1
|
Killinger M, Szotkowská T, Lusková D, Zezula N, Bryja V, Buchtová M. Porcupine inhibition enhances hypertrophic cartilage differentiation. JBMR Plus 2025; 9:ziaf048. [PMID: 40406350 PMCID: PMC12097805 DOI: 10.1093/jbmrpl/ziaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/26/2025] Open
Abstract
Porcupine (PORCN) is a membrane-bound protein of the endoplasmic reticulum, which modifies Wnt proteins by adding palmitoleic acid. This modification is essential for Wnt ligand secretion. Patients with mutated PORCN display various skeletal abnormalities likely stemming from disrupted Wnt signaling pathways during the chondrocyte differentiation. To uncover the mechanism of PORCN action during chondrogenesis, we used 2 different PORCN inhibitors, C59 and LGK974, in several model systems, including micromasses, 3D cell cultures, long bone tissue cultures, and zebrafish animal model. PORCN inhibitors enhanced cartilaginous extracellular matrix (ECM) production and accelerated chondrocyte differentiation, which resulted in the earlier induction of cellular hypertrophy as well as cartilaginous mass expansion in micromass cultures and cartilaginous organoids. In addition, both PORCN inhibitors expanded the hypertrophic zone and reduced the proliferative zone in the growth plate. This led to a significant increase in cartilaginous tissue and ultimately resulted in the elongation of tibias in the mouse organ cultures. Also, LGK974 treatment of Danio rerio embryos induced expansion of craniofacial cartilage width together with the shortening of the body axis, which was consistent with a phenomenon occurring upon inhibition of non-canonical Wnt signaling. By combining PORCN inhibition with exogenous Wnt proteins activating either canonical/β-catenin (WNT3a) or non-canonical (WNT5a) signaling, we propose that the key mechanism mediating pro-chondrogenic effects of PORCN inhibition is the removal of canonical ligands that prevent chondrocyte differentiation. In summary, our results provide evidence of the distinct role of PORCN in both the early and late stages of cartilage development. Further, our data demonstrate that PORCN inhibitors can be used in the experimental and clinical strategies that need to trigger chondrocyte differentiation and/or cartilage outgrowth.
Collapse
Affiliation(s)
- Michael Killinger
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| |
Collapse
|
2
|
Guo YH, Yu YB, Wu JJ, Kan YK, Wu X, Wang Z. Curdlan/chitosan NIR-responsive in situ forming gel: An injectable scaffold for the treatment of epiphyseal plate injury. Int J Biol Macromol 2025; 308:142052. [PMID: 40090650 DOI: 10.1016/j.ijbiomac.2025.142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Premature closure of the epiphyseal plate inducing by the formation of bone bridges after epiphyseal plate injury, can lead to limb shortening and angular deformity, causing adverse effects on the growth and development of adolescents. Therefore, preventing the formation of bone bridges has become the primary task for children with epiphyseal plate fractures. In our study, a novel near-infrared (NIR)-responsive bone repair scaffold (CGCB), namely black phosphorus (BP)-loaded in-situ gel based on curdlan (CUD), β-glycerophosphate (GP) and chitosan (CS), was developed. In vitro studies confirmed that the CGCB can promote the differentiation and migration of chondrocytes and has potential cartilage repair ability. A drilled model of epiphyseal plate injury further confirmed that CGCB can promote the repair of epiphyseal plate injury and NIR irradiation combined with CGCB significantly repaired the injury site by increasing expression of Sox9 and Aggrecan. The above findings indicate that the near-infrared (NIR) responsive bone repair scaffold (CGCB) can effectively inhibit bone bridge formation, prevent early closure of the epiphyseal plate, and provide new ideas for repairing epiphyseal plate defects in children.
Collapse
Affiliation(s)
- Yi-Hao Guo
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Yi-Bin Yu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Jia-Jun Wu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Ya-Kun Kan
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Xiao Wu
- He University, Shenyang 110163, China.
| | - Zhuo Wang
- Health Sciences Institute, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Chen X, Liu H, Huang Y, Li L, Jiang X, Liu B, Li N, Zhu L, Liu C, Xiao J. FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release. Int J Mol Sci 2025; 26:4033. [PMID: 40362273 PMCID: PMC12071210 DOI: 10.3390/ijms26094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a "slow-release" manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhong Huang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Leilei Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Xuxi Jiang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Otsuka MY, Essel LB, Sinha A, Nickerson G, Mejia SM, Edge A, Matthews RT, Bouyain S. Aggrecan immobilizes to perineuronal nets through hyaluronan-dependent and hyaluronan-independent binding activities. J Biol Chem 2025; 301:108525. [PMID: 40273987 DOI: 10.1016/j.jbc.2025.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Aggrecan (ACAN) is a large, secreted chondroitin sulfate proteoglycan that includes three globular regions named G1, G2, G3, and is decorated with multiple glycosaminoglycan attachments between its G2 and G3 domains. The N-terminal G1 region interacts with the glycosaminoglycan hyaluronan (HA), which is an essential component of the vertebrate extracellular matrix. In the central nervous system, ACAN is found in perineuronal nets (PNNs), honeycomb-like structures that localize to the surface of parvalbumin-positive neurons in specific neural circuits. PNNs regulate the plasticity of the central nervous system, and it is believed that association between ACAN and HA is a foundational event in the assembly of these reticular structures. Here, we report the cocrystal structure of the G1 region of ACAN in the absence and presence of a HA decasaccharide and analyze the importance of the HA-binding activity of ACAN for its integration into PNNs. We demonstrate that the single immunoglobulin domain and the two Link modules that comprise the G1 region form a single structural unit, and that HA is clamped inside a groove that spans the length of the tandem Link domains. Introducing point mutations in the glycosaminoglycan-binding site eliminates HA-binding activity in ACAN, but, surprisingly, only decreases the integration of ACAN into PNNs. Thus, these results suggest that ACAN can be recruited into PNNs independently of its HA-binding activity.
Collapse
Affiliation(s)
- Matthew Y Otsuka
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Leslie B Essel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gabrielle Nickerson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Seth M Mejia
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Ashley Edge
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
5
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Hata K, Wakamori K, Hirakawa‐Yamamura A, Ichiyama‐Kobayashi S, Yamaguchi M, Okuzaki D, Takahata Y, Murakami T, Uzawa N, Yamashiro T, Nishimura R. Serinc5 Regulates Sequential Chondrocyte Differentiation by Inhibiting Sox9 Function in Pre-Hypertrophic Chondrocytes. J Cell Physiol 2025; 240:e31490. [PMID: 39568258 PMCID: PMC11747958 DOI: 10.1002/jcp.31490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
The growth plate is the primary site of longitudinal bone growth with chondrocytes playing a pivotal role in endochondral bone development. Chondrocytes undergo a series of differentiation steps, resulting in the formation of a unique hierarchical columnar structure comprising round, proliferating, pre-hypertrophic, and hypertrophic chondrocytes. Pre-hypertrophic chondrocytes, which exist in the transitional stage between proliferating and hypertrophic stages, are a critical cell population in the growth plate. However, the molecular basis of pre-hypertrophic chondrocytes remains largely undefined. Here, we employed scRNA-seq analysis on fluorescently labeled growth plate chondrocytes for their molecular characterization. Serine incorporator 5 (Serinc5) was identified as a marker gene for pre-hypertrophic chondrocytes. Histological analysis revealed that Serinc5 is specifically expressed in pre-hypertrophic chondrocytes, overlapping with Indian hedgehog (Ihh). Serinc5 represses cell proliferation and Col2a1 and Acan expression by inhibiting the transcriptional activity of Sox9 in primary chondrocytes. Chromatin profiling using ChIP-seq and ATAC-seq revealed an active enhancer of Serinc5 located in intron 1, with its chromatin status progressively activated during chondrocyte differentiation. Collectively, our findings suggest that Serinc5 regulates sequential chondrocyte differentiation from proliferation to hypertrophy by inhibiting Sox9 function in pre-hypertrophic chondrocytes, providing novel insights into the mechanisms underlying chondrocyte differentiation in growth plates.
Collapse
Affiliation(s)
- Kenji Hata
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| | - Kanta Wakamori
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Akane Hirakawa‐Yamamura
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Orthodontics and Dentofacial OrthopedicsOsaka University Graduate School of DentistryOsakaJapan
| | - Sachi Ichiyama‐Kobayashi
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Masaya Yamaguchi
- Bioinformatics Research UnitOsaka University Graduate School of DentistryOsakaJapan
- Department of MicrobiologyOsaka University Graduate School of DentistryOsakaJapan
- Center for Infectious Diseases Education and ResearchOsaka UniversityOsakaJapan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics)WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Genome Editing Research and Development UnitOsaka University Graduate School of DentistryOsakaJapan
| | - Tomohiko Murakami
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial OrthopedicsOsaka University Graduate School of DentistryOsakaJapan
| | - Riko Nishimura
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| |
Collapse
|
7
|
Otsuka MY, Essel LB, Sinha A, Nickerson G, Mejia SM, Matthews RT, Bouyain S. The hyaluronan-binding activity of aggrecan is important, but not essential, for its specific insertion into perineuronal nets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625086. [PMID: 39651196 PMCID: PMC11623537 DOI: 10.1101/2024.11.25.625086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Aggrecan (ACAN) is a large, secreted chondroitin sulfate proteoglycan that includes three globular regions named G1, G2, G3, and is decorated with multiple glycosaminoglycan attachments between its G2 and G3 domains. The N-terminal G1 region interacts with the glycosaminoglycan hyaluronan (HA), which is an essential component of the vertebrate extracellular matrix. In the central nervous system, ACAN is found in perineuronal nets (PNNs), honeycomb-like structures that are enriched on parvalbumin-positive neurons in specific neural circuits. PNNs regulate the plasticity of the central nervous system, and it is believed that association between ACAN and HA is a foundational event in the assembly of these reticular structures. Here, we report the co-crystal structure of the G1 region of ACAN in the absence and presence of an HA decasaccharide and analyze the importance of the HA-binding activity of ACAN for its integration into PNNs. We demonstrate that the single immunoglobulin domain and the two Link modules that comprise the G1 region form a single structural unit, and that HA is clamped inside a groove that spans the length of the tandem Link domains. Introduction of point mutations in the glycosaminoglycan-binding site eliminates HA-binding activity in ACAN, but, surprisingly, only decreases the integration of ACAN into PNNs. Thus, these results suggest that the HA-binding activity of ACAN is important for its recruitment to PNNs, but it does not appear to be essential.
Collapse
|
8
|
Venkatasubramanian D, Senevirathne G, Capellini TD, Craft AM. Leveraging single cell multiomic analyses to identify factors that drive human chondrocyte cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598666. [PMID: 38915712 PMCID: PMC11195167 DOI: 10.1101/2024.06.12.598666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cartilage plays a crucial role in skeletal development and function, and abnormal development contributes to genetic and age-related skeletal disease. To better understand how human cartilage develops in vivo , we jointly profiled the transcriptome and open chromatin regions in individual nuclei recovered from distal femurs at 2 fetal timepoints. We used these multiomic data to identify transcription factors expressed in distinct chondrocyte subtypes, link accessible regulatory elements with gene expression, and predict transcription factor-based regulatory networks that are important for growth plate or epiphyseal chondrocyte differentiation. We developed a human pluripotent stem cell platform for interrogating the function of predicted transcription factors during chondrocyte differentiation and used it to test NFATC2 . We expect new regulatory networks we uncovered using multiomic data to be important for promoting cartilage health and treating disease, and our platform to be a useful tool for studying cartilage development in vitro . Statement of Significance The identity and integrity of the articular cartilage lining our joints are crucial to pain-free activities of daily living. Here we identified a gene regulatory landscape of human chondrogenesis at single cell resolution, which is expected to open new avenues of research aimed at mitigating cartilage diseases that affect hundreds of millions of individuals world-wide.
Collapse
|
9
|
Sao K, Risbud MV. Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine 2024; 21:162-178. [PMID: 38569642 PMCID: PMC10992626 DOI: 10.14245/ns.2347342.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal dysplasia, evident from loss of disc height or defects in skeletal development respectively. In this review, we discuss the common proteoglycans found in the disc and cartilage and elaborate on various murine models and skeletal dysplasias in humans to highlight how their absence and/or aberrant expression causes accelerated disc degeneration and developmental defects.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Zhao Q, Li Y, Shao Q, Zhang C, Kou S, Yang W, Zhang M, Ban B. Clinical and genetic evaluation of children with short stature of unknown origin. BMC Med Genomics 2023; 16:194. [PMID: 37605180 PMCID: PMC10441754 DOI: 10.1186/s12920-023-01626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Short stature is a common human trait. More severe and/or associated short stature is usually part of the presentation of a syndrome and may be a monogenic disease. The present study aimed to identify the genetic etiology of children with short stature of unknown origin. METHODS A total of 232 children with short stature of unknown origin from March 2013 to May 2020 were enrolled in this study. Whole exome sequencing (WES) was performed for the enrolled patients to determine the underlying genetic etiology. RESULTS We identified pathogenic or likely pathogenic genetic variants in 18 (7.8%) patients. All of these variants were located in genes known to be associated with growth disorders. Five of the genes are associated with paracrine signaling or cartilage extracellular matrix in the growth plate, including NPR2 (N = 1), ACAN (N = 1), CASR (N = 1), COMP (N = 1) and FBN1 (N = 1). Two of the genes are involved in the RAS/MAPK pathway, namely, PTPN11 (N = 6) and NF1 (N = 1). Two genes are associated with the abnormal growth hormone-insulin-like growth factor 1 (GH-IGF1) axis, including GH1 (N = 1) and IGF1R (N = 1). Two mutations are located in PROKR2, which is associated with gonadotropin-releasing hormone deficiency. Mutations were found in the remaining two patients in genes with miscellaneous mechanisms: ANKRD11 (N = 1) and ARID1A (N = 1). CONCLUSIONS The present study identified pathogenic or likely pathogenic genetic variants in eighteen of the 232 patients (7.8%) with short stature of unknown origin. Our findings suggest that in the absence of prominent malformation, genetic defects in hormones, paracrine factors, and matrix molecules may be the causal factors for this group of patients. Early genetic testing is necessary for accurate diagnosis and precision treatment.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Medicine, Qingdao University, Qingdao, Shandong, 266071, P.R. China
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Qian Shao
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Shuang Kou
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, 999077, P.R. China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| |
Collapse
|
12
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
13
|
Richard D, Pregizer S, Venkatasubramanian D, Raftery RM, Muthuirulan P, Liu Z, Capellini TD, Craft AM. Lineage-specific differences and regulatory networks governing human chondrocyte development. eLife 2023; 12:e79925. [PMID: 36920035 PMCID: PMC10069868 DOI: 10.7554/elife.79925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
To address large gaps in our understanding of the molecular regulation of articular and growth plate cartilage development in humans, we used our directed differentiation approach to generate these distinct cartilage tissues from human embryonic stem cells. The resulting transcriptomic profiles of hESC-derived articular and growth plate chondrocytes were similar to fetal epiphyseal and growth plate chondrocytes, with respect to genes both known and previously unknown to cartilage biology. With the goal to characterize the regulatory landscapes accompanying these respective transcriptomes, we mapped chromatin accessibility in hESC-derived chondrocyte lineages, and mouse embryonic chondrocytes, using ATAC-sequencing. Integration of the expression dataset with the differentially accessible genomic regions revealed lineage-specific gene regulatory networks. We validated functional interactions of two transcription factors (TFs) (RUNX2 in growth plate chondrocytes and RELA in articular chondrocytes) with their predicted genomic targets. The maps we provide thus represent a framework for probing regulatory interactions governing chondrocyte differentiation. This work constitutes a substantial step towards comprehensive and comparative molecular characterizations of distinct chondrogenic lineages and sheds new light on human cartilage development and biology.
Collapse
Affiliation(s)
- Daniel Richard
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Steven Pregizer
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
| | - Divya Venkatasubramanian
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Rosanne M Raftery
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
| | | | - Zun Liu
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - April M Craft
- Department of Orthopedic Research, Boston Children’s HospitalBostonUnited States
- Department of Orthopedic Surgery, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
14
|
Empere M, Wang X, Prein C, Aspberg A, Moser M, Oohashi T, Clausen-Schaumann H, Aszodi A, Alberton P. Aggrecan governs intervertebral discs development by providing critical mechanical cues of the extracellular matrix. Front Bioeng Biotechnol 2023; 11:1128587. [PMID: 36937743 PMCID: PMC10017878 DOI: 10.3389/fbioe.2023.1128587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.
Collapse
Affiliation(s)
- Marta Empere
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Xujia Wang
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Carina Prein
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society, Martinsried, Germany
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, Germany
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Attila Aszodi
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Paolo Alberton
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
- *Correspondence: Paolo Alberton,
| |
Collapse
|
15
|
Huang H, Jin J, Xiang R, Wang X. Case report: A novel heterozygous frameshift mutation of ACAN in a Chinese family with short stature and advanced bone age. Front Genet 2023; 14:1101695. [PMID: 37025453 PMCID: PMC10070732 DOI: 10.3389/fgene.2023.1101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Short stature (OMIM: 165800) is a common pediatric disorder. Any abnormality in the cartilage formation of the growth plate can cause short stature. Aggrecan, encoded by ACAN, is an important component of the extracellular matrix. Mutations in ACAN have been reported to cause short stature. In the present study, we enrolled a Chinese family with short stature and advanced bone age across three generations. Whole-exome sequencing (WES) was performed on the proband to detect the candidate genes causing short stature in family. A novel heterozygous frameshift mutation (NM_013227.3:c.7230delT; NP_001356197.1: p. Phe2410Leufs*9) of the ACAN gene was confirmed to be a genetic lesion in this family. This variant, which was located in a functional site globular 3 (G3) domain of ACAN and predicted to be deleterious by informatics programs, was co-segregated with the affected family members by performing Sanger sequencing. Literatures review of growth hormone (GH) treatment outcome of all previously reported ACAN patients suggesting that the G3 domain of ACAN may be critical in the development of short stature and growth hormone treatment. These findings not only contribute to the genetic diagnosis and counseling of the family, but will also expand the mutation spectrum of ACAN.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyuan Jin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Xiang
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Xiang, ; Xia Wang,
| | - Xia Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Xiang, ; Xia Wang,
| |
Collapse
|
16
|
Hassan TA, Maher MA, El Karmoty AF, Ahmed ZSO, Ibrahim MA, Rizk H, Reyad AT. Auricular cartilage regeneration using different types of mesenchymal stem cells in rabbits. Biol Res 2022; 55:40. [PMID: 36572914 PMCID: PMC9791760 DOI: 10.1186/s40659-022-00408-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cartilaginous disorders comprise a wide range of diseases that affect normal joint movement, ear and nose shape; and they have great social and economic impact. Mesenchymal stem cells (MSCs) provide a promising regeneration alternative for treatment of degenerative cartilaginous disorders. This study aimed to compare therapeutic potential of different types of laser activated MSCs to promote auricular cartilage regeneration. Twelve adult rabbit allocated equally in four groups, all animals received a surgical mid auricular cartilage defect in one ear; Group I (Positive control) injected sub-perichondrially with phosphate-buffered saline (PBS), Group II (ADMSC-transplanted group) injected adipose-derived MSCs (ADMSCs), Group III (BMMSCs-transplanted group) received bone marrow-derived MSCs (BMMSCs), and Group IV (EMSC-transplanted group) received ear MSCs (EMSCs) in the defected ear. The auricular defect was analyzed morphologically, histopathologically and immunohistochemically after 4 weeks. In addition, a quantitative real-time polymerase chain reaction was used to examine expression of the collagen type II (Col II) and aggrecan as cartilage growth factors. RESULTS The auricles of all treatments appeared completely healed with smooth surfaces and similar tissue color. Histopathologically, defective areas of control positive group, ADMSCs and EMSCs treated groups experienced a small area of immature cartilage. While BMMSCs treated group exhibited typical features of new cartilage formation with mature chondrocytes inside their lacunae and dense extracellular matrix (ECM). In addition, BMMSC treated group showed a positive reaction to Masson's trichrome and orcein stains. In contrary, control positive, ADMSC and EMSC groups revealed faint staining with Masson's trichrome and Orcein. Immunohistochemically, there was an intense positive S100 expression in BMMSCs (with a significant increase of area percentage + 21.89 (P < 0.05), a moderate reaction in EMSCs (with an area percentage + 17.97, and a mild reaction in the control group and ADMSCs (area percentages + 8.02 and + 11.37, respectively). The expression of relative col II and aggrecan was substantially highest in BMMSCs (± 0.91 and ± 0.89, respectively). While, Control positive, ADMSCs and EMSCs groups recorded (± 0.41: ± 0.21, ± 0.6: ± 0.44, ± 0.61: ± 0.63) respectively. CONCLUSION BMMSCs showed the highest chondrogenic potential compared to ADMSCs and EMSCs and should be considered the first choice in treatment of cartilaginous degenerative disorders.
Collapse
Affiliation(s)
- Taghreed Ahmed Hassan
- grid.7776.10000 0004 0639 9286Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| | - Mohamed Ahmed Maher
- grid.7776.10000 0004 0639 9286Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| | - Amr Fekry El Karmoty
- grid.7776.10000 0004 0639 9286Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| | - Zainab Sabry Othman Ahmed
- grid.7776.10000 0004 0639 9286Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt ,King Salman International University, South Sinai, Ras Sudr, Egypt
| | - Marwa A Ibrahim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| | - Hamdy Rizk
- grid.7776.10000 0004 0639 9286Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| | - Ayman Tolba Reyad
- grid.7776.10000 0004 0639 9286Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211 Egypt
| |
Collapse
|
17
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
18
|
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 2022; 31:2820-2830. [PMID: 35377455 PMCID: PMC9402238 DOI: 10.1093/hmg/ddac078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adetutu T Egunsula
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhiyin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Single-cell transcriptomics profiling the compatibility mechanism of As 2O 3-indigo naturalis formula based on bone marrow stroma cells. Biomed Pharmacother 2022; 151:113182. [PMID: 35643069 DOI: 10.1016/j.biopha.2022.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Compound realgar natural indigo tablet is the only oral arsenic agent widely used in acute promyelocytic leukemia (APL) treatment. However, as a therapeutic drug for diseases of the blood system, the scientific knowledge of As2O3-indigo naturalis formula compatibility has not been studied in bone marrow stromal cells (BMSCs). We chose arsenic trioxide (As2O3: A), tanshinone IIA (T) and indirubin (I) as representative active compounds of realgar, indigo naturalis, and Salvia miltiorrhiza, respectively, to evaluated the pharmaceutical mechanism and the compatibility of ATI (drug combination) using single-cell RNA sequencing (scRNA-seq). The overlapped genes associated with both disease and drug were selected in BMSCs for in-depth analysis. Results show that joint applications of ATI had the strongest therapeutic efficacy in a murine APL model. Lepr-MSCs, OLCs and BMECs were the sensitive cell groups targeted by ATI in the murine APL model. ATI could regulate the related genes of osteogenic differentiation, adipogenic differentiation, and endothelial cell migration in bone marrow mesenchymal lineage cells in murine APL model and improve normal hematopoiesis-related gene expression and poor prognosis of Lepr-MSCs, OLCs and BMECs in mice with leukemia according to scRNA-seq data. The strongest regulatory effects were found in the joint applications of ATI. ATI combination had the potential mechanism to maintain the stability of the hematopoietic microenvironment and promote hematopoiesis to assist in the treatment of APL. This study illustrated the potential mechanism of ATI in regulating BMSCs from the overall perspective of the hematopoietic microenvironment, and broadened the scientific understanding of ATI compatibility in BMSCs.
Collapse
|
20
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Li X, Yang S, Yuan G, Jing D, Qin L, Zhao H, Yang S. Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Res 2022; 10:46. [PMID: 35739091 PMCID: PMC9226163 DOI: 10.1038/s41413-022-00214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Type II collagen-positive (Col2+) cells have been reported as skeletal stem cells (SSCs), but the contribution of Col2+ progenitors to skeletal development both prenatally and postnatally during aging remains unclear. To address this question, we generated new mouse models with ablation of Col2+ cells at either the embryonic or postnatal stages. The embryonic ablation of Col2+ progenitors resulted in the death of newborn mice due to a decrease in skeletal blood vessels, loss of all vertebral bones and absence of most other bones except part of the craniofacial bone, the clavicle bone and a small piece of the long bone and ribs, which suggested that intramembranous ossification is involved in long bone development but does not participate in spine development. The postnatal ablation of Col2+ cells resulted in mouse growth retardation and a collagenopathy phenotype. Lineage tracing experiments with embryonic or postnatal mice revealed that Col2+ progenitors occurred predominantly in the growth plate (GP) and articular cartilage, but a limited number of Col2+ cells were detected in the bone marrow. Moreover, the number and differentiation ability of Col2+ progenitors in the long bone and knee joints decreased with increasing age. The fate-mapping study further revealed Col2+ lineage cells contributed to, in addition to osteoblasts and chondrocytes, CD31+ blood vessels in both the calvarial bone and long bone. Specifically, almost all blood vessels in calvarial bone and 25.4% of blood vessels in long bone were Col2+ lineage cells. However, during fracture healing, 95.5% of CD31+ blood vessels in long bone were Col2+ lineage cells. In vitro studies further confirmed that Col2+ progenitors from calvarial bone and GP could form CD31+ vascular lumens. Thus, this study provides the first demonstration that intramembranous ossification is involved in long bone and rib development but not spine development. Col2+ progenitors contribute to CD31+ skeletal blood vessel formation, but the percentage differs between long bone and skull bone. The number and differentiation ability of Col2+ progenitors decreases with increasing age.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, P. R. China
- Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai, 200120, China
| | - Shuting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dian Jing
- Department of Restorative Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Zhao
- Department of Restorative Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Yin LP, Zheng HX, Zhu H. Short stature associated with a novel mutation in the aggrecan gene: A case report and literature review. World J Clin Cases 2022; 10:2811-2817. [PMID: 35434101 PMCID: PMC8968812 DOI: 10.12998/wjcc.v10.i9.2811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the aggrecan (ACAN) gene are identified in patients with: spondyloepiphyseal dysplasia, Kimberley type; short stature with advanced bone age (BA); in the presence or absence of heterozygous ACAN mutation-induced early-onset osteoarthritis and/or osteochondritis dissecans; and spondyloepimetaphyseal dysplasia, ACAN type. Heterozygous mutations contribute to spondyloepiphyseal dysplasia, Kimberley type (MIM#608361), which is a milder skeletal dysplasia. In contrast, homozygous mutations cause a critical skeletal dysplasia, which is called spondyloepimetaphyseal dysplasia, ACAN type (MIM#612813). Lately, investigations on exome and genome sequencing have shown that ACAN mutations can also lead to idiopathic short stature with or without an advanced BA, in the presence or absence of early-onset osteoarthritis and/or osteochondritis dissecans (MIM#165800). We herein reported a heterozygous defect of ACAN in a family with autosomal dominant short stature, BA acceleration, and premature growth cessation.
CASE SUMMARY A 2-year-old male patient visited us due to growth retardation. The patient presented symmetrical short stature (height 79 cm, < -2 SD) without facial features and other congenital abnormalities. Whole-exome sequencing revealed a heterozygous pathogenic variant c. 871C>T (p. Gln291*) of ACAN, which was not yet reported in cases of short stature. This mutation was also detected in his father and paternal grandmother. According to the Human Gene Mutation Database, 67 ACAN mutations are registered. Most of these mutations are genetically inheritable, and very few children with short stature are associated with ACAN mutations. To date, heterozygous ACAN mutations have been reported in approximately 40 families worldwide, including a few individuals with a decelerated BA.
CONCLUSION Heterozygous c. 871C>T (p. Gln291*) variation of the ACAN gene was the disease-causing variant in this family. Collectively, our newly discovered mutation expanded the spectrum of ACAN gene mutations.
Collapse
Affiliation(s)
- Li-Ping Yin
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong-Xue Zheng
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong Zhu
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
25
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
26
|
Chabronova A, van den Akker GGH, Meekels-Steinbusch MMF, Friedrich F, Cremers A, Surtel DAM, Peffers MJ, van Rhijn LW, Lausch E, Zabel B, Caron MMJ, Welting TJM. Uncovering pathways regulating chondrogenic differentiation of CHH fibroblasts. Noncoding RNA Res 2022; 6:211-224. [PMID: 34988338 PMCID: PMC8688813 DOI: 10.1016/j.ncrna.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the non-coding snoRNA component of mitochondrial RNA processing endoribonuclease (RMRP) are the cause of cartilage-hair hypoplasia (CHH). CHH is a rare form of metaphyseal chondrodysplasia characterized by disproportionate short stature and abnormal growth plate development. The process of chondrogenic differentiation within growth plates of long bones is vital for longitudinal bone growth. However, molecular mechanisms behind impaired skeletal development in CHH patients remain unclear. We employed a transdifferentiation model (FDC) combined with whole transcriptome analysis to investigate the chondrogenic transdifferentiation capacity of CHH fibroblasts and to examine pathway regulation in CHH cells during chondrogenic differentiation. We established that the FDC transdifferentiation model is a relevant in vitro model of chondrogenic differentiation, with an emphasis on the terminal differentiation phase, which is crucial for longitudinal bone growth. We demonstrated that CHH fibroblasts are capable of transdifferentiating into chondrocyte-like cells, and show a reduced commitment to terminal differentiation. We also found a number of key factors of BMP, FGF, and IGF-1 signalling axes to be significantly upregulated in CHH cells during the chondrogenic transdifferentiation. Our results support postulated conclusions that RMRP has pleiotropic functions and profoundly affects multiple aspects of cell fate and signalling. Our findings shed light on the consequences of pathological CHH mutations in snoRNA RMRP during chondrogenic differentiation and the relevance and roles of non-coding RNAs in genetic diseases in general.
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Mandy M F Meekels-Steinbusch
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Franziska Friedrich
- Department of Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Don A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Zabel
- Medical Faculty, Otto van Guericke University of Magdeburg, 39106, Magdeburg, Germany
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| |
Collapse
|
27
|
Deng S, Hou L, Xia D, Li X, Peng X, Xiao X, Zhang J, Meng Z, Zhang L, Ouyang N, Liang L. Description of the molecular and phenotypic spectrum in Chinese patients with aggrecan deficiency: Novel ACAN heterozygous variants in eight Chinese children and a review of the literature. Front Endocrinol (Lausanne) 2022; 13:1015954. [PMID: 36387899 PMCID: PMC9649928 DOI: 10.3389/fendo.2022.1015954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study analyzed eight Chinese short stature children with aggrecan deficiency, and aimed to investigate potential genotype-phenotype correlations, differences in clinical characteristics between the Chinese and the Western populations, and effectiveness of recombinant human growth hormone therapy in patients with ACAN variants through a review of the literature. METHODS Pediatric short stature patients with ACAN heterozygous variants were identified using whole-exome sequencing. Subsequently, a literature review was carried out to summarize the clinical features, genetic findings, and efficacy of growth-promoting therapy in patients with ACAN variants. RESULTS We identified seven novel ACAN mutations and one recurrent variant. Patients in our center manifested with short stature (average height SDS: -3.30 ± 0.85) with slight dysmorphic characteristics. The prevalence of dysmorphic features in the Chinese populations is significantly lower than that in the Western populations. Meanwhile, only 24.24% of aggrecan-deficient Chinese children showed significantly advanced bone age (BA). Promising therapeutic benefits were seen in the patients who received growth-promoting treatment, with an increase in growth velocity from 4.52 ± 1.00 cm/year to 8.03 ± 1.16 cm/year. CONCLUSION This study further expanded the variation spectrum of the ACAN gene and demonstrated that Chinese children with short stature who carried ACAN heterozygous variants exhibited early growth cessation, which may remain unnoticed by clinicians as most of these children had very mild dysmorphic characteristics and showed BA that was consistent with the chronological age. Genetic testing may help in the diagnosis.
Collapse
Affiliation(s)
- Shuyun Deng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xia
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Peng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Xiao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| |
Collapse
|
28
|
Satoh M, Hasegawa Y. Factors affecting prepubertal and pubertal bone age progression. Front Endocrinol (Lausanne) 2022; 13:967711. [PMID: 36072933 PMCID: PMC9441639 DOI: 10.3389/fendo.2022.967711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Bone age (BA) is a clinical marker of bone maturation which indicates the developmental stage of endochondral ossification at the epiphysis and the growth plate. Hormones that promote the endochondral ossification process include growth hormone, insulin-like growth factor-1, thyroid hormone, estrogens, and androgens. In particular, estrogens are essential for growth plate fusion and closure in both sexes. Bone maturation in female children is more advanced than in male children of all ages. The promotion of bone maturation seen in females before the onset of puberty is thought to be an effect of estrogen because estrogen levels are higher in females than in males before puberty. Sex hormones are essential for bone maturation during puberty. Since females have their pubertal onset about two years earlier than males, bone maturation in females is more advanced than in males during puberty. In the present study, we aimed to review the factors affecting prepubertal and pubertal BA progression, BA progression in children with hypogonadism, and bone maturation and deformities in children with Turner syndrome.
Collapse
Affiliation(s)
- Mari Satoh
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
- *Correspondence: Mari Satoh,
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| |
Collapse
|
29
|
Sun J, Jiang L, Liu G, Ma C, Zheng J, Niu L. Evaluation of Growth Hormone Therapy in Seven Chinese Children With Familial Short Stature Caused by Novel ACAN Variants. Front Pediatr 2022; 10:819074. [PMID: 35330881 PMCID: PMC8940281 DOI: 10.3389/fped.2022.819074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE ACAN gene variants are an important cause of familial short stature (FSS). Appropriate growth-promoting therapies effectively improve the patient height. Here, we report a therapeutic assessment of cases of seven families of FSS patients with heterozygous ACAN variants. Our findings provide a valuable theoretical basis for the clinical diagnosis and treatment of this disease. METHODS From December 2020 to June 2021, 32 FSS patients were examined in Tianjin Medical University General Hospital (Tianjin, China) by whole-exome sequencing to determine whether ACAN variants were present. Their clinical data were summarized and scrupulously analyzed. RESULTS We found seven novel heterozygous ACAN variants: c.1051 + 2T > A, c.313T > C (p.S105P), c.2660C > G (p.S887X), c.2153C > A (p. T718K), c.7243delG (p.D2415Tfs*4), c.2911G > T (p.G971X), c.758-7T > C. All seven patients had proportionate short stature and mild skeletal dysplasia. Endocrine examination results were normal. Only one of the patients had an advanced bone age (1.1 years older than chronological age), whereas the other patients had normal bone ages. All of them had a family history of short stature, with or without osteoarthritis or intervertebral disc disease. All seven patients accepted treatment with recombinant human growth hormone (rhGH) and were regularly followed up. One patient did not come at the follow-up visit. The height of the remaining six patients before and after the treatment was -2.89 ± 0.68 SDS, -1.91 ± 0.93 SDS, respectively, with a treatment course of 1.85 ± 1.91 years. A good therapeutic response was observed in all of them. CONCLUSIONS In this study, seven novel heterozygous variants in ACAN were discovered, which expanded the spectrum of the already established ACAN pathogenic variants. In FSS cohort, the proportion of ACAN variants accounted was large. The treatment with rhGH effectively increased the patient height, but further studies with longer follow-up periods and more extensive observations are required to elucidate the long-term effect.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lihong Jiang
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Geli Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaqi Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lele Niu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Yang Y, Yang M, Shi D, Chen K, Zhao J, He S, Bai Y, Shen P, Ni H. Single-cell RNA Seq reveals cellular landscape-specific characteristics and potential etiologies for adolescent idiopathic scoliosis. JOR Spine 2021; 4:e1184. [PMID: 35005449 PMCID: PMC8717101 DOI: 10.1002/jsp2.1184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDS Abnormal vertebral growth and development have been found in adolescent idiopathic scoliosis (AIS) patients, and the proliferation and differentiation of bone development-related cells play important roles in its pathogenesis. However, a comprehensive single-cell-level differentiation roadmap in AIS has not been achieved. METHODS The present study compared the single-cell level cellular landscapes of spinal cancellous bone tissues between AIS patients and healthy subjects using high throughput single-cell RNA sequencing (scRNA-seq), which covers multiple cellular lineages including osteoblast, chondrocyte, osteoclast and related immunocytes. We constructed the differentiation trajectories of bone development-related cell lineages through pseudotime analysis, and the intercellular-communication networks between bone development-related cells and immunocytes were further developed. RESULTS A total of 11 distinct cell clusters were identified according to the genome-wide transcriptome profiles. t-Distributed stochastic neighbor embedding (t-SNE) analysis showed that mesenchymal stem cells (MSC) were classified into three subtypes: MSC-LOXL2, MSC-IGFBP5, and MSC-GJA1. Gene ontology (GO) analysis showed that MSC-GJA1 might possess greater osteoblast differentiation potential than the others. MSC-IGFBP5 was the specific MSC subtype observed only in AIS. There were two distinct gene expression clusters: OB-DPT and OB-OLFML2B, and the counts of osteoblasts derived from AIS was significantly less than that of non-AIS subjects. In AIS patients, MSC-IGFBP5 failed to differentiate into osteoblasts and exhibited negative regulation of cell proliferation and enhanced cell death. CPC-PCNA was found to be the specific chondrocyte progenitor cell (CPC) subtype observed only in AIS patients. The cell counts of OC-BIRC3 in AIS were less than those in controls. Pseudotime analysis suggested two possible distinct osteoclast differentiation patterns in AIS and control subjects. Monocytes in AIS mainly differentiated into OC-CRISP3. CONCLUSIONS Our single-cell analysis first revealed differences existed in the cellular states between AIS patients and healthy subjects and found the differentiation disruption of specific MSC and CPC clusters in AIS. Cell communication analysis provided the possible pathogenesis of osteoblast and chondrocyte differentiation dysfunction in AIS.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyuan Yang
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Dongliang Shi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Tongji University School of MedicineShanghaiChina
| | - Kai Chen
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Jian Zhao
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Shisheng He
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| | - Yushu Bai
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Pinquan Shen
- Department of Pediatric Orthopaedics, Xinhua HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Haijian Ni
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| |
Collapse
|
31
|
Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA, Loh PR. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 2021; 373:1499-1505. [PMID: 34554798 PMCID: PMC8549062 DOI: 10.1126/science.abg8289] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.
Collapse
Affiliation(s)
- Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yiming Zheng
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| |
Collapse
|
32
|
Højland AT, Tavernier LJM, Schrauwen I, Sommen M, Topsakal V, Schatteman I, Dhooge I, Huber A, Zanetti D, Kunst HPM, Hoischen A, Petersen MB, Van Camp G, Fransen E. A wide range of protective and predisposing variants in aggrecan influence the susceptibility for otosclerosis. Hum Genet 2021; 141:951-963. [PMID: 34410490 DOI: 10.1007/s00439-021-02334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
In this study, we investigated the association of ACAN variants with otosclerosis, a frequent cause of hearing loss among young adults. We sequenced the coding, 5'-UTR and 3'-UTR regions of ACAN in 1497 unrelated otosclerosis cases and 1437 matched controls from six different subpopulations. The association between variants in ACAN and the disease risk was tested through single variant and gene-based association tests. After correction for multiple testing, 14 variants were significantly associated with otosclerosis, ten of which represented independent association signals. Eight variants showed a consistent association across all subpopulations. Allelic odds ratios of the variants identified four predisposing and ten protective variants. Gene-based tests showed an association of very rare variants in the 3'-UTR with the phenotype. The associated exonic variants are all located in the CS domain of ACAN and include both protective and predisposing variants with a broad spectrum of effect sizes and population frequencies. This includes variants with strong effect size and low frequency, typical for monogenic diseases, to low effect size variants with high frequency, characteristic for common complex traits. This single-gene allelic spectrum with both protective and predisposing alleles is unique in the field of complex diseases. In conclusion, these findings are a significant advancement to the understanding of the etiology of otosclerosis.
Collapse
Affiliation(s)
- Allan Thomas Højland
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Research and Knowledge Center in Sensory Genetics, Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Lisse J M Tavernier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Manou Sommen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Vedat Topsakal
- Department of ORL and Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Isabelle Schatteman
- European Institute for ORL, St-Augustinus Hospital Antwerp, Antwerp, Belgium
| | - Ingeborg Dhooge
- Department of Otolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Alex Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, Audiology Unit, University of Milan, I.R.C.C.S. Fondazione "Cà Granda", Osp.Le Maggiore Policlinico, Milano, Italy
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.,Department of Otorhinolaryngology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael B Petersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Research and Knowledge Center in Sensory Genetics, Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium. .,StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
33
|
Toscano P, Di Meglio L, Lonardo F, Di Meglio L, Mazzarelli LL, Sica C, Di Meglio A. Prenatal diagnosis of a novel pathogenic variation in the ACAN gene presenting with isolated shortening of fetal long bones in the second trimester of gestation: a case report. BMC Pregnancy Childbirth 2021; 21:459. [PMID: 34187405 PMCID: PMC8243643 DOI: 10.1186/s12884-021-03952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Heterozygous mutations of the ACAN gene are a major cause of different evolutive growth defects in the pediatric population, but were never described as a cause of fetal skeletal dysplasia. CASE PRESENTATION A G1 at 21w + 3d came to our institution for the second-trimester ultrasound and a skeletal dysplasia with prevalent involvement of limb's rhizomelic tracts was suspected. Amniocentesis followed by CGH-array was performed, with normal results. An examination by NGS of some genes associated with skeletal dysplasias showed a novel pathogenic variant of the ACAN gene: c.2677delG. CONCLUSION Sequence variations of ACAN were never described as a possible cause of fetal skeletal anomalies to date. In this case report, we describe the first prenatal diagnosis of skeletal dysplasia associated with a pathogenic variant of ACAN.
Collapse
Affiliation(s)
- Paolo Toscano
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Lavinia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy.
- Department of Obstetrics and Gynecology, H. Buzzi, University of Milan, Milan, Italy.
| | - Fortunato Lonardo
- Department of Medical Genetics, A.O.R.N. "San Pio", Benevento, Italy
| | - Letizia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Laura Letizia Mazzarelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Carmine Sica
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Aniello Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| |
Collapse
|
34
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
35
|
Kim TY, Jang KM, Keum CW, Oh SH, Chung WY. Identification of a heterozygous ACAN mutation in a 15-year-old boy with short stature who presented with advanced bone age: a case report and review of the literature. Ann Pediatr Endocrinol Metab 2020; 25:272-276. [PMID: 32871652 PMCID: PMC7788345 DOI: 10.6065/apem.1938198.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Longitudinal bone growth is primarily mediated by the growth plate, which is a specialized cartilaginous structure. Aggrecan, encoded by ACAN, is a primary proteoglycan component of the extracellular matrix in both the growth plate and articular cartilage. Aggrecanopathies have emerged as a phenotype of genetic skeletal disease in humans. A heterozygous ACAN mutation causes short stature, premature growth cessation, and accelerated bone age maturation. We report the case of a 15-year-old boy with familial short stature, with height of 149 cm (Korean standard deviation score [SDS] of -3.6) and weight of 50.5 kg (-1.48 SDS). He presented with mild midfacial hypoplasia, frontal bossing, a broad chest, and a short neck. The father's and mother's heights were 150 cm (-4.8 SDS) and 153 cm (-1.69 SDS), respectively. The patient's bone age was 2-3 years more advanced than his chronological age, and no endocrine abnormalities were detected. Wholeexome sequencing followed by Sanger sequencing revealed a heterozygous ACAN mutation, c.512C>T (p.Ala171Val), in both the proband and his father. Short stature is generally associated with a delayed bone age, and this case suggests that ACAN mutations may be the most likely etiology among patients with short stature and an advanced bone age and should warrant early treatment.
Collapse
Affiliation(s)
- Tae Youp Kim
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Mi Jang
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea,Address for co-correspondence: Kyung Mi Jang, MD, PhD Department of Pediatrics, Yeungnam Universit y Hospital, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-620-3532 Fax: +82-53-629-2252 E-mail:
| | - Chang Won Keum
- Rare Genetic Disease Research Center, 3Billion Inc, Seoul, Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea,Address for correspondence: Woo Yeong Chung, MD, PhD Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea Tel: +82-51-890-6280 Fax: +82-51-897-4012, E-mail:
| |
Collapse
|
36
|
Liang H, Miao H, Pan H, Yang H, Gong F, Duan L, Chen S, Wang L, Zhu H. Growth-Promoting Therapies May Be Useful In Short Stature Patients With Nonspecific Skeletal Abnormalities Caused By Acan Heterozygous Mutations: Six Chinese Cases And Literature Review. Endocr Pract 2020; 26:1255-1268. [PMID: 33471655 DOI: 10.4158/ep-2019-0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review. METHODS Clinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases. RESULTS We identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score [SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92±1.07 versus SDS -2.14±1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation. CONCLUSIONS This study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals' characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients. ABBREVIATIONS AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China..
| |
Collapse
|
37
|
Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther 2020; 22:256. [PMID: 33109253 PMCID: PMC7590698 DOI: 10.1186/s13075-020-02325-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that microRNAs (miRs) are associated with the progression of osteoarthritis (OA). In this study, the role of exosomal miR-136-5p derived from mesenchymal stem cells (MSCs) in OA progression is investigated and the potential therapeutic mechanism explored. METHODS Bone marrow mesenchymal stem cells (BMMSCs) and their exosomes were isolated from patients and identified. The endocytosis of chondrocytes and the effects of exosome miR-136-5p on cartilage degradation were observed and examined by immunofluorescence and cartilage staining. Then, the targeting relationship between miR-136-5p and E74-like factor 3 (ELF3) was analyzed by dual-luciferase report assay. Based on gain- or loss-of-function experiments, the effects of exosomes and exosomal miR-136-5p on chondrocyte migration were examined by EdU and Transwell assay. Finally, a mouse model of post-traumatic OA was developed to evaluate effects of miR-136-5p on chondrocyte degeneration in vivo. RESULTS In the clinical samples of traumatic OA cartilage tissues, we detected increased ELF3 expression, and reduced miR-136-5p expression was determined. The BMMSC-derived exosomes showed an enriched level of miR-136-5p, which could be internalized by chondrocytes. The migration of chondrocyte was promoted by miR-136-5p, while collagen II, aggrecan, and SOX9 expression was increased and MMP-13 expression was reduced. miR-136-5p was verified to target ELF3 and could downregulate its expression. Moreover, the expression of ELF3 was reduced in chondrocytes after internalization of exosomes. In the mouse model of post-traumatic OA, exosomal miR-136-5p was found to reduce the degeneration of cartilage extracellular matrix. CONCLUSION These data provide evidence that BMMSC-derived exosomal miR-136-5p could promote chondrocyte migration in vitro and inhibit cartilage degeneration in vivo, thereby inhibiting OA pathology, which highlighted the transfer of exosomal miR-136-5p as a promising therapeutic strategy for patients with OA.
Collapse
Affiliation(s)
- Xue Chen
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Yuanyuan Shi
- Department of Nursing, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Pan Xue
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Xinli Ma
- Intensive Care Unit, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| |
Collapse
|
38
|
Abstract
Growth is the task of children. We review the normal process of linear growth from the fetus through adolescence and note that growth is the result of age- and gender-dependent interactions among key genetic, environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and hormonal factors. We then define the wide range of normative data at each stage of growth and note that a pattern within this range is generally indicative of good general health and that growth significantly slower than this range may lead to growth faltering and subsequent short stature. Although not often emphasized, we detail how to properly measure infants and children because height velocity is usually determined from two height measurements (both relatively large values) to calculate the actual height velocity (a relatively much smaller number in comparison). Traditionally the physiology of growth has been taught from an endocrine-centric point-of-view. Here we review the hypothalamic-pituitary-end organ axes for the GH/IGF-1 and gonadal steroid hormones (hypothalamic-pituitary-gonadal axis), both during "mini"-puberty as well as at puberty. However, over the past few decades much more emphasis has been placed on the growth plate and its many interactions with the endocrine system but also with its own intrinsic physiology and gene mutations. These latter, whether individually (large effect size) or in combination with many others including endocrine system-based, may account in toto for meaningful differences in adult height. The clinical assessment of children with short stature includes medical, social and family history, physical exam and importantly proper interpretation of the growth curve. This analysis should lead to judicious use of screening laboratory and imaging tests depending on the pre-test probability (Bayesian inference) of a particular diagnosis in that child. In particular for those with no pathological features in the history and physical exam and a low, but normal height velocity, may lead only to a bone age exam and reevaluation (re-measurement), perhaps 6 months later. he next step depends on the comfort level of the primary care physician, the patient, and the parent; that is, whether to continue with the evaluation with more directed, more sophisticated testing, again based on Bayesian inference or to seek consultation with a subspecialist pediatrician based on the data obtained. This is not necessarily an endocrinologist. The newest area and the one most in flux is the role for genetic testing, given that growth is a complex process with large effect size for single genes but smaller effect sizes for multiple other genes which in the aggregate may be relevant to attained adult height. Genetics is a discipline that is rapidly changing, especially as the cost of exome or whole gene sequencing diminishes sharply. Within a decade it is quite likely that a genetic approach to the evaluation of children with short stature will become the standard, truncating the diagnostic odyssey and be cost effective as fewer biochemical and imaging studies are required to make a proper diagnosis.
Collapse
Affiliation(s)
- Roberto Bogarín
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Erick Richmond
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Alan D Rogol
- Department of Pediatric Endocrinology, University of Virginia, Charlottesville, VA, USA -
| |
Collapse
|
39
|
Nandadasa S, Szafron JM, Pathak V, Murtada SI, Kraft CM, O'Donnell A, Norvik C, Hughes C, Caterson B, Domowicz MS, Schwartz NB, Tran-Lundmark K, Veigl M, Sedwick D, Philipson EH, Humphrey JD, Apte SS. Vascular dimorphism ensured by regulated proteoglycan dynamics favors rapid umbilical artery closure at birth. eLife 2020; 9:e60683. [PMID: 32909945 PMCID: PMC7529456 DOI: 10.7554/elife.60683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 01/29/2023] Open
Abstract
The umbilical artery lumen closes rapidly at birth, preventing neonatal blood loss, whereas the umbilical vein remains patent longer. Here, analysis of umbilical cords from humans and other mammals identified differential arterial-venous proteoglycan dynamics as a determinant of these contrasting vascular responses. The umbilical artery, but not the vein, has an inner layer enriched in the hydrated proteoglycan aggrecan, external to which lie contraction-primed smooth muscle cells (SMC). At birth, SMC contraction drives inner layer buckling and centripetal displacement to occlude the arterial lumen, a mechanism revealed by biomechanical observations and confirmed by computational analyses. This vascular dimorphism arises from spatially regulated proteoglycan expression and breakdown. Mice lacking aggrecan or the metalloprotease ADAMTS1, which degrades proteoglycans, demonstrate their opposing roles in umbilical vascular dimorphism, including effects on SMC differentiation. Umbilical vessel dimorphism is conserved in mammals, suggesting that differential proteoglycan dynamics and inner layer buckling were positively selected during evolution.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | - Vai Pathak
- Case Comprehensive Cancer Center, Case Western Reserve UniversityClevelandUnited States
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | - Caroline M Kraft
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| | - Anna O'Donnell
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| | - Christian Norvik
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund UniversityLundSweden
| | - Clare Hughes
- The Sir Martin Evans Building, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Bruce Caterson
- The Sir Martin Evans Building, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | | | - Nancy B Schwartz
- Department of Pediatrics, University of ChicagoChicagoUnited States
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund UniversityLundSweden
| | - Martina Veigl
- Case Comprehensive Cancer Center, Case Western Reserve UniversityClevelandUnited States
- Department of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - David Sedwick
- Department of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Elliot H Philipson
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
- The Women's Health Institute, Department of Obstetrics and Gynecology, Cleveland ClinicClevelandUnited States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| |
Collapse
|
40
|
Influence of Conditioned Media on the Re-Differentiation Capacity of Human Chondrocytes in 3D Spheroid Cultures. J Clin Med 2020; 9:jcm9092798. [PMID: 32872610 PMCID: PMC7564315 DOI: 10.3390/jcm9092798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
A major challenge of cell-based therapy for cartilage lesions is the preservation of the chondrogenic phenotype during ex vivo cell cultivation. In this in vitro study, the chondro-inductive capacity of two different hyaline cartilage-conditioned cell culture media on human chondrocytes in 3D spheroids was determined. Media were conditioned by incubation of 200 mg/mL vital or devitalized cartilage matrix in growth media over 35 days. The media were analyzed for the content of soluble procollagen type (Col) II and glycosaminoglycans (GAGs) as well as released TGF-β1, IGF-1 and IGFBP3. Unconditioned medium served as a negative control while the positive medium control was supplemented with TGF-β1 and IGF-1. Spheroid cultures prepared from human chondrocytes were cultivated at 37 °C, 5% CO2 and 21% O2 in the respective media and controls. After 14 and 35 days, the deposition of ECM components was evaluated by histological analysis. Vital cartilage-conditioned medium contained significantly higher levels of Col II and active TGF-β1 compared to medium conditioned with the devitalized cartilage matrix. Despite these differences, the incubation with vital as well as devitalized cartilage conditioned medium led to similar results in terms of deposition of proteoglycans and collagen type II, which was used as an indicator of re-differentiation of human chondrocytes in spheroid cultures. However, high density 3D cell cultivation showed a positive influence on re-differentiation.
Collapse
|
41
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
42
|
Zhang B, Wang C, Zhang Y, Jiang Y, Qin Y, Pang D, Zhang G, Liu H, Xie Z, Yuan H, Ouyang H, Wang J, Tang X. A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone 2020; 137:115450. [PMID: 32450343 DOI: 10.1016/j.bone.2020.115450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations in the COL2A1 gene were previously described as a cause of type II collagenopathy (e.g., spondyloepiphyseal dysplasia, Stickler syndrome type I), a major subgroup of genetic skeletal diseases. However, the pathogenic mechanisms associated with COL2A1 mutations remain unclear, and there are few large-mammal models of these diseases. In this study, we established a swine model carrying COL2A1 mutations using CRISPR/Cas9 and somatic cell nuclear transfer technologies. Animals mutant for COL2A1 exhibited severe skeletal dysplasia characterized by shortened long bones, abnormal vertebrae, depressed nasal bridge, and cleft palate. Importantly, COL2A1 mutant piglets suffered tracheal collapse, which was almost certainly the cause of their death shortly after birth. In conclusion, we have demonstrated for the first time that overt and striking skeletal dysplasia occurring in human patients can be recapitulated in large transgenic mammals. This model underscores the importance of employing large animals as models to investigate the pathogenesis and potential therapeutics of skeletal diseases.
Collapse
Affiliation(s)
- Boyan Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, First Bethune Hospital of Jilin University, 130021 Changchun, China
| | - Yue Zhang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021 Changchun, China
| | - Yuan Jiang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China
| | - Yanguo Qin
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Guizhen Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China; Research Centre of the Second Hospital of Jilin University, 130041 Changchun, China.
| | - He Liu
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| |
Collapse
|
43
|
Abstract
Osteoarthritis (OA) is a multifactorial disease with huge phenotypic heterogeneity. The disease affects all tissues in the joint, and the loss of articular cartilage is its hallmark. The main biochemical components of the articular cartilage are type II collagen, aggrecan, and water. Transforming growth factor-beta (TGF-β) signaling is one of the signaling pathways that maintains the healthy cartilage. However, the two subpathways of the TGF-β signaling-TGF-β and bone morphogenetic proteins (BMP) subpathways, lose their balance in OA, resulting an increased expression of cartilage degradation enzymes including matrix metallopeptidase 13 (MMP13), cathepsin B (CTSB), and cathepsin K (CTSK) and a decreased expression of aggrecan (ACAN). Thus, restoring the balance of two subpathways might provide a new avenue for treating OA patients. Further, metabolic changes are seen in OA and can be used to distinguish different subtypes of OA patients. Metabolomics studies showed that at least three endotypes of OA can be distinguished: 11% of OA patients are characterized by an elevated blood butyryl carnitine, 33% of OA patients have significant reduced arginine concentration, and 56% with metabolic alteration in phospholipid metabolism. While these findings need to be confirmed, they are promising personalized medicine tools for OA management.
Collapse
Affiliation(s)
- Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
44
|
RNA-seq reveals downregulated osteochondral genes potentially related to tibia bacterial chondronecrosis with osteomyelitis in broilers. BMC Genet 2020; 21:58. [PMID: 32493207 PMCID: PMC7271470 DOI: 10.1186/s12863-020-00862-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial chondronecrosis with osteomyelitis (BCO) develops in the growth plate (GP) of the proximal femur and tibia and is initiated by damage to the less mineralized chondrocytes followed by colonization of opportunistic bacteria. This condition affects approximately 1% of all birds housed, being considered one of the major causes of lameness in fast growing broilers. Although several studies have been previously performed aiming to understand its pathogenesis, the molecular mechanisms involved with BCO remains to be elucidated. Therefore, this study aimed to generate a profile of global differential gene expression involved with BCO in the tibia of commercial broilers, through RNA sequencing analysis to identity genes and molecular pathways involved with BCO in chickens. Results Our data showed 192 differentially expressed (DE) genes: 63 upregulated and 129 downregulated in the GP of the tibia proximal epiphysis of BCO-affected broilers. Using all DE genes, six Biological Processes (BP) were associated with bone development (connective tissue development, cartilage development, skeletal system development, organ morphogenesis, system development and skeletal system morphogenesis). The analyses of the upregulated genes did not indicate any significant BP (FDR < 0.05). However, with the downregulated genes, the same BP were identified when using all DE genes in the analysis, with a total of 26 coding genes explaining BCO in the tibia: ACAN, ALDH1A2, CDH7, CHAD, CHADL, COL11A1, COMP, CSGALNACT1, CYR61, FRZB, GAL3ST1, HAPLN1, IHH, KIF26B, LECT1, LPPR1, PDE6B, RBP4A, SERINC5, SFRP1, SOX8, SOX9, TENM2, THBS1, UCHL1 and WFIKKN2. In addition, seven transcription factors were also associated to BCO: NFATC2, MAFB, HIF1A-ARNT, EWSR1-FLI1, NFIC, TCF3 and NF-KAPPAB. Conclusions Our data show that osteochondral downregulated genes are potential molecular causes of BCO in broilers, and the bacterial process seems to be, in fact, a secondary condition. Sixteen genes responsible for bone and cartilage formation were downregulated in BCO-affected broilers being strong candidate genes to trigger this disorder.
Collapse
|
45
|
Jo SY, Domowicz MS, Henry JG, Schwartz NB. The Role of Dot1l in Prenatal and Postnatal Murine Chondrocytes and Trabecular Bone. JBMR Plus 2020; 4:e10254. [PMID: 32083237 PMCID: PMC7017886 DOI: 10.1002/jbm4.10254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis and osteoporosis are widely prevalent and have far-reaching public health implications. There is increasing evidence that epigenetics, in particular, histone 3 lysine 79 methyltransferase DOT1L, plays an important role in the cartilage and bone biology. In this study, we evaluated the role of Dot1l in the articular cartilage, growth plate, and trabecular bone utilizing conditional KO mouse models. We generated chondrocyte-specific constitutive and inducible conditional Dot1l KO mouse lines using Col2a1-Cre and Acan-CreER systems. Prenatal deletion of Dot1l in mouse chondrocytes led to perinatal mortality, accelerated ossification, and dysregulation of Col10a1 expression. Postnatal deletion of Dot1l in mouse chondrocytes resulted in trabecular bone loss decreased extracellular matrix production, and disruption of the growth plate. In addition, pharmacological inhibition of DOT1L in a progeria mouse model partially rescued the abnormal osseous phenotype. In conclusion, Dot1l is important in maintaining the growth plate, extracellular matrix production, and trabecular bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephanie Y Jo
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of RadiologyUniversity of ChicagoChicagoILUSA
| | | | - Judith G Henry
- Department of PediatricsUniversity of ChicagoChicagoILUSA
| | | |
Collapse
|
46
|
Abstract
Heterozygous mutations of the ACAN gene have been associated with a broad spectrum of non-lethal skeletal dysplasias, called Aggrecanopathies. We report a case of a child with severe inflammatory elbow involvement mimicking septic arthritis who carried the new ACAN missense variant c.6970 T > C, p.Trp2324Arg. The comprehensive clinical evaluation of the patient and his family, focused on the associated clinical features (facial dysmorphisms, short stature, brachydactily), led us to suspect a hereditary condition. Our findings suggest that Aggrecanopathies should be considered in children with familial short stature, poor growth spurt and joint involvement.
Collapse
|
47
|
Granadeiro L, Dirks RP, Ortiz-Delgado JB, Gavaia PJ, Sarasquete C, Laizé V, Cancela ML, Fernández I. Warfarin-exposed zebrafish embryos resembles human warfarin embryopathy in a dose and developmental-time dependent manner - From molecular mechanisms to environmental concerns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:559-571. [PMID: 31238190 DOI: 10.1016/j.ecoenv.2019.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Warfarin is the most worldwide used anticoagulant drug and rodenticide. Since it crosses placental barrier it can induce warfarin embryopathy (WE), a fetal mortality in neonates characterized by skeletal deformities in addition to brain hemorrhages. Although the effects of warfarin exposure in aquatic off target species were already described, the particular molecular toxicological mechanisms during early development are still unclear. Here, we used zebrafish (Danio rerio) to describe and compare the developmental effects of warfarin exposure (0, 15.13, 75.68 and 378.43 mM) on two distinct early developmental phases (embryos and eleuthero-embryos). Although exposure to both developmental phases induced fish mortality, only embryos exposed to the highest warfarin level exhibited features mimicking mammalian WE, e.g. high mortality, higher incidence of hemorrhages and altered skeletal development, among other effects. To gain insights into the toxic mechanisms underlying warfarin exposure, the transcriptome of embryos exposed to warfarin was explored through RNA-Seq and compared to that of control embryos. 766 differentially expressed (564 up- and 202 down-regulated) genes were identified. Gene Ontology analysis revealed particular cellular components (cytoplasm, extracellular matrix, lysosome and vacuole), biological processes (mainly amino acid and lipid metabolism and response to stimulus) and pathways (oxidative stress response and apoptosis signaling pathways) being significantly overrepresented in zebrafish embryos upon warfarin exposure. Protein-protein interaction further evidenced an altered redox system, blood coagulation and vasculogenesis, visual phototransduction and collagen formation upon warfarin exposure. The present study not only describes for the first time the WE in zebrafish, it provides new insights for a better risk assessment, and highlights the need for programming the rat eradication actions outside the fish spawning season to avoid an impact on off target fish community. The urge for the development of more species-specific anticoagulants for rodent pest control is also highlighted.
Collapse
Affiliation(s)
- Luis Granadeiro
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ron P Dirks
- ZF-screens B.V. J.H. Oortweg 19, 2333, CH Leiden, the Netherlands
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Paulo J Gavaia
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC) and Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, S/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
49
|
Hodax JK, Quintos JB, Gruppuso PA, Chen Q, Desai S, Jayasuriya CT. Aggrecan is required for chondrocyte differentiation in ATDC5 chondroprogenitor cells. PLoS One 2019; 14:e0218399. [PMID: 31206541 PMCID: PMC6576788 DOI: 10.1371/journal.pone.0218399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Aggrecan is an integral component of the extracellular matrix in cartilaginous tissues, including the growth plate. Heterozygous defects in the aggrecan gene have been identified as a cause of autosomal dominant short stature, bone age acceleration, and premature growth cessation. The mechanisms accounting for this phenotype remain unknown. We used ATDC5 cells, an established model of chondrogenesis, to evaluate the effects of aggrecan deficiency. ATDC5 aggrecan knockdown cell lines (AggKD) were generated using lentiviral shRNA transduction particles. Cells were stimulated with insulin/transferrin/selenium for up to 21 days to induce chondrogenesis. Control ATDC5 cells showed induction of Col2a1 starting at day 8 and induction of Col10a1 starting at day 12. AggKD cells had significantly reduced expression of Col2a1 and Col10a1 (p<0.0001) with only minimal increases in expression over time, indicating that chondrogenesis was markedly impaired. The induction of Col2a1 and Col10a1 was not rescued by culturing of AggKD cells in wells pre-conditioned with ATDC5 extracellular matrix or in co-culture with wild-type ATDC5 cells. We interpret our studies as indicating that aggrecan has an integral role in chondrogenesis that may be mediated through intracellular mechanisms.
Collapse
Affiliation(s)
- Juanita K. Hodax
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Jose Bernardo Quintos
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Philip A. Gruppuso
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Qian Chen
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Salomi Desai
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Chathuraka T. Jayasuriya
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
50
|
Kantaputra PN, Pruksametanan A, Phondee N, Hutsadaloi A, Intachai W, Kawasaki K, Ohazama A, Ngamphiw C, Tongsima S, Ketudat Cairns JR, Tripuwabhrut P. ADAMTSL1
and mandibular prognathism. Clin Genet 2019; 95:507-515. [DOI: 10.1111/cge.13519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Piranit N. Kantaputra
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Dentaland Clinic; Chiang Mai Thailand
| | - Apitchaya Pruksametanan
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nattapol Phondee
- Department of Dental Health; Srisangwan Hospital; Mae Hon Son Thailand
| | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Katsushig Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application; Suranaree University of Technology; Nakhon Ratchasima Thailand
| | - Polbhat Tripuwabhrut
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|