1
|
Karami N, Taei A, Eftekhari-Yazdi P, Hassani F. Signaling pathway regulators in preimplantation embryos. J Mol Histol 2024; 56:57. [PMID: 39729177 DOI: 10.1007/s10735-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest. This issue is particularly evident in assisted reproductive technologies, such as in vitro fertilization, where embryonic arrest is frequently observed. A detailed understanding of these pathways enhances insight into the fundamental mechanisms underlying cellular processes and their contributions to embryonic development. The significance of elucidating signaling pathways and their regulatory factors in preimplantation development cannot be overstated. The application of this knowledge in laboratory settings has the potential to support strategies for modeling developmental stages and diseases, drug screening, therapeutic discovery, and reducing embryonic arrest. Furthermore, using various factors, small molecules, and pharmacological agents can enable the development or optimization of culture media for enhanced embryonic viability. While numerous pathways influence preimplantation development, this study examines several critical signaling pathways in this contex.
Collapse
Affiliation(s)
- Narges Karami
- MSc., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
| |
Collapse
|
2
|
Latham KE. Early Cell Lineage Formation in Mammals: Complexity, Species Diversity, and Susceptibility to Disruptions Impacting Embryo Viability. Mol Reprod Dev 2024; 91:e70002. [PMID: 39463042 DOI: 10.1002/mrd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The emergence of the earliest cell lineages in mammalian embryos is a complex process that utilizes an extensive network of chromatin regulators, transcription factors, cell polarity regulators, and cellular signaling pathways. These factors and pathways operate over a protracted period of time as embryos cleave, undergo compaction, and form blastocysts. The first cell fate specification event separates the pluripotent inner cell mass from the trophectoderm lineage. The second event separates pluripotent epiblast from hypoblast. This review summarizes over 50 years of study of these early lineage forming events, addressing the complexity of the network of interacting molecules, cellular functions and pathways that drive them, interspecies differences, and aspects of these mechanisms that likely underlie their high susceptibility to disruption by numerous environmental factors that can compromise embryo viability, such as maternal health and diet, environmental toxins, and other stressors.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, Lansing, Michigan, USA
| |
Collapse
|
3
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Que X, Ren L, Yang L, Wang L, Li J, Wu R, Chen Q. Long noncoding RNA BMPR1B-AS1 stability regulated by IGF2BP2 affects the decidualization in endometriosis patients through the SMAD1/5/9 pathway. FASEB J 2024; 38:e23622. [PMID: 38703029 DOI: 10.1096/fj.202302195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.
Collapse
Affiliation(s)
- Xiaohong Que
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Lulu Ren
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Reproductive Medical Center, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lin Yang
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lemeng Wang
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junzui Li
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongfeng Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Reproductive Medical Center, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qionghua Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576717. [PMID: 38328075 PMCID: PMC10849569 DOI: 10.1101/2024.01.23.576717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Current address: Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Pham PD, Lu H, Han H, Zhou JJ, Madan A, Wang W, Murre C, Cho KWY. Transcriptional network governing extraembryonic endoderm cell fate choice. Dev Biol 2023; 502:20-37. [PMID: 37423592 PMCID: PMC10550205 DOI: 10.1016/j.ydbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.
Collapse
Affiliation(s)
- Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Hanbin Lu
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Aarushi Madan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Cornelis Murre
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
8
|
Wu B, Yang Z, Liu Y, Li J, Chen C, Li X, Bao S. A chemically defined system supports two distinct types of stem cell from a single blastocyst and their self-assembly to generate blastoid. Cell Prolif 2023:e13396. [PMID: 36593753 DOI: 10.1111/cpr.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
The pluripotent stem cells exist in a narrow window during early development and its derivation depends on intrinsic and extrinsic growth signalling in vitro. It has remained challenging to derive two or three distinct cell lines that are representative of blastocyst-stage lineages from one preimplantation embryo simultaneously in a chemical defined condition. Therefore, it is desirable to establish a system by manipulating extrinsic signalling in culture to derive multiple types of stem cells from a single blastocyst. This study used a defined medium containing Activin A, WNT activator and LIF (ACL medium), enabling establishment of ACL-ESCs and ACL-XEN cells from one blastocyst. ACL-blastoids were generated by suspending ACL-ESCs and ACL-XEN cells with ACL-blastoid medium in three-dimensional culture system. Lineage markers expression of ACL-blastoids were performed by immunofluorescence. Our results indicate that ACL-ESCs and ACL-XEN cells derived from one blastocyst represent ICM and PrE lineages. Importantly, we obtained ACL-blastoid from ACL-ESCs and ACL-XEN cells self-aggregation, partially recapitulating early development and initiation of early implantation events. This study would not only provide ACL culture system for derivation and maintenance of two types of cell lines corresponding to ICM as well as PrE, but also reconstruct blastoids with them to deepen our understanding of early embryogenesis and widen insights into translational application of stem cells.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiqing Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yijie Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jianwen Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
10
|
Rajput SK, Yang C, Ashry M, Folger JK, Knott JG, Smith GW. Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotropic actions of follistatin†. Biol Reprod 2021; 102:795-805. [PMID: 31965149 DOI: 10.1093/biolre/ioz235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
Characterization of the molecular factors regulating early embryonic development and their functional mechanisms is critical for understanding the causes of early pregnancy loss in monotocous species (cattle, human). We previously characterized a stage specific functional role of follistatin, a TGF-beta superfamily binding protein, in promoting early embryonic development in cattle. The mechanism by which follistatin mediates this embryotropic effect is not precisely known as follistatin actions in cattle embryos are independent of its classically known activin inhibition activity. Apart from activin, follistatin is known to bind and modulate the activity of the bone morphogenetic proteins (BMPs), which signal through SMAD1/5 pathway and regulate several aspects of early embryogenesis in other mammalian species. Present study was designed to characterize the activity and functional requirement of BMP signaling during bovine early embryonic development and to investigate if follistatin involves BMP signaling for its stage specific embryotropic actions. Immunostaining and western blot analysis demonstrated that SMAD1/5 signaling is activated after embryonic genome activation in bovine embryos. However, days 1-3 follistatin treatment reduced the abundance of phosphorylated SMAD1/5 in cultured embryos. Inhibition of active SMAD1/5 signaling (8-16 cell to blastocyst) using pharmacological inhibitors and/or lentiviral-mediated inhibitory SMAD6 overexpression showed that SMAD1/5 signaling is required for blastocyst production, first cell lineage determination as well as mRNA and protein regulation of TE (CDX2) cell markers. SMAD1/5 signaling was also found to be essential for embryotropic actions of follistatin during days 4-7 but not days 1-3 of embryo development suggesting a role for follistatin in regulation of SMAD1/5 signaling in bovine embryos.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan, USA.,Colorado Center for Reproductive Medicine (CCRM), Lone Tree, CO 80124, USA
| | - Chunyan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, P.R. China
| | - Mohamed Ashry
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan, USA.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt and
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Fischer SC, Corujo-Simon E, Lilao-Garzon J, Stelzer EHK, Muñoz-Descalzo S. The transition from local to global patterns governs the differentiation of mouse blastocysts. PLoS One 2020; 15:e0233030. [PMID: 32413083 PMCID: PMC7228118 DOI: 10.1371/journal.pone.0233030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
During mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterized by the expression of the transcription factors NANOG and GATA6, respectively. Here, we investigate the spatio-temporal distribution of NANOG and GATA6 expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single cell-based neighbourhood analyses. We define the cell neighbourhood by local features, which include the expression levels of both fate markers expressed in each cell and its neighbours, and the number of neighbouring cells. We further include the position of a cell relative to the centre of the ICM as a global positional feature. Our analyses reveal a local three-dimensional pattern that is already present in early blastocysts: 1) Cells expressing the highest NANOG levels are surrounded by approximately nine neighbours, while 2) cells expressing GATA6 cluster according to their GATA6 levels. This local pattern evolves into a global pattern in the ICM that starts to emerge in mid blastocysts. We show that FGF/MAPK signalling is involved in the three-dimensional distribution of the cells and, using a mutant background, we further show that the GATA6 neighbourhood is regulated by NANOG. Our quantitative study suggests that the three-dimensional cell neighbourhood plays a role in Epi and PrE precursor specification. Our results highlight the importance of analysing the three-dimensional cell neighbourhood while investigating cell fate decisions during early mouse embryonic development.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elena Corujo-Simon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
| | - Joaquin Lilao-Garzon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ernst H. K. Stelzer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
12
|
Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. Cell Stem Cell 2019; 25:388-406.e8. [PMID: 31422912 PMCID: PMC6731995 DOI: 10.1016/j.stem.2019.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/20/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions. Reprogramming routes differ transcriptionally and mechanistically Reprogramming intermediates resemble different developmental stages Distinct routes converge on precise Oct4 regulation to permit identity transition Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts
Collapse
|
13
|
Sirohi VK, Gupta K, Kapoor R, Dwivedi A. MicroRNA-145 targets Smad1 in endometrial stromal cells and regulates decidualization in rat. J Mol Med (Berl) 2019; 97:509-522. [PMID: 30729278 DOI: 10.1007/s00109-019-01744-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
Decidualization of endometrial stromal cells is the pre-requisite for the embryo implantation and establishment of pregnancy. Although known to be regulated by several factors, the process of regulation of decidualization by miRNAs is largely unknown. Previous reports suggest that the upregulated expression of miR-145 is associated with repeated implantation failure. The current study was aimed to identify and validate the role of miR-145 in regulating stromal cell decidualization and the mechanism involved therein. Expression of miR-145 was found to be downregulated during the decidualization period of early pregnancy and also in artificially induced decidualization in rat uterus. During in vitro decidualization in rat endometrial stromal cells (ESCs), the overexpression of mimic miR-145 attenuated the progression of decidualization. Biochemical marker alkaline phosphatase and protein markers (insulin-like growth factor binding protein, cyclin D3) were also suppressed in miR-145 mimic-transfected cells as compared to normal decidualized cells. Bioinformatic analysis and luciferase reporter assay confirmed that Smad1 is the direct target of miR-145. Differentiation of ESCs was inhibited in miR-145 mimic-transfected cells which occurred via downregulating the target Smad1 along with its downstream p-Smad1/5/8 and Wnt-4. Pre-treatment of ESCs with Smad1 siRNA resulted in downregulated expression of p-Smad1/5/8, Wnt-4, Cox-2, and VEGF. In addition, miR-145 overexpression resulted in the loss of angiogenic factors Cox-2, MMP-9, and VEGF, indicating suppression of the process of angiogenesis. Migration of human umbilical vein endothelial cells was also attenuated in the presence of conditioned media obtained from miR-145-transfected decidualizing cells. In conclusion, the study demonstrated the role of miR-145 in regulation of progression of decidualization which is mediated through inhibition of Smad1. KEY MESSAGES: MiR-145 expression is downregulated during decidualization in the rat uterus. Overexpression of miR-145 inhibited the decidualization progression. MiR-145 suppressed the migration and invasion of HUVECs. MiR-145 downregulated Smad1 which suppresses Smad1/5/8, Wnt-4, MMP-9, Cox-2, and VEGF.
Collapse
Affiliation(s)
- Vijay K Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute
- , Lucknow, Uttar Pradesh, 226031, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute
- , Lucknow, Uttar Pradesh, 226031, India
| | - Radhika Kapoor
- Division of Endocrinology, CSIR-Central Drug Research Institute
- , Lucknow, Uttar Pradesh, 226031, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute
- , Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
14
|
De Paepe C, Aberkane A, Dewandre D, Essahib W, Sermon K, Geens M, Verheyen G, Tournaye H, Van de Velde H. BMP4 plays a role in apoptosis during human preimplantation development. Mol Reprod Dev 2018; 86:53-62. [DOI: 10.1002/mrd.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Affiliation(s)
- C. De Paepe
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - A. Aberkane
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - D. Dewandre
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - W. Essahib
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - K. Sermon
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - M. Geens
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - G. Verheyen
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| | - H. Tournaye
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| | - H. Van de Velde
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| |
Collapse
|
15
|
Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol 2017; 49:17-26. [DOI: 10.1007/s10735-017-9743-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
|
16
|
Abstract
Decidualization is an intricate biological process where extensive morphological, functional, and genetic changes take place in endometrial stromal cells to support the development of an implanting blastocyst. Deficiencies in decidualization are associated with pregnancy complications and reproductive diseases. Decidualization is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Transforming growth factor β (TGFβ) superfamily signaling regulates multifaceted reproductive processes. However, the role of TGFβ signaling in uterine decidualization is poorly understood. Recent studies using the Cre-LoxP strategy have shed new light on the critical role of TGFβ signaling machinery in uterine decidualization. Herein, we focus on reviewing exciting findings from studies using both mouse genetics and in vitro cultured human endometrial stromal cells. We also delve into emerging mechanisms that underlie decidualization, such as non-coding RNAs and epigenetic modifications. We envision that future studies aimed at defining the interrelationship among TGFβ signaling circuitries and their potential interactions with epigenetic modifications/non-coding RNAs during uterine decidualization will open new avenues to treat pregnancy complications associated with decidualization deficiencies.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Valdecantos PA, Bravo Miana RDC, García EV, García DC, Roldán-Olarte M, Miceli DC. Expression of bone morphogenetic protein receptors in bovine oviductal epithelial cells: Evidence of autocrine BMP signaling. Anim Reprod Sci 2017; 185:89-96. [DOI: 10.1016/j.anireprosci.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023]
|
18
|
Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell 2017; 41:496-510.e5. [PMID: 28552559 DOI: 10.1016/j.devcel.2017.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is the key signal driving specification of primitive endoderm (PrE) versus pluripotent epiblast (EPI) within the inner cell mass (ICM) of the mouse blastocyst. To gain insight into the receptor(s) responding to FGF4 within ICM cells, we combined single-cell-resolution quantitative imaging with single-cell transcriptomics of wild-type and Fgf receptor (Fgfr) mutant embryos. Despite the PrE-specific expression of FGFR2, it is FGFR1, expressed by all ICM cells, that is critical for establishment of a PrE identity. Signaling through FGFR1 is also required to constrain levels of the pluripotency-associated factor NANOG in EPI cells. However, the activity of both receptors is required for lineage establishment within the ICM. Gene expression profiling of 534 single ICM cells identified distinct downstream targets associated with each receptor. These data lead us to propose a model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
García EV, Hamdi M, Barrera AD, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Rizos D. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling. Reproduction 2017; 153:631-643. [PMID: 28250237 DOI: 10.1530/rep-16-0654] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
Abstract
Signaling components of bone morphogenetic proteins (BMPs) are expressed in an anatomically and temporally regulated fashion in bovine oviduct. However, a local response of this signaling to the presence of the embryo has yet to be elucidated. The aim of the present study was to evaluate if early embryo-oviduct interaction induces changes in the gene expression of BMP signaling components. For this purpose, we used an in vitro co-culture system to investigate the local interaction between bovine oviductal epithelial cells (BOEC) from the isthmus region with early embryos during two developmental periods: before (from the 2-cell to 8-cell stage) or during (from the 8-cell to 16-cell stage) the main phase of embryonic genome activation (EGA). Exposure to embryos, irrespective of the period, significantly reduced the relative abundance of BMPR1B, BMPR2, SMAD1, SMAD6 and ID2 mRNAs in BOEC. In contrast, embryos that interacted with BOEC before EGA showed a significant increase in the relative abundance of SMAD1 mRNA at the 8-cell stage compared to embryos cultured without BOEC. Moreover, embryos at the 16-cell stage that interacted with BOEC during EGA showed a significant increase in BMPR1B, BMPR2 and ID2 mRNA. These results demonstrate that embryo-oviduct interaction in vitro induces specific changes in the transcriptional levels of BMP signaling, causing a bidirectional response that reduces the expression levels of this signaling in the oviductal cells while increases them in the early embryo. This suggests that BMP signaling pathway could be involved in an early cross talk between the bovine embryo and the oviduct during the first stages of development.
Collapse
Affiliation(s)
- Elina V García
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain .,Instituto Superior de Investigaciones Biológicas (INSIBIO)CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Meriem Hamdi
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Antonio D Barrera
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Instituto Superior de Investigaciones Biológicas (INSIBIO)CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - María J Sánchez-Calabuig
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
20
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
21
|
Hajian M, Hosseini SM, Ostadhosseini S, Nasr-Esfahani MH. Targeting the transforming growth factor-β signaling during pre-implantation development in embryos of cattle, sheep and goats. Growth Factors 2016; 34:141-8. [PMID: 27442780 DOI: 10.1080/08977194.2016.1206089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, application of chemical inhibitors against differentiation signaling pathways has improved establishment of mESCs. In this study, we applied inhibitors of TGF-β (SB431542) and BMP4 (Noggin) from cleavage to blastocyst stage in cattle, goat and sheep embryos. SB significantly decreases blastocyst rate and total cell number (TCN) in sheep blastocysts, whereas only TCN was significantly decreased in cattle blastocysts. In contrast to SB, Noggin significantly improved cattle blastocyst development but decreased TCN. However, Noggin treatment led to a significant increase in TCN in sheep blastocysts. Regarding pluripotency triad (OCT4, NANOG, SOX2) and cell lineage commitment (REX1, CDX2, GATA4), SB led to a significant reduction in SOX2 expression in goat and cattle, while Noggin increased at least one or two of pluripotent markers in these species. Taken together, this data suggests that inhibition of TGF-β by Noggin may be more favorable for derivation of stem cells in farm animals.
Collapse
Affiliation(s)
- Mehdi Hajian
- a Department of Reproduction and Development , Royan Institute for Biotechnology, ACECR , Isfahan , Iran and
| | - Sayyed Morteza Hosseini
- a Department of Reproduction and Development , Royan Institute for Biotechnology, ACECR , Isfahan , Iran and
| | - Somayyeh Ostadhosseini
- a Department of Reproduction and Development , Royan Institute for Biotechnology, ACECR , Isfahan , Iran and
| | - Mohammad Hossein Nasr-Esfahani
- a Department of Reproduction and Development , Royan Institute for Biotechnology, ACECR , Isfahan , Iran and
- b Department of Embryology , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR , Tehran , Iran
| |
Collapse
|
22
|
Kim HS, Ha KS, Kwon HC, Lee SJ, Kim CH, Cheon YP. Enhancing the developmental competence of the early embryo using secretory leukocyte peptidase inhibitor. Differentiation 2016; 92:24-34. [DOI: 10.1016/j.diff.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/14/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023]
|
23
|
Lokken AA, Ralston A. The Genetic Regulation of Cell Fate During Preimplantation Mouse Development. Curr Top Dev Biol 2016; 120:173-202. [PMID: 27475852 DOI: 10.1016/bs.ctdb.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adult body is estimated to contain several hundred distinct cell types, each with a specialized physiological function. Failure to maintain cell fate can lead to devastating diseases and cancer, but understanding how cell fates are assigned and maintained during animal development provides new opportunities for human health intervention. The mouse is a premier model for evaluating the genetic regulation of cell fate during development because of the wide variety of tools for measuring and manipulating gene expression levels, the ability to access embryos at desired developmental stages, and the similarities between mouse and human development, particularly during the early stages of development. During the first 3 days of mouse development, the preimplantation embryo sets aside cells that will contribute to the extraembryonic tissues. The extraembryonic tissues are essential for establishing pregnancy and ensuring normal fetal development in both mice and humans. Genetic analyses of mouse preimplantation development have permitted identification of genes that are essential for specification of the extraembryonic lineages. In this chapter, we review the tools and concepts of mouse preimplantation development. We describe genes that are essential for cell fate specification during preimplantation stages, and we describe diverse models proposed to account for the mechanisms of cell fate specification during early development.
Collapse
Affiliation(s)
- A A Lokken
- Michigan State University, East Lansing, MI, United States
| | - A Ralston
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
24
|
Abstract
During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev 2016; 27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
26
|
Gomes Fernandes M, Dries R, Roost MS, Semrau S, de Melo Bernardo A, Davis RP, Ramakrishnan R, Szuhai K, Maas E, Umans L, Abon Escalona V, Salvatori D, Deforce D, Van Criekinge W, Huylebroeck D, Mummery C, Zwijsen A, de Sousa Lopes SMC. BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells. Stem Cell Reports 2015; 6:85-94. [PMID: 26711875 PMCID: PMC4720007 DOI: 10.1016/j.stemcr.2015.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023] Open
Abstract
Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation. BMP-SMAD signaling in mESCs is more prominent in naive than ground state BMP-SMAD signaling is dispensable for pluripotency in mESCs BMP-SMAD signaling facilitates lineage priming in mESCs BMP-SMAD signaling regulates Dnmt3b and hence levels of DNA methylation
Collapse
Affiliation(s)
- Maria Gomes Fernandes
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ruben Dries
- Department Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, Belgium; Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Matthias S Roost
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden 2333 CA, the Netherlands
| | - Ana de Melo Bernardo
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Richard P Davis
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ramprasad Ramakrishnan
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Karoly Szuhai
- Department Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Elke Maas
- Department Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium
| | - Lieve Umans
- Department Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, Belgium; Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands; Department Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium
| | - Vanesa Abon Escalona
- Department Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium
| | - Daniela Salvatori
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands; Center Laboratory Animal Facility, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Wim Van Criekinge
- Mathematical Modelling, Statistics and Bio-informatics, Faculty Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Danny Huylebroeck
- Department Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, Belgium; Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Christine Mummery
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - An Zwijsen
- Department Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium
| | - Susana M Chuva de Sousa Lopes
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands; Department Reproductive Medicine, Ghent University Hospital, Ghent 9000, Belgium.
| |
Collapse
|
27
|
Chiang M, Hallman S, Cinquin A, de Mochel NR, Paz A, Kawauchi S, Calof AL, Cho KW, Fowlkes CC, Cinquin O. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. BMC Bioinformatics 2015; 16:397. [PMID: 26607933 PMCID: PMC4659165 DOI: 10.1186/s12859-015-0814-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 10/31/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Analysis of single cells in their native environment is a powerful method to address key questions in developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial information about the spatial organization of the tissue and morphological features of the cells. This technique is rapidly evolving but is still not in widespread use among research groups that do not specialize in technique development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the best use of their time in injecting their domain-specific knowledge. RESULTS Here we focus on a well-established stem cell model system, the C. elegans gonad, as well as on two other model systems widely used to study cell fate specification and morphogenesis: the pre-implantation mouse embryo and the developing mouse olfactory epithelium. We report a pipeline that integrates machine-learning-based cell detection, fast human-in-the-loop curation of these detections, and running of active contours seeded from detections to segment cells. The procedure can be bootstrapped by a small number of manual detections, and outperforms alternative pieces of software we benchmarked on C. elegans gonad datasets. Using cell segmentations to quantify fluorescence contents, we report previously-uncharacterized cell behaviors in the model systems we used. We further show how cell morphological features can be used to identify cell cycle phase; this provides a basis for future tools that will streamline cell cycle experiments by minimizing the need for exogenous cell cycle phase labels. CONCLUSIONS High-throughput 3D segmentation makes it possible to extract rich information from images that are routinely acquired by biologists, and provides insights - in particular with respect to the cell cycle - that would be difficult to derive otherwise.
Collapse
Affiliation(s)
- Michael Chiang
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Sam Hallman
- Center for Complex Biological Systems, University of California at Irvine, Irvine, USA. .,Department of Computer Science, University of California at Irvine, Irvine, USA.
| | - Amanda Cinquin
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Nabora Reyes de Mochel
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Adrian Paz
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Shimako Kawauchi
- Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Anne L Calof
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA. .,Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, USA.
| | - Ken W Cho
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| | - Charless C Fowlkes
- Center for Complex Biological Systems, University of California at Irvine, Irvine, USA. .,Department of Computer Science, University of California at Irvine, Irvine, USA.
| | - Olivier Cinquin
- Department of Developmental & Cell Biology, University of California at Irvine, Irvine, USA. .,Center for Complex Biological Systems, University of California at Irvine, Irvine, USA.
| |
Collapse
|
28
|
Leung CY, Zernicka-Goetz M. Mapping the journey from totipotency to lineage specification in the mouse embryo. Curr Opin Genet Dev 2015; 34:71-6. [PMID: 26343010 DOI: 10.1016/j.gde.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Understanding the past is to understand the present. Mammalian life, with all its complexity comes from a humble beginning of a single fertilized egg cell. Achieving this requires an enormous diversification of cellular function, the majority of which is generated through a series of cellular decisions during embryogenesis. The first decisions are made as the embryo prepares for implantation, a process that will require specialization of extra-embryonic lineages while preserving an embryonic one. In this mini-review, we will focus on the mouse as a mammalian model and discuss recent advances in the decision making process of the early embryo.
Collapse
Affiliation(s)
- Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
29
|
García EV, Miceli DC, Rizo G, Valdecantos PA, Barrera AD. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos. Theriogenology 2015; 84:589-99. [DOI: 10.1016/j.theriogenology.2015.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/26/2022]
|
30
|
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 2015; 31:402-10. [PMID: 25999217 DOI: 10.1016/j.tig.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
The first cell fate decisions during mammalian development establish tissues essential for healthy pregnancy. The mouse has served as a valuable model for discovering pathways regulating the first cell fate decisions because of the ease with which early embryos can be recovered and the availability of an arsenal of classical and emerging methods for manipulating gene expression. We summarize the major pathways that govern the first cell fate decisions in mouse development. This knowledge serves as a paradigm for exploring how emergent properties of a self-organizing system can dynamically regulate gene expression and cell fate plasticity. Moreover, it brings to light the processes that establish healthy pregnancy and ES cells. We also describe unsolved mysteries and new technologies that could help to overcome experimental challenges in the field.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
31
|
La Rosa I. Bone Morphogenetic Proteins in Preimplantation Embryos. BONE MORPHOGENIC PROTEIN 2015; 99:223-48. [DOI: 10.1016/bs.vh.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|