1
|
Biswas P, Bako JA, Liston JB, Yu H, Wat LW, Miller CJ, Gordon MD, Huan T, Stanley M, Rideout EJ. Insulin/insulin-like growth factor signaling pathway promotes higher fat storage in Drosophila females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.623936. [PMID: 40342968 PMCID: PMC12060994 DOI: 10.1101/2024.11.18.623936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In Drosophila , adult females store more fat than males. While the mechanisms that restrict body fat in males are becoming clearer, less is known about how females achieve higher fat storage. Here, we perform a detailed investigation of the mechanisms that promote higher fat storage in females. We show greater intake of dietary sugar supports higher fat storage due to female-biased remodeling of the fat body lipidome. Dietary sugar stimulates a female-specific increase in Drosophila insulin-like peptide 3 (Dilp3), which acts together with greater peripheral insulin sensitivity to augment insulin/insulin-like growth factor signaling pathway (IIS) activity in adult females. Indeed, Dilp3 overexpression prevented the female-biased decrease in body fat after removal of dietary sugar. Given that adult-specific IIS inhibition caused a female-biased decrease in body fat, our data reveal IIS as a key determinant of female fat storage.
Collapse
|
2
|
Vachias C, Tourlonias C, Grelée L, Gueguen N, Renaud Y, Venugopal P, Richard G, Pouchin P, Brasset E, Mirouse V. Gap junctions allow transfer of metabolites between germ cells and somatic cells to promote germ cell growth in the Drosophila ovary. PLoS Biol 2025; 23:e3003045. [PMID: 39965028 PMCID: PMC11864552 DOI: 10.1371/journal.pbio.3003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Gap junctions allow the exchange of small molecules between cells. How this function could be used to promote cell growth is not yet fully understood. During Drosophila ovarian follicle development, germ cells, which are surrounded by epithelial somatic cells, undergo massive growth. We found that this growth depends on gap junctions between these cell populations, with a requirement for Innexin4 and Innexin2, in the germ cells and the somatic cells, respectively. Translatomic analyses revealed that somatic cells express enzymes and transporters involved in amino acid metabolism that are absent in germ cells. Among them, we identified a putative amino acid transporter required for germline growth. Its ectopic expression in the germline can partially compensate for its absence or the one of Innexin2 in somatic cells. Moreover, affecting either gap junctions or the import of some amino acids in somatic cells induces P-bodies in the germ cells, a feature usually associated with an arrest of translation. Finally, in somatic cells, innexin2 expression and gap junction assembly are regulated by the insulin receptor/PI3K kinase pathway, linking the growth of the two tissues. Overall, these results support the view that metabolic transfer through gap junction promotes cell growth and illustrate how such a mechanism can be integrated into a developmental program, coupling growth control by extrinsic systemic signals with the intrinsic coordination between cell populations.
Collapse
Affiliation(s)
- Caroline Vachias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Camille Tourlonias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Louis Grelée
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Nathalie Gueguen
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Parvathy Venugopal
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Emilie Brasset
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
3
|
Bandyadka S, Lebo DPV, Mondragon AA, Serizier SB, Kwan J, Peterson JS, Chasse AY, Jenkins VK, Calikyan A, Ortega AJ, Campbell JD, Emili A, McCall K. Multi-modal comparison of molecular programs driving nurse cell death and clearance in Drosophila melanogaster oogenesis. PLoS Genet 2025; 21:e1011220. [PMID: 39752622 PMCID: PMC11734916 DOI: 10.1371/journal.pgen.1011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally. Alternatively, stressors such as starvation can induce the death of nurse cells earlier in mid-oogenesis, manifesting apoptosis signatures, followed by their engulfment by epithelial follicle cells. To identify and contrast the molecular pathways underlying these morphologically and genetically distinct cell death paradigms, both mediated by follicle cells, we compared their genome-wide transcriptional, translational, and secretion profiles before and after differentiating to acquire a phagocytic capability, as well as during well-fed and nutrient-deprived conditions. By coupling the GAL4-UAS system to Translating Ribosome Affinity Purification (TRAP-seq) and proximity labeling (HRP-KDEL) followed by Liquid Chromatography tandem mass-spectrometry, we performed high-throughput screens to identify pathways selectively activated or repressed by follicle cells to employ nurse cell-clearance routines. We also integrated two publicly available single-cell RNAseq atlases of the Drosophila ovary to define the transcriptomic profiles of follicle cells. In this report, we describe the genes and major pathways identified in the screens and the striking consequences to Drosophila melanogaster oogenesis caused by RNAi perturbation of prioritized candidates. To our knowledge, our study is the first of its kind to comprehensively characterize two distinct apoptotic and non-apoptotic cell death paradigms in the same multi-cellular system. Beyond molecular differences in cell death, our investigation may also provide insights into how key systemic trade-offs are made between survival and reproduction when faced with physiological stress.
Collapse
Affiliation(s)
- Shruthi Bandyadka
- Graduate Program in Bioinformatics, Boston University, Boston Massachusetts, United States of America
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Diane P. V. Lebo
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Albert A. Mondragon
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Sandy B. Serizier
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Julian Kwan
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
| | - Jeanne S. Peterson
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Alexandra Y. Chasse
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Boston University, Boston Massachusetts, United States of America
| | - Victoria K. Jenkins
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Anoush Calikyan
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Anthony J. Ortega
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| | - Joshua D. Campbell
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
| | - Andrew Emili
- Department of Biology, Boston University, Boston Massachusetts, United States of America
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston Massachusetts, United States of America
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kimberly McCall
- Department of Biology, Boston University, Boston Massachusetts, United States of America
| |
Collapse
|
4
|
Bose M, Rankovic B, Mahamid J, Ephrussi A. An architectural role of specific RNA-RNA interactions in oskar granules. Nat Cell Biol 2024; 26:1934-1942. [PMID: 39354131 PMCID: PMC11567897 DOI: 10.1038/s41556-024-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
Ribonucleoprotein (RNP) granules are membraneless condensates that organize the intracellular space by compartmentalization of specific RNAs and proteins. Studies have shown that RNA tunes the phase behaviour of RNA-binding proteins, but the role of intermolecular RNA-RNA interactions in RNP granules in vivo remains less explored. Here we determine the role of a sequence-specific RNA-RNA kissing-loop interaction in assembly of mesoscale oskar RNP granules in the female Drosophila germline. We show that a two-nucleotide mutation that disrupts kissing-loop-mediated oskar messenger RNA dimerization impairs condensate formation in vitro and oskar granule assembly in the developing oocyte, leading to defective posterior localization of the RNA and abrogation of oskar-associated processing bodies upon nutritional stress. This specific trans RNA-RNA interaction acts synergistically with the scaffold RNA-binding protein, Bruno, in driving condensate assembly. Our study highlights the architectural contribution of an mRNA and its specific secondary structure and tertiary interactions to the formation of an RNP granule that is essential for embryonic development.
Collapse
Affiliation(s)
- Mainak Bose
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Branislava Rankovic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
5
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
6
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
7
|
Wippich F, Vaishali, Hennrich ML, Ephrussi A. Nutritional stress-induced regulation of microtubule organization and mRNP transport by HDAC1 controlled α-tubulin acetylation. Commun Biol 2023; 6:776. [PMID: 37491525 PMCID: PMC10368696 DOI: 10.1038/s42003-023-05138-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
In response to nutritional stress, microtubules in cells of the Drosophila female germline are depleted from the cytoplasm and accumulate cortically. This triggers aggregation of mRNPs into large processing bodies (P-bodies) and oogenesis arrest. Here, we show that hyperacetylation of α-tubulin at lysine 40 (K40) alters microtubule dynamics and P-body formation. We found that depletion of histone deacetylase 1 (HDAC1) by RNAi phenocopies the nutritional stress response, causing α-tubulin hyperacetylation and accumulation of maternally deposited mRNPs in P-bodies. Through in vitro and in vivo studies, we identify HDAC1 as a direct regulator of α-tubulin K40 acetylation status. In well-fed flies, HDAC1 maintains low levels of α-tubulin acetylation, enabling the microtubule dynamics required for mRNP transport. Using quantitative phosphoproteomics we identify nutritional stress-induced changes in protein phosphorylation that act upstream of α-tubulin acetylation, including phosphorylation of HDAC1 at S391, which reduces its ability to deacetylate α-tubulin. These results reveal that Drosophila HDAC1 senses and relays the nutritional status, which regulates germline development through modulation of cytoskeleton dynamics.
Collapse
Affiliation(s)
- Frank Wippich
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Vaishali
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany
- Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| |
Collapse
|
8
|
Zhou Y, Guan J, Meng G, Fan W, Ge C, Niu C, Cheng Y, Fu Y, Lu Y, Wei Y. The RagA GTPase protects young egg chambers in Drosophila. Cell Rep 2023; 42:112631. [PMID: 37302067 DOI: 10.1016/j.celrep.2023.112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
The preservation of female fertility under unfavorable conditions is essential for animal reproduction. Inhibition of the target of rapamycin complex 1 (TORC1) is indispensable for Drosophila young egg chamber maintenance under nutrient starvation. Here, we show that knockdown of RagA results in young egg chamber death independent of TORC1 hyperactivity. RagA RNAi ovaries have autolysosomal acidification and degradation defects, which make the young egg chambers sensitive to autophagosome augmentation. Meanwhile, RagA RNAi ovaries have nuclear-localized Mitf, which promotes autophagic degradation and protects young egg chambers under stress. Interestingly, GDP-bound RagA rescues autolysosome defects, while GTP-bound RagA rescues Mitf nuclear localization in RagA RNAi young egg chambers. Moreover, Rag GTPase activity, rather than TORC1 activity, controls Mitf cellular localization in the Drosophila germ line. Our work suggests that RagA separately controls autolysosomal acidification and Mitf activity in the Drosophila young egg chambers.
Collapse
Affiliation(s)
- Ying Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Guan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Meng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Weikang Fan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Churui Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chunmei Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yang Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yuanyuan Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Lu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Youheng Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Drosophila cells that express octopamine receptors can either inhibit or promote oviposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539296. [PMID: 37205438 PMCID: PMC10187210 DOI: 10.1101/2023.05.03.539296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.
Collapse
|
10
|
Lovegrove MR, Dearden PK, Duncan EJ. Honeybee queen mandibular pheromone induces a starvation response in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 154:103908. [PMID: 36657589 DOI: 10.1016/j.ibmb.2023.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Eusocial insect societies are defined by the reproductive division of labour, a social structure that is generally enforced by the reproductive dominant(s) or 'queen(s)'. Reproductive dominance is maintained through behavioural dominance or production of queen pheromones, or a mixture of both. Queen mandibular pheromone (QMP) is a queen pheromone produced by queen honeybees (Apis mellifera) which represses reproduction in worker honeybees. How QMP acts to repress worker reproduction, the mechanisms by which this repression is induced, and how it has evolved this activity, remain poorly understood. Surprisingly, QMP is capable of repressing reproduction in non-target arthropods. Here we show that in Drosophila melanogaster QMP treatment mimics the starvation response, disrupting reproduction. QMP exposure induces an increase in food consumption and activation of checkpoints in the ovary that reduce fecundity and depresses insulin signalling. The magnitude of these effects is indistinguishable between QMP-treated and starved individuals. As QMP triggers a starvation response in an insect diverged from honeybees, we propose that QMP originally evolved by co-opting nutrition signalling pathways to regulate reproduction.
Collapse
Affiliation(s)
- Mackenzie R Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand.
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Zanco B, Rapley L, Johnstone JN, Dedman A, Mirth CK, Sgrò CM, Piper MDW. Drosophila melanogaster females prioritise dietary sterols for producing viable eggs. JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104472. [PMID: 36549582 DOI: 10.1016/j.jinsphys.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Limiting calories or specific nutrients without malnutrition, otherwise known as dietary restriction (DR), has been shown to extend lifespan and reduce reproduction across a broad range of taxa. Our recent findings in Drosophila melanogaster show that supplementing flies on macronutrient-rich diets with additional cholesterol can extend lifespan to the same extent as DR, while also sustaining high egg production. Thus, DR may be beneficial for lifespan because it reduces egg production which in turn reduces the mother's demand for sterols, thus supporting longer lifespan. It is also possible that mothers live longer and lay more eggs on high sterol diets because the diet triggers enhanced somatic maintenance and promotes egg production, but at the cost of diminished egg quality. To test this, we measured the viability of eggs and development of offspring from mothers fed either cholesterol-sufficient or cholesterol-limiting diets. We found that even when the mother's diet was completely devoid of cholesterol, viable egg production persisted for ∼10 days. Furthermore, we show that sterol-supplemented flies with long lives lay eggs that have high viability and the same developmental potential as those laid by shorter lived mothers on sterol limiting diets. These findings suggest that offspring viability is not a hidden cost of lifespan extension seen in response to dietary sterol supplementation.
Collapse
Affiliation(s)
- Brooke Zanco
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Lisa Rapley
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Joshua N Johnstone
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Amy Dedman
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton 3800, Australia.
| |
Collapse
|
12
|
Yue S, Wang L, DeMartino GN, Zhao F, Liu Y, Sieber MH. Highly conserved shifts in ubiquitin-proteasome system (UPS) activity drive mitochondrial remodeling during quiescence. Nat Commun 2022; 13:4462. [PMID: 35915093 PMCID: PMC9343427 DOI: 10.1038/s41467-022-32206-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Defects in cellular proteostasis and mitochondrial function drive many aspects of infertility, cancer, and other age-related diseases. All of these conditions rely on quiescent cells, such as oocytes and adult stem cells, that reduce their activity and remain dormant as part of their roles in tissue homeostasis, reproduction, and even cancer recurrence. Using a multi-organism approach, we show that dynamic shifts in the ubiquitin proteasome system drive mitochondrial remodeling during cellular quiescence. In contrast to the commonly held view that the ubiquitin-proteasome system (UPS) is primarily regulated by substrate ubiquitination, we find that increasing proteasome number and their recruitment to mitochondria support mitochondrial respiratory quiescence (MRQ). GSK3 triggers proteasome recruitment to the mitochondria by phosphorylating outer membrane proteins, such as VDAC, and suppressing mitochondrial fatty acid oxidation. This work defines a process that couples dynamic regulation of UPS activity to coordinated shifts in mitochondrial metabolism in fungi, Drosophila, and mammals during quiescence. Dynamic regulation of cellular proteostasis is linked to the metabolic state of quiescent cells in vivo. Here, the authors show, in multiple organisms, that shifts in the ubiquitin-proteome system are coupled to mitochondrial metabolic changes and subsequent respiratory quiescence.
Collapse
Affiliation(s)
- Sibiao Yue
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - FangZhou Zhao
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Yi Liu
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Matthew H Sieber
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390, TX, USA.
| |
Collapse
|
13
|
Wei W, Chen Q, Liu M, Sheng Y, OuYang Q, Feng W, Yang X, Ding L, Su S, Zhang J, Fang L, Vidal-Puig A, Wang HY, Chen S. TRIM24 is an insulin-responsive regulator of P-bodies. Nat Commun 2022; 13:3972. [PMID: 35803934 PMCID: PMC9270398 DOI: 10.1038/s41467-022-31735-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin is a potent inducer of mRNA transcription and translation, contributing to metabolic regulation. Insulin has also been suggested to regulate mRNA stability through the processing body (P-body) molecular machinery. However, whether and how insulin regulates mRNA stability via P-bodies is not clear. Here we show that the E3-ligase TRIM24 is a critical factor linking insulin signalling to P-bodies. Upon insulin stimulation, protein kinase B (PKB, also known as Akt) phosphorylates TRIM24 and stimulates its shuttling from the nucleus into the cytoplasm. TRIM24 interacts with several critical components of P-bodies in the cytoplasm, promoting their polyubiquitylation, which consequently stabilises Pparγ mRNA. Inactivation of TRIM24 E3-ligase activity or prevention of its phosphorylation via knockin mutations in mice promotes hepatic Pparγ degradation via P-bodies. Consequently, both knockin mutations alleviate hepatosteatosis in mice fed on a high-fat diet. Our results demonstrate the critical role of TRIM24 in linking insulin signalling to P-bodies and have therapeutic implications for the treatment of hepatosteatosis.
Collapse
Affiliation(s)
- Wen Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Yang Sheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Longfei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Jingzi Zhang
- School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Lei Fang
- School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Antonio Vidal-Puig
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
14
|
Kim J, Hyun M, Hibi M, You YJ. Maintenance of quiescent oocytes by noradrenergic signals. Nat Commun 2021; 12:6925. [PMID: 34836956 PMCID: PMC8626438 DOI: 10.1038/s41467-021-26945-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
All females adopt an evolutionary conserved reproduction strategy; under unfavorable conditions such as scarcity of food or mates, oocytes remain quiescent. However, the signals to maintain oocyte quiescence are largely unknown. Here, we report that in four different species - Caenorhabditis elegans, Caenorhabditis remanei, Drosophila melanogaster, and Danio rerio - octopamine and norepinephrine play an essential role in maintaining oocyte quiescence. In the absence of mates, the oocytes of Caenorhabditis mutants lacking octopamine signaling fail to remain quiescent, but continue to divide and become polyploid. Upon starvation, the egg chambers of D. melanogaster mutants lacking octopamine signaling fail to remain at the previtellogenic stage, but grow to full-grown egg chambers. Upon starvation, D. rerio lacking norepinephrine fails to maintain a quiescent primordial follicle and activates an excessive number of primordial follicles. Our study reveals an evolutionarily conserved function of the noradrenergic signal in maintaining quiescent oocytes.
Collapse
Affiliation(s)
- Jeongho Kim
- grid.202119.90000 0001 2364 8385Department of Biological Sciences, Inha University, Incheon, 22212 South Korea
| | - Moonjung Hyun
- grid.224260.00000 0004 0458 8737Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.418982.e0000 0004 5345 5340Present Address: Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834 South Korea
| | - Masahiko Hibi
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Young-Jai You
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
15
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
17
|
Sheard KM, Thibault-Sennett SA, Sen A, Shewmaker F, Cox RT. Clueless forms dynamic, insulin-responsive bliss particles sensitive to stress. Dev Biol 2019; 459:149-160. [PMID: 31837288 DOI: 10.1016/j.ydbio.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
Drosophila Clueless (Clu) is a ribonucleoprotein that directly affects mitochondrial function. Loss of clu causes mitochondrial damage, and Clu associates with proteins on the mitochondrial outer membrane. Clu's subcellular pattern is diffuse throughout the cytoplasm, but Clu also forms large mitochondria-associated particles. Clu particles are reminiscent of ribonucleoprotein particles such as stress granules and processing bodies. Ribonucleoprotein particles play critical roles in the cell by regulating mRNAs spatially and temporally. Here, we show that Clu particles are unique, highly dynamic and rapidly disperse in response to stress in contrast to processing bodies and autophagosomes. In addition, Clu particle formation is dependent on diet as ovaries from starved females no longer contain Clu particles, and insulin signaling is necessary and sufficient for Clu particle formation. Oxidative stress also disperses particles. Since Clu particles are only present under optimal conditions, we have termed them "bliss particles". We also demonstrate that many aspects of Clu function are conserved in the yeast homolog Clu1p. These observations identify Clu particles as stress-sensitive cytoplasmic particles whose absence corresponds with altered cell stress and mitochondrial localization.
Collapse
Affiliation(s)
- K M Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - S A Thibault-Sennett
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - A Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - F Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - R T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
18
|
Basar MA, Williamson K, Roy SD, Finger DS, Ables ET, Duttaroy A. Spargel/dPGC-1 is essential for oogenesis and nutrient-mediated ovarian growth in Drosophila. Dev Biol 2019; 454:97-107. [PMID: 31251895 DOI: 10.1016/j.ydbio.2019.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
Dietary proteins are crucial for oogenesis. The Target of Rapamycin (TOR) is a major nutrient sensor controlling organismal growth and fertility, but the downstream effectors of TOR signaling remain largely uncharacterized. We previously identified Drosophila Spargel/dPGC-1 as a terminal effector of the TOR-TSC pathway, and now report that Spargel connects nutrition to oogenesis. We found that Spargel is expressed predominantly in the ovaries of adult flies, and germline spargel knockdown inhibits cyst growth, ultimately leading to egg chamber degeneration and female sterility. In situ staining demonstrated nuclear localization of Spargel in the nurse cells and follicle cells of the ovariole. Furthermore, Spargel/dPGC-1 expression is influenced by dietary yeast concentration and TOR signaling, suggesting Spargel/dPGC-1 might transmit nutrient-mediated signals into ovarian growth. We propose that potentiating Spargel/dPGC-1 expression in the ovary is instrumental in nutrient-mediated regulation of oogenesis.
Collapse
Affiliation(s)
- Mohammed Abul Basar
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Kishana Williamson
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Swagota D Roy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Danielle S Finger
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Atanu Duttaroy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|
19
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
20
|
Schisa JA. Germ Cell Responses to Stress: The Role of RNP Granules. Front Cell Dev Biol 2019; 7:220. [PMID: 31632971 PMCID: PMC6780003 DOI: 10.3389/fcell.2019.00220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to respond to stress is critical to survival for animals. While stress responses have been studied at both organismal and cellular levels, less attention has been given to the effect of stress on the germ line. Effective germ line adaptations to stress are essential to the propagation of a species. Recent studies suggest that germ cells share some cellular responses to stress with somatic cells, including the assembly of RNP granules, but may also have unique requirements. One fundamental difference between oocytes and sperm, as well as most somatic cells, is the long lifespan of oocytes. Since women are born with all of their eggs, oocytes must maintain their cellular quality over decades prior to fertilization. This prolonged meiotic arrest is one type of stress that eventually contributes to decreased fertility in older women. Germ cell responses to nutritional stress and heat stress have also been well-characterized using model systems. Here we review our current understanding of how germ cells respond to stress, with an emphasis on the dynamic assembly of RNP granules that may be adaptive. We compare and contrast stress responses of male gametes with those of female gametes, and discuss how the dynamic cellular remodeling of the germ line can impact the regulation of gene expression. We also discuss the implications of recent in vitro studies of ribonucleoprotein granule assembly on our understanding of germ line responses to stress, and the gaps that remain in our understanding of the function of RNP granules during stress.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
21
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
22
|
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol 2019; 454:85-95. [PMID: 31153832 DOI: 10.1016/j.ydbio.2019.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Most mosquitoes, including Aedes aegypti, only produce eggs after blood feeding on a vertebrate host. Oogenesis in A. aegypti consists of a pre-vitellogenic stage before blood feeding and a vitellogenic stage after blood feeding. Primary egg chambers remain developmentally arrested during the pre-vitellogenic stage but complete oogenesis to form mature eggs during the vitellogenic stage. In contrast, the signaling factors that maintain primary egg chambers in pre-vitellogenic arrest or that activate vitellogenic growth are largely unclear. Prior studies showed that A. aegypti females release insulin-like peptide 3 (ILP3) and ovary ecdysteroidogenic hormone (OEH) from brain neurosecretory cells after blood feeding. Here, we report that primary egg chambers exit pre-vitellogenic arrest by 8 h post-blood meal as evidenced by proliferation of follicle cells, endoreplication of nurse cells, and formation of cytoophidia. Ex vivo assays showed that ILP3 and OEH stimulate primary egg chambers to exit pre-vitellogenic arrest in the presence of nutrients but not in their absence. Characterization of associated pathways indicated that activation of insulin/insulin growth factor signaling (IIS) by ILP3 or OEH inactivated glycogen synthase kinase 3 (GSK3) via phosphorylation by phosphorylated Akt. GSK3 inactivation correlated with accumulation of the basic helix-loop-helix transcription factor Max and primary egg chambers exiting pre-vitellogenic arrest. Direct inhibition of GSK3 by CHIR-99021 also stimulated Myc/Max accumulation and primary egg chambers exiting pre-vitellogenic arrest. Collectively, our results identify GSK3 as a key factor in regulating the pre- and vitellogenic stages of oogenesis in A. aegypti.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa T Mattee
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Mirth CK, Nogueira Alves A, Piper MD. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:49-57. [PMID: 31109673 DOI: 10.1016/j.cois.2018.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Nutrition plays a central role in fecundity, regulating the onset of reproductive maturity, egg production, and the survival and health of offspring from insects to humans. Although decades of research have worked to uncover how nutrition mediates these effects, it has proven difficult to disentangle the relative role of nutrients as the raw material for egg and offspring development versus their role in stimulating endocrine cascades necessary to drive development. This has been further complicated by the fact that both nutrients and the signalling cascades they regulate interact in complex ways to control fecundity. Separating the two effects becomes important when trying to understand how fecundity is regulated, and in devising strategies to offset the negative effects of nutrition on reproductive health. In this review, we use the extensive literature on egg development in the fruit fly Drosophila melanogaster to explore how the nutrients from food provide the building blocks and stimulate signalling cascades necessary for making an egg.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| | - André Nogueira Alves
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew Dw Piper
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
24
|
Lenaerts C, Monjon E, Van Lommel J, Verbakel L, Vanden Broeck J. Peptides in insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:58-64. [PMID: 31109674 DOI: 10.1016/j.cois.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The physiological control of reproduction in insects depends on a combination of environmental and internal cues. In the adult stage, insects become sexually mature and generate gametes. In females, the latter process is designated as oogenesis. Peptides are a versatile class of extracellular signalling molecules that regulate many processes, including oogenesis. At present, the best documented physiological control mechanism of insect oogenesis is the insulin-related peptide signalling pathway. It regulates different stages of the process and provides a functional link between nutritional status and reproduction. Several other peptides have been shown to exert gonadoregulatory activities, but in most cases their exact mode of action still has to be unravelled and their effects on oogenesis could be direct or indirect. Some regulatory peptides, such as the Drosophila sex peptide, are being transferred from the male to the female during the mating process.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Singh T, Lee EH, Hartman TR, Ruiz-Whalen DM, O'Reilly AM. Opposing Action of Hedgehog and Insulin Signaling Balances Proliferation and Autophagy to Determine Follicle Stem Cell Lifespan. Dev Cell 2018; 46:720-734.e6. [PMID: 30197240 PMCID: PMC6159899 DOI: 10.1016/j.devcel.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Egg production declines with age in many species, a process linked with stem cell loss. Diet-dependent signaling has emerged as critical for stem cell maintenance during aging. Follicle stem cells (FSCs) in the Drosophila ovary are exquisitely responsive to diet-induced signals including Hedgehog (Hh) and insulin-IGF signaling (IIS), entering quiescence in the absence of nutrients and initiating proliferation rapidly upon feeding. Although highly proliferative FSCs generally exhibit an extended lifespan, we find that constitutive Hh signaling drives FSC loss and premature sterility despite high proliferative rates. This occurs due to Hh-mediated induction of autophagy in FSCs via a Ptc-dependent, Smo-independent mechanism. Hh-dependent autophagy increases during aging, triggering FSC loss and consequent reproductive arrest. IIS is necessary and sufficient to suppress Hh-induced autophagy, promoting a stable proliferative state. These results suggest that opposing action of diet-responsive IIS and Hh signals determine reproductive lifespan by modulating the proliferation-autophagy balance in FSCs during aging.
Collapse
Affiliation(s)
- Tanu Singh
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19111, USA
| | - Eric H Lee
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tiffiney R Hartman
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Dara M Ruiz-Whalen
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alana M O'Reilly
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
26
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
27
|
Mensah LB, Goberdhan DCI, Wilson C. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells. Biol Open 2017; 6:563-570. [PMID: 28302666 PMCID: PMC5450313 DOI: 10.1242/bio.022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Insulin and insulin-like growth factor signalling (IIS), which is primarily mediated by the PI3-kinase (PI3K)/PTEN/Akt kinase signalling cassette, is a highly evolutionarily conserved pathway involved in co-ordinating growth, development, ageing and nutrient homeostasis with dietary intake. It controls transcriptional regulators, in addition to promoting signalling by mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which stimulates biosynthesis of proteins and other macromolecules, and drives organismal growth. Previous studies in nutrient-storing germline nurse cells of the Drosophila ovary showed that a cytoplasmic pool of activated phosphorylated Akt (pAkt) controlled by Pten, an antagonist of IIS, cell-autonomously regulates accumulation of large lipid droplets in these cells at late stages of oogenesis. Here, we show that the large lipid droplet phenotype induced by Pten mutation is strongly suppressed when mTor function is removed. Furthermore, nurse cells lacking either Tsc1 or Tsc2, which negatively regulate mTORC1 activity, also accumulate large lipid droplets via a mechanism involving Rheb, the downstream G-protein target of TSC2, which positively regulates mTORC1. We conclude that elevated IIS/mTORC1 signalling is both necessary and sufficient to induce large lipid droplet formation in late-stage nurse cells, suggesting roles for this pathway in aspects of lipid droplet biogenesis, in addition to control of lipid metabolism.
Collapse
Affiliation(s)
- Lawrence B Mensah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
28
|
Davis M, Montalbano A, Wood MP, Schisa JA. Biphasic adaptation to osmotic stress in the C. elegans germ line. Am J Physiol Cell Physiol 2017; 312:C741-C748. [PMID: 28381521 DOI: 10.1152/ajpcell.00364.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
Cells respond to environmental stress in multiple ways. In the germ line, heat shock and nutritive stress trigger the assembly of large ribonucleoprotein (RNP) granules via liquid-liquid phase separation (LLPS). The RNP granules are hypothesized to maintain the quality of oocytes during stress. The goal of this study was to investigate the cellular response to glucose in the germ line and determine if it is an osmotic stress response. We found that exposure to 500 mM glucose induces the assembly of RNP granules in the germ line within 1 h. Interestingly, the RNP granules are maintained for up to 3 h; however, they dissociate after longer periods of stress. The RNP granules include processing body and stress granule proteins, suggesting shared functions. Based on several lines of evidence, the germ line response to glucose largely appears to be an osmotic stress response, thus identifying osmotic stress as a trigger of LLPS. Although RNP granules are not maintained beyond 3 h of osmotic stress, the quality of oocytes does not appear to decrease after longer periods of stress, suggesting a secondary adaptation in the germ line. We used an indirect marker of glycerol and observed high levels after 5 and 20 h of glucose exposure. Moreover, in gpdh-1;gpdh-2 germ lines, glycerol levels are reduced concomitant with RNP granules being maintained for an extended period. We speculate that increased glycerol levels may function as a secondary osmoregulatory adaptive response in the germ line, following a primary response of RNP granule assembly.
Collapse
Affiliation(s)
- Michael Davis
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Andrea Montalbano
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Megan P Wood
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| |
Collapse
|
29
|
Hsu HJ, Drummond-Barbosa D. A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 2017; 23-24:13-21. [PMID: 28093350 DOI: 10.1016/j.gep.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ∼60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a collection of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Gáspár I, Sysoev V, Komissarov A, Ephrussi A. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 2016; 36:319-333. [PMID: 28028052 PMCID: PMC5286366 DOI: 10.15252/embj.201696038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport‐competent mRNPs. We show that the posterior‐targeting kinesin‐1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein‐dependent transport from the nurse cells into the oocyte. We demonstrate that kinesin‐1 recruitment requires the DmTropomyosin1‐I/C isoform, an atypical RNA‐binding tropomyosin that binds directly to dimerizing oskar 3′UTRs. Finally, we show that a small but dynamically changing subset of oskar mRNPs gets loaded with inactive kinesin‐1 and that the motor is activated during mid‐oogenesis by the functionalized spliced oskar RNA localization element. This inefficient, dynamic recruitment of Khc decoupled from cargo‐dependent motor activation constitutes an optimized, coordinated mechanism of mRNP transport, by minimizing interference with other cargo‐transport processes and between the cargo‐associated dynein and kinesin‐1.
Collapse
Affiliation(s)
- Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vasiliy Sysoev
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Artem Komissarov
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
32
|
Oogenesis in the Bemisia tabaci MEAM1 species complex. Micron 2016; 83:1-10. [PMID: 26826802 DOI: 10.1016/j.micron.2016.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
The whitefly Bemisia tabaci MEAM1 species complex has invaded several parts of the world in the past 30 years and replaced native whitefly populations in the invaded regions, including certain areas of China. One of the possible reasons for the invasion is that MEAM1 whiteflies are more fecund than native species. However, the factors that affect the reproduction of the B. tabaci cryptic species are not clearly known. The regulation of oogenesis is thought to be one of the essential processes for egg formation and ovary development and could affect its population dynamics. In this study, the ovariole structure and oogenesis of the MEAM1 species complex was examined using light and transmission electron microscopy. Telotrophic ovarioles were observed in the MEAM1 species complex. Each ovariole had two well defined regions: the tropharium and the vitellarium. The tropharium always had more than ten trophocytes. The development of a single oocyte in the vitellarium has four phases: oocyte formation, previtellogenesis, vitellogenesis and choriogenesis. Two arrested oocytes, follicular cells and uncompleted oocytes were separated from the tropharium by microtubule and microfilaments. Early previtellogenesis oocytes absorbed nutrients and endosymbiont bacteria through a nutritive cord. However, the vitellogenesis of oocytes transmitted Vg through both the nutritive cord and the space between follicular cells. Each mature oocyte with deposited yolk proteins had only one bacteriocyte and was surrounded by a single layer of follicular cells. The oogenesis in the B. tabaci MEAM1 species complex concluded with the differentiation of oocytes, the transport of yolk and endosymbionts as well as the development and maturation of oocytes. This result provides important information that further defines the regulation of oogenesis in the B. tabaci complex.
Collapse
|
33
|
Peterson JS, Timmons AK, Mondragon AA, McCall K. The End of the Beginning: Cell Death in the Germline. Curr Top Dev Biol 2015; 114:93-119. [PMID: 26431565 DOI: 10.1016/bs.ctdb.2015.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Programmed cell death occurs in the germline of many organisms, both as an essential part of development and throughout adult life. Germline cell death can be apoptotic or nonapoptotic, depending on the stimulus or stage of development. Here, we focus on the Drosophila ovary, which is a powerful model for studying diverse types of cell death. In Drosophila, the death of primordial germ cells occurs normally during embryonic development, and germline nurse cells are programmed to die during oocyte development in adult flies. Cell death of previtellogenic egg chambers in adults can also be induced by starvation or other environmental cues. Mid-oogenesis seems to be particularly sensitive to such cues and has been proposed to serve as a checkpoint to avoid the energetically expensive cost of egg production. After the germline dies in mid-oogenesis, the remnants are engulfed by an epithelial layer of follicle cells; thus, the fly ovary also serves as a highly tractable model for engulfment by epithelial cells. These examples of cell death in the fly ovary share many similarities to the types of cell death seen in the mammalian germline. Recent progress in elucidating the molecular mechanisms of cell death in the germline is discussed.
Collapse
Affiliation(s)
- Jeanne S Peterson
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Allison K Timmons
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|