections. From the earliest time point, the cells on the surface of the base or hilum of the ovary were cuboidal. On the remainder of the ovary, the surface was more irregular. By mid-development, the surface was covered completely with either a stratified or simple epithelium of cuboidal cells. Clefts were observed in the surface and appeared to form due to the expansion of stroma surrounding each open ovigerous cord, elevating the areas surrounding each cord, while leaving the opening of the cord to form the base of each cleft. The continued expansion of the surrounding stroma below the surface appeared not only to close the ovigerous cords from the surface but to compress the clefts into the shape of a groove. Later, most of the ovarian surface was covered with a simple cuboidal epithelium. The changes to the ovarian surface during fetal development coincide with the remodeling of the stroma and cords below.
Collapse
Affiliation(s)
- Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
- Faculty of Medicine, Trisakti University,
Jakarta, Indonesia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
| | - Wendy M. Bonner
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
| | - Nicole A. Bastian
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
- School of Medical Science, Griffith University,
Gold Coast Campus, QLD, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School
of Medicine, Robinson Research Institute, The University of Adelaide,
Adelaide, SA, Australia
| |
Collapse
|
45
|
Grinspon RP, Rey RA. Molecular Characterization of XX Maleness. Int J Mol Sci 2019; 20:ijms20236089. [PMID: 31816857 PMCID: PMC6928850 DOI: 10.3390/ijms20236089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Androgens and anti-Müllerian hormone (AMH), secreted by the foetal testis, are responsible for the development of male reproductive organs and the regression of female anlagen. Virilization of the reproductive tract in association with the absence of Müllerian derivatives in the XX foetus implies the existence of testicular tissue, which can occur in the presence or absence of SRY. Recent advancement in the knowledge of the opposing gene cascades driving to the differentiation of the gonadal ridge into testes or ovaries during early foetal development has provided insight into the molecular explanation of XX maleness.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| |
Collapse
|
46
|
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat Commun 2019; 10:5116. [PMID: 31712577 PMCID: PMC6848188 DOI: 10.1038/s41467-019-13060-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Collapse
|
47
|
Rossitto M, Ollivier M, Déjardin S, Pruvost A, Brun C, Marchive C, Nguyen AL, Ghettas A, Keime C, de Massy B, Poulat F, Philibert P, Boizet-Bonhoure B. In utero exposure to acetaminophen and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. Commun Biol 2019; 2:310. [PMID: 31428698 PMCID: PMC6692356 DOI: 10.1038/s42003-019-0552-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesic drugs, such as acetaminophen (APAP), are frequently taken during pregnancy, even in combination. However, they can favour genital malformations in newborn boys and reproductive disorders in adults. Conversely, the consequences on postnatal ovarian development and female reproductive health after in utero exposure are unknown. Here, we found that in mice, in utero exposure to therapeutic doses of the APAP-ibuprofen combination during sex determination led to delayed meiosis entry and progression in female F1 embryonic germ cells. Consequently, follicular activation was reduced in postnatal ovaries through the AKT/FOXO3 pathway, leading in F2 animals to subfertility, accelerated ovarian aging with abnormal corpus luteum persistence, due to decreased apoptosis and increased AKT-mediated luteal cell survival. Our study suggests that administration of these drugs during the critical period of sex determination could lead in humans to adverse effects that might be passed to the offspring.
Collapse
Affiliation(s)
- Moïra Rossitto
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Margot Ollivier
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Service de Chirurgie et Urologie Pédiatrique, Hôpital Lapeyronie CHU Montpellier, Centre de Référence Maladies Rares Développement Génital, Montpellier, France
| | - Stéphanie Déjardin
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Alain Pruvost
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Christine Brun
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Candice Marchive
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Anvi Laetitia Nguyen
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Aurélie Ghettas
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Céline Keime
- IGBMC, Centre National de la Recherche Scientifique, Université de Strasbourg/INSERM, Illkirch, France
| | - Bernard de Massy
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Francis Poulat
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Pascal Philibert
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Département de Biochimie et Hormonologie, Hôpital Lapeyronie, CHU de Montpellier, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
48
|
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39:BSR20190805. [PMID: 31092698 PMCID: PMC6549090 DOI: 10.1042/bsr20190805] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
In clinical infertility practice, one intractable problem is low (or absent) ovarian reserve which in turn reflects the natural oocyte depletion associated with advancing maternal age. The number of available eggs has been generally thought to be finite and strictly limited, an entrenched and largely unchallenged tenet dating back more than 50 years. In the past decade, it has been suggested that renewable ovarian germline stem cells (GSCs) exist in adults, and that such cells may be utilized as an oocyte source for women seeking to extend fertility. Currently, the issue of whether mammalian females possess such a population of renewable GSCs remains unsettled. The topic is complex and even agreement on a definitive approach to verify the process of 'ovarian rescue' or 're-potentiation' has been elusive. Similarities have been noted between wound healing and ovarian tissue repair following capsule rupture at ovulation. In addition, molecular signaling events which might be necessary to reverse the effects of reproductive ageing seem congruent with changes occurring in tissue injury responses elsewhere. Recently, clinical experience with such a technique based on autologous activated platelet-rich plasma (PRP) treatment of the adult human ovary has been reported. This review summarizes the present state of understanding of the interaction of platelet-derived growth factors with adult ovarian tissue, and the outcome of human reproductive potential following PRP treatment.
Collapse
Affiliation(s)
- E Scott Sills
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A.
- Applied Biotechnology Research Group, University of Westminster; London W1B 2HW, U.K
| | - Samuel H Wood
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A
| |
Collapse
|
49
|
Huang K, Dang Y, Zhang P, Shen C, Sui X, Xia G, Qin Y, Jiao X, Wang C, Huo R, Chen ZJ. CAV1 regulates primordial follicle formation via the Notch2 signalling pathway and is associated with premature ovarian insufficiency in humans. Hum Reprod 2019; 33:2087-2095. [PMID: 30304446 DOI: 10.1093/humrep/dey299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What is the function of CAV1 in folliculogenesis and female reproduction? SUMMARY ANSWER CAV1 regulates germline cyst breakdown and primordial follicle (PF) formation in mice, and CAV1 mutation may be related to premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY Pre-granulosa cells are essential for the establishment of the PF pool, which determines female fertility and reproductive lifespan. Cav1 participates in vascularization in fetal mouse ovaries. However, the role of CAV1 in early folliculogenesis and POI pathogenesis remains unclear. STUDY DESIGN, SIZE, DURATION Cav1 function was investigated in mice and Human Embryonic Kidney 293 cells. Ovaries (six per group) were randomly assigned to Cav1-vivo-morpholino, control and control-morpholino groups, and all experiments were repeated at least three times. To investigate CAV1 mutations in women, 200 Chinese women with POI and 200 control individuals with regular menstrual cycles and normal endocrine profiles were recruited from the Center for Reproductive Medicine of Shandong University between September 2012 and December 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Wild-type CD1 mice, Lgr5-EGFP-ires-CreERT2 (Lgr5-KI) reporter mice and Human Embryonic Kidney 293 cells were used for these experiments. Protein expression was detected by Western blot, and quantitative RT-PCR was used to detect gene expression. The expression pattern of CAV1 in mouse ovaries and the phenotype of Cav1 deficiency in mice were detected by immunofluorescence. Pre-granulosa cell proliferation in ovaries was detected by bromodeoxyuridine (BrdU) assay and immunofluorescence. The coding region of the CAV1 gene was sequenced in 200 women with POI and 200 controls. The functional effect of the novel mutation c.142 G > C (p.Glu48Gln) was investigated by Cell Counting Kit-8 (CCK8) assays and Western blot. MAIN RESULTS AND THE ROLE OF CHANCE We confirmed that Cav1 deficiency in mouse ovary induced by CAV1-vivo-morpholino resulted in more multi-oocyte follicles than in the control and control-morpholino groups (P < 0.01). Suppression of Cav1 decreased Leucine rich repeat containing G protein coupled receptor 5 (Lgr5)-positive cell proliferation (P < 0.01) and reduced the number of Lgr5 and Forkhead box L2 (Foxl2) double-positive cells (P < 0.01). Furthermore, suppression of Cav1 inhibited ovarian epithelial Lgr5-positive cell proliferation and differentiation through the Notch2 signalling pathway. Two of the POI women carried novel CAV1 mutations (c.45 C > G synonymous and c.142 G > C [Glu48Gln]). The deleterious effect of p.Glu48Gln was corroborated by showing that it adversely affected the function of CAV1 in cell proliferation and NOTCH2 expression in HEK293FT cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The novel Glu48Gln mutation was only detected in one of 200 POI patients and we were unable to investigate its effects in the ovary. WIDER IMPLICATIONS OF THE FINDINGS The identification of CAV1 as a potentially causative gene for POI provides a theoretical basis to devise treatments for POI in women. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Basic Research Program of China (973 Programs: 2012CB944700; 2013CB945501; 2013CB911400; 2014CB943202), the National Key Research and Development Program of China (2016YFC1000604, 2017YFC1001301), the State Key Program of National Natural Science Foundation of China (81430029), and the National Natural Science Foundation of China (31571540, 81522018, 81471509, 81601245, 81701406, 81571406). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Dang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Pan Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuesong Sui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zi-Jiang Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
50
|
Candelaria NR, Padmanabhan A, Stossi F, Ljungberg MC, Shelly KE, Pew BK, Solis M, Rossano AM, McAllister JM, Wu S, Richards JS. VCAM1 Is Induced in Ovarian Theca and Stromal Cells in a Mouse Model of Androgen Excess. Endocrinology 2019; 160:1377-1393. [PMID: 30951142 PMCID: PMC6507908 DOI: 10.1210/en.2018-00731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/29/2019] [Indexed: 01/30/2023]
Abstract
Ovarian theca androgen production is regulated by the pituitary LH and intrafollicular factors. Enhanced androgen biosynthesis by theca cells contributes to polycystic ovary syndrome (PCOS) in women, but the ovarian consequences of elevated androgens are not completely understood. Our study documents the molecular events that are altered in the theca and stromal cells of mice exposed to high androgen levels, using the nonaromatizable androgen DHT. Changes in ovarian morphology and function were observed not only in follicles, but also in the stromal compartment. Genome-wide microarray analyses revealed marked changes in the ovarian transcriptome of DHT-treated females within 1 week. Particularly striking was the increased expression of vascular cell adhesion molecule 1 (Vcam1) specifically in the NR2F2/COUPTF-II lineage theca cells, not granulosa cells, of growing follicles and throughout the stroma of the androgen-treated mice. This response was mediated by androgen receptors (ARs) present in theca and stromal cells. Human theca-derived cultures expressed both ARs and NR2F2 that were nuclear. VCAM1 mRNA and protein were higher in PCOS-derived theca cells compared with control theca and reduced markedly by the AR antagonist flutamide. In the DHT-treated mice, VCAM1 was transiently induced by equine chorionic gonadotropin, when androgen and estrogen biosynthesis peak in preovulatory follicles, and was potently suppressed by a superovulatory dose of human chorionic gonadotropin. High levels of VCAM1 in the theca and interstitial cells of DHT-treated mice and in adult Leydig cells indicate that there may be novel functions for VCAM1 in reproductive tissues, including the gonads.
Collapse
Affiliation(s)
- Nicholes R Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Correspondence: Nicholes R. Candelaria, PhD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030. E-mail:
| | - Achuth Padmanabhan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurologic Research Institute at Texas Children’s Hospital, Houston, Texas
| | - Katharine E Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Braden K Pew
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Minerva Solis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ayane M Rossano
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jan M McAllister
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sheng Wu
- Department of Pediatrics and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|