1
|
Tower Z, Chang H. Technical Considerations for Detecting Protein-Protein Interactions Using Proximity Ligation Assay. J Proteome Res 2025; 24:2564-2568. [PMID: 40211936 DOI: 10.1021/acs.jproteome.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Proximity ligation assay has been widely used to detect protein-protein interaction in cells and tissues. While with great sensitivity, its specificity was often neglected. Here, we report the existence of varying levels of false positives observed with this assay, most likely due to its high sensitivity. We also provide suggestions to minimize false positives for more accurate detection of protein-protein interactions, especially for membrane proteins. These suggestions include co-staining target proteins, using various negative controls and suitable antibodies, avoiding detergents if possible, and validating interactions with complementary methods.
Collapse
Affiliation(s)
- Zach Tower
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- William S. Middleton VA Medical Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Kalyanakrishnan K, Beaudin A, Jetté A, Ghezelbash S, Hotea DI, Chen J, Lefrançois P, Laurin M. ARHGEF3 Regulates Hair Follicle Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612256. [PMID: 39314354 PMCID: PMC11419159 DOI: 10.1101/2024.09.13.612256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During embryogenesis, cells arrange into precise patterns that enable tissues and organs to develop specialized functions. Despite its critical importance, the molecular choreography behind these collective cellular behaviors remains elusive, posing a major challenge in developmental biology and limiting advances in regenerative medicine. By using the mouse hair follicle as a mini-organ system to study the formation of bud-like structures during embryonic development, our work uncovers a crucial role for the Rho GTPase regulator ARHGEF3 in hair follicle morphogenesis. We demonstrate that Arhgef3 expression is upregulated at the onset of hair follicle placode formation. In Arhgef3 knockout animals, we observed defects in placode compaction, leading to impaired hair follicle downgrowth. Through cell culture models, we show that ARHGEF3 promotes F-actin accumulation at the cell cortex and P-cadherin enrichment at cell-cell junctions. Collectively, our study identifies ARHGEF3 as a new regulator of cell shape rearrangements during hair placode morphogenesis, warranting further exploration of its role in other epithelial appendages that arise from similar developmental processes.
Collapse
Affiliation(s)
- Krithika Kalyanakrishnan
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Amy Beaudin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Alexandra Jetté
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
| | - Diana Ioana Hotea
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mélanie Laurin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| |
Collapse
|
3
|
Tower Z, Chang H. Improved method for detecting protein-protein interactions using proximity ligation assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610697. [PMID: 39282310 PMCID: PMC11398341 DOI: 10.1101/2024.09.01.610697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Proximity ligation assay has been widely used to detect protein-protein interaction in cells and tissues. While with great sensitivity, its specificity was often neglected. Here, we report the existence of varying levels of false positives observed with this assay and provide suggestions to minimize false positives for more accurate detection of protein-protein interactions, especially for membrane proteins.
Collapse
Affiliation(s)
- Zach Tower
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- William S. Middleton VA Medical Center, Madison, Wisconsin 53705
| |
Collapse
|
4
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Cetera M, Sharan R, Hayward-Lara G, Devenport D. Evaluating Planar Cell Polarity in the Developing Mouse Epidermis. Methods Mol Biol 2024; 2805:187-201. [PMID: 39008183 DOI: 10.1007/978-1-0716-3854-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Epidermal tissues are among the most striking examples of planar polarity. Insect bristles, fish scales, and mammalian fur are all uniformly oriented along an animal's body axis. The collective alignment of epidermal structures provides a valuable system to interrogate the signaling mechanisms that coordinate cellular behaviors at both local and tissue-levels. Here, we provide methods to analyze the planar organization of hair follicles within the mouse epidermis. Hair follicles are specified and bud into the underlying dermis during embryonic development. Shortly after, follicle cells dynamically rearrange to orient each follicle toward the anterior of the animal. When directional signaling is disrupted, hair follicles become misoriented. In this chapter, we describe how to create a spatial map of hair follicle orientations to reveal tissue-scale patterns in both embryonic and postnatal skin. Additionally, we provide a live imaging protocol that can be used to monitor cell movements in embryonic skin explants to reveal the cellular behaviors that polarize the hair follicle itself.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Cetera M, Sharan R, Hayward-Lara G, Phillips B, Biswas A, Halley M, Beall E, vonHoldt B, Devenport D. Region-specific reversal of epidermal planar polarity in the rosette fancy mouse. Development 2023; 150:dev202078. [PMID: 37622728 PMCID: PMC10499026 DOI: 10.1242/dev.202078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The planar cell polarity (PCP) pathway collectively orients cells with respect to a body axis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment across the skin. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that rosette hair follicles emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6, which alters a consensus site for N-linked glycosylation, inhibiting its membrane localization. Unexpectedly, the Fzd6 trafficking defect does not block asymmetric localization of the other PCP proteins. Rather, the normally uniform axis of PCP asymmetry rotates where the PCP-directed cell movements that orient follicles are reversed, suggesting the PCP axis rotates 180°. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce posterior whorls in the rosette fancy mouse.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | | | - Brooke Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08540, USA
| | - Madalene Halley
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Evalyn Beall
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
7
|
Cetera M, Sharan R, Hayward-Lara G, Phillips B, Biswas A, Halley M, Beall E, vonHoldt B, Devenport D. Region-specific reversal of epidermal planar polarity in the fancy rosette mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550849. [PMID: 37546950 PMCID: PMC10402159 DOI: 10.1101/2023.07.27.550849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The planar cell polarity (PCP) pathway collectively orients thousands of cells with respect to a body axis to direct cellular behaviors that are essential for embryonic morphogenesis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment along the entire skin surface. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that embryonic hair follicles of rosette mutants emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6 , which alters a consensus site for N-linked glycosylation and inhibits its membrane localization. Unexpectedly, this defect in Fzd6 trafficking, observed across the entire dorsal epidermis, does not interfere with the ability of other core PCP proteins to localize asymmetrically. Rather, the normally uniform axis of PCP asymmetry is disrupted and rotated in the posterior region such that polarity is reflected on either side of a transition zone. The result is a reversal of polarized cell movements that orient nascent follicles, specifically in the posterior of the embryo. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce the unique posterior whorls of the fancy rosette mouse. Summary Region-specific rotation of the Planar Cell Polarity axis reverses posterior hair follicles in the fancy rosette mouse.
Collapse
|
8
|
Basta LP, Sil P, Jones RA, Little KA, Hayward-Lara G, Devenport D. Celsr1 and Celsr2 exhibit distinct adhesive interactions and contributions to planar cell polarity. Front Cell Dev Biol 2023; 10:1064907. [PMID: 36712970 PMCID: PMC9878842 DOI: 10.3389/fcell.2022.1064907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its Drosophila ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the Celsr1 -/- phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.
Collapse
Affiliation(s)
- Lena P. Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Katherine A. Little
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Gabriela Hayward-Lara
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,Current Affiliation. University of Pennsylvania, Philadelphia, PA, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,*Correspondence: Danelle Devenport,
| |
Collapse
|
9
|
Simonson L, Oldham E, Chang H. Overactive Wnt5a signaling disrupts hair follicle polarity during mouse skin development. Development 2022; 149:dev200816. [PMID: 36305473 PMCID: PMC9845745 DOI: 10.1242/dev.200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The polarity of mouse hair follicles is controlled by the Frizzled (Fzd) receptors and other membrane planar cell polarity (PCP) proteins. Whether Wnt proteins can act as PCP ligands in the skin remains unknown. Here, we show that overexpression of Wnt5a in the posterior part of mouse embryos causes a local disruption of hair follicle orientation. The misoriented hair follicle phenotype in Wnt5a overexpressing mice can be rescued by a heterozygous loss of Fzd6, suggesting Wnt5a is likely to signal through Fzd6. Although the membrane distribution of PCP proteins seems unaffected by Wnt5a overexpression, transcriptional profiling analyses identify a set of genes as potential targets of the skin polarization program controlled by Wnt5a/Fzd6 signaling. Surprisingly, deletion of Wnt5a globally or in the posterior part of the mouse embryos does not affect hair follicle orientation. We show that many other Wnts are highly expressed in the developing skin. They can activate the Fzd6 signaling pathway in vitro and may act together with Wnt5a to regulate the Fzd6-mediated skin polarization. Our experiments demonstrate for the first time that Wnt5a can function as an orienting cue for mouse skin PCP.
Collapse
Affiliation(s)
- Laura Simonson
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ethan Oldham
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
10
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
11
|
Mabrouk I, Zhou Y, Wang S, Song Y, Fu X, Xu X, Liu T, Wang Y, Feng Z, Fu J, Ma J, Zhuang F, Cao H, Jin H, Wang J, Sun Y. Transcriptional Characteristics Showed That miR-144-y/FOXO3 Participates in Embryonic Skin and Feather Follicle Development in Zhedong White Goose. Animals (Basel) 2022; 12:ani12162099. [PMID: 36009690 PMCID: PMC9405214 DOI: 10.3390/ani12162099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Feather is one of the most valuable and economical products in goose farming and plays a crucial physiological role in birds. For avian biology and the poultry industry, it is essential to comprehend and regulate how skin and feather follicles develop during embryogenesis. This study showed that several key regulatory genes (FOXO3, CTGF, and PTCH1, among others) and miRNAs (miR-144-y) participated in the developmental process of the skin and feather follicles in Zhedong white goose. Our findings are particularly important because they will serve as a valuable resource for upcoming studies on down feathers in agricultural economic growth regarding complex molecular mechanisms and breeding techniques. Abstract Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries. There were 1234, 3024, 4416, and 5326 different genes showing differential expression in four stages, E10 vs. E13, E10 vs. E18, E10 vs. E23, and E10 vs. E28, respectively. The differentially expressed genes (DEGs) were found to be implicated in multiple biological processes and pathways associated with feather growth and development, such as the Wnt signaling pathway, cell adhesion molecules, ECM–receptor interaction signaling pathways, and cell cycle and DNA replication pathways, according to functional analysis. In total, 8276 DEGs were assembled into twenty gene profiles with diverse expression patterns. The reliability of transcriptome results was verified by real-time quantitative PCR by selecting seven DEGs and five miRNAs. The localization of forkhead box O3 (FOXO3), connective tissue growth factor (CTGF), protein parched homolog1 (PTCH1), and miR-144-y by in situ hybridization showed spatial-temporal expression patterns and that FOXO3 and miR-144-y have an antagonistic targeting relationship. The correlation coefficient of FOXO3 and miR-144-y was -0.948, showing a strong negative correlation. Dual-luciferase reporter assay results demonstrated that miR-144-y could bind to the expected location to suppress the expression of FOXO3, which supports that there is a targeting relationship between them. The detections in this report will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of skin and feather follicles in Zhedong white geese.
Collapse
Affiliation(s)
- Ichraf Mabrouk
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuxuan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Sihui Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yupu Song
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xianou Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tuoya Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yudong Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ziqiang Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jinhong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingyun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fangming Zhuang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Honglei Jin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingbo Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yongfeng Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China
- Correspondence:
| |
Collapse
|
12
|
Wang Y, Venkatesh A, Xu J, Xu M, Williams J, Smallwood PM, James A, Nathans J. The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development 2022; 149:275368. [PMID: 35552394 PMCID: PMC9148564 DOI: 10.1242/dev.200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
In central nervous system vascular endothelial cells, signaling via the partially redundant ligands WNT7A and WNT7B requires two co-activator proteins, GPR124 and RECK. WNT7A and RECK have been shown previously to play a role in limb development, but the mechanism of RECK action in this context is unknown. The roles of WNT7B and GPR124 in limb development have not been investigated. Using combinations of conventional and/or conditional loss-of-function alleles for mouse Wnt7a, Wnt7b, Gpr124 and Reck, including a Reck allele that codes for a protein that is specifically defective in WNT7A/WNT7B signaling, we show that reductions in ligand and/or co-activator function synergize to cause reduced and dysmorphic limb bone growth. Two additional limb phenotypes – loss of distal Lmx1b expression and ectopic growth of nail-like structures – occur with reduced Wnt7a/Wnt7b gene copy number and, respectively, with Reck mutations and with combined Reck and Gpr124 mutations. A third limb phenotype – bleeding into a digit – occurs with the most severe combinations of Wnt7a/Wnt7b, Reck and Gpr124 mutations. These data imply that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system functions as an integral unit in limb development. Summary: Genetic analyses in mice show that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system, first defined in the context of CNS angiogenesis and barrier development, also functions as an integral unit in limb development.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arjun Venkatesh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Bouali S, Hétu-Arbour R, Gardet C, Heinonen KM. Vangl2 Promotes Hematopoietic Stem Cell Expansion. Front Cell Dev Biol 2022; 10:760248. [PMID: 35399538 PMCID: PMC8987925 DOI: 10.3389/fcell.2022.760248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Regulation of hematopoietic stem cell (HSC) self-renewal and differentiation is essential for their maintenance, and HSC polarity has been shown to play an important role in this regulation. Vangl2, a key component of the Wnt/polarity pathway, is expressed by fetal and adult HSCs, but its role in hematopoiesis and HSC function is unknown. Here we show the deletion of Vangl2 in mouse hematopoietic cells impairs HSC expansion and hematopoietic recovery post-transplant. Old Vangl2-deficient mice showed increased expansion of myeloid-biased multipotent progenitor cells concomitant with splenomegaly. Moreover, Vangl2-deficient cells were not able to effectively reconstitute the recipient bone marrow in serial transplants, or when coming from slightly older donors, demonstrating impaired self-renewal or expansion. Aged Vangl2-deficient HSCs displayed increased levels of cell cycle inhibitor p16INK4a and active β–catenin, which could contribute to their impaired function. Overall, our findings identify Vangl2 as a new regulator of hematopoiesis.
Collapse
Affiliation(s)
- Sarah Bouali
- Institut National de La Recherche Scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Roxann Hétu-Arbour
- Institut National de La Recherche Scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Célia Gardet
- Institut National de La Recherche Scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
- Institut des Sciences et Industries du Vivant et de l’Environnement - AgroParisTech, Université Paris-Saclay, Paris, France
| | - Krista M. Heinonen
- Institut National de La Recherche Scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
- *Correspondence: Krista M. Heinonen,
| |
Collapse
|
14
|
Hobbs C, Formstone CJ. Planar cell polarity proteins determine basal cell height in the later stage embryonic mouse epidermis'. Wellcome Open Res 2022; 7:138. [PMID: 36938121 PMCID: PMC10020738 DOI: 10.12688/wellcomeopenres.17733.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Complex organ formation requires the coordinated morphogenesis of adjacent tissue layers. Here, we report a role for the planar cell polarity (PCP) proteins Fz6 and Celsr1 in generating squamous basal cells in the later stage embryonic epidermis of the mouse is reported, which may impact upon the shape of overlying suprabasal cells. Methods: The depth of the epidermis and basal layer as well as cell proliferation index was scored from immunostained wax sections taken from different mouse embryos mutant in planar cell polarity signalling and their wild-type littermates. Orientation of epidermal cell division in Celsr1 Crash/Crash mutants was determined from thick frozen immunostained sections. Immunostained wax sections of wild-type skin explants cultured using the Lumox method enabled any changes in epidermal and basal layer depth to be measured following the release of surface tension upon dissection of skin away from the whole embryo. Results: Increased numbers of columnar and cuboidal basal epidermal cells were observed in fz6-/- mutant and Celsr1 mouse mutant Crash/Crash which correlated with visibly more rounded suprabasal cells and a thicker epidermis. Conclusions: Altogether these data support tissue intrinsic roles for PCP proteins in 'outside-in' (radial) skin architecture.
Collapse
Affiliation(s)
- Carl Hobbs
- Wolfson CARD, King's College London, London, SE1 1UL, UK
| | - Caroline J. Formstone
- Wolfson CARD, King's College London, London, SE1 1UL, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
15
|
Hobbs C, Formstone CJ. Planar cell polarity protein-dependent basal cell height in the later stage embryonic mouse epidermis impacts on the shape of overlying suprabasal cells. Wellcome Open Res 2022; 7:138. [PMID: 36938121 PMCID: PMC10020738 DOI: 10.12688/wellcomeopenres.17733.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Complex organ formation requires the coordinated morphogenesis of adjacent tissue layers. Here, a role for the planar cell polarity (PCP) proteins Fz6 and Celsr1 in generating squamous basal cells in the later stage embryonic epidermis of the mouse is reported, which impacts upon the shape of overlying suprabasal cells. Methods: The depth of the epidermis and basal layer as well as cell proliferation index was scored from immunostained wax sections taken from different mouse embryos mutant in planar cell polarity signalling and their wild-type littermates. Orientation of epidermal cell division in Celsr1 Crash/Crash mutants was determined from thick frozen immunostained sections. Immunostained wax sections of wild-type skin explants cultured using the Lumox method enabled any changes in epidermal and basal layer depth to be measured following the release of surface tension upon dissection of skin away from the whole embryo. Results: Increased numbers of columnar and cuboidal basal epidermal cells were observed in fz6 and Celsr1 mouse mutants including Celsr1 Crash/Crash which correlated with more rounded suprabasal cells and a thicker epidermis. Conclusions: Altogether these data support tissue intrinsic roles for PCP proteins in 'outside-in' (radial) skin architecture.
Collapse
Affiliation(s)
- Carl Hobbs
- Wolfson CARD, King's College London, London, SE1 1UL, UK
| | - Caroline J. Formstone
- Wolfson CARD, King's College London, London, SE1 1UL, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
16
|
Basta LP, Hill-Oliva M, Paramore SV, Sharan R, Goh A, Biswas A, Cortez M, Little KA, Posfai E, Devenport D. New mouse models for high resolution and live imaging of planar cell polarity proteins in vivo. Development 2021; 148:271988. [PMID: 34463728 DOI: 10.1242/dev.199695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Michael Hill-Oliva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Department of Medicine, Columbia University, New York, NY 10032USA
| | - Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Cortez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| |
Collapse
|
17
|
Jiang TX, Li A, Lin CM, Chiu C, Cho JH, Reid B, Zhao M, Chow RH, Widelitz RB, Chuong CM. Global feather orientations changed by electric current. iScience 2021; 24:102671. [PMID: 34179734 PMCID: PMC8214094 DOI: 10.1016/j.isci.2021.102671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
During chicken skin development, each feather bud exhibits its own polarity, but a population of buds organizes with a collective global orientation. We used embryonic dorsal skin, with buds aligned parallel to the rostral-caudal body axis, to explore whether exogenous electric fields affect feather polarity. Interestingly, brief exogenous current exposure prior to visible bud formation later altered bud orientations. Applying electric pulses perpendicular to the body rostral-caudal axis realigned bud growth in a collective swirl, resembling an electric field pointing toward the anode. Perturbed buds show normal molecular expression and morphogenesis except for their altered orientation. Epithelial-mesenchymal recombination demonstrates the effects of exogenous electric fields are mediated through the epithelium. Small-molecule channel inhibitor screens show Ca2+ channels and PI3 Kinase are involved in controlling feather bud polarity. This work reveals the importance of bioelectricity in organ development and regeneration and provides an explant culture platform for experimentation.
Collapse
Affiliation(s)
- Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Cathleen Chiu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Jung-Hwa Cho
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Reid
- Department of Ophthalmology & Vision Science, and Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, and Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Robert H. Chow
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| |
Collapse
|
18
|
Lesko AC, Keller R, Chen P, Sutherland A. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure. Dev Biol 2021; 478:59-75. [PMID: 34029538 DOI: 10.1016/j.ydbio.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Ping Chen
- Otogenetics Corporation, Atlanta, GA, 30360, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
19
|
Landin Malt A, Clancy S, Hwang D, Liu A, Smith C, Smith M, Hatley M, Clemens C, Lu X. Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition. Front Cell Dev Biol 2021; 9:649830. [PMID: 33937247 PMCID: PMC8086559 DOI: 10.3389/fcell.2021.649830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022] Open
Abstract
During development, sensory hair cells (HCs) in the cochlea assemble a stereociliary hair bundle on their apical surface with planar polarized structure and orientation. We have recently identified a non-canonical, Wnt/G-protein/PI3K signaling pathway that promotes cochlear outgrowth and coordinates planar polarization of the HC apical cytoskeleton and alignment of HC orientation across the cochlear epithelium. Here, we determined the involvement of the kinase Gsk3β and the small GTPase Rac1 in non-canonical Wnt signaling and its regulation of the planar cell polarity (PCP) pathway in the cochlea. We provided the first in vivo evidence for Wnt regulation of Gsk3β activity via inhibitory Ser9 phosphorylation. Furthermore, we carried out genetic rescue experiments of cochlear defects caused by blocking Wnt secretion. We showed that cochlear outgrowth was partially rescued by genetic ablation of Gsk3β but not by expression of stabilized β-catenin; while PCP defects, including hair bundle polarity and junctional localization of the core PCP proteins Fzd6 and Dvl2, were partially rescued by either Gsk3β ablation or constitutive activation of Rac1. Our results identify Gsk3β and likely Rac1 as downstream components of non-canonical Wnt signaling and mediators of cochlear outgrowth, HC planar polarity, and localization of a subset of core PCP proteins in the cochlea.
Collapse
Affiliation(s)
- Andre Landin Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Shaylyn Clancy
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Diane Hwang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Alice Liu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Connor Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Margaret Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Maya Hatley
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Christopher Clemens
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
20
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
21
|
Box K, Joyce BW, Devenport D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 2019; 8:47102. [PMID: 31187731 PMCID: PMC6592681 DOI: 10.7554/elife.47102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.
Collapse
Affiliation(s)
- Kimberly Box
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
22
|
Dong B, Vold S, Olvera-Jaramillo C, Chang H. Functional redundancy of frizzled 3 and frizzled 6 in planar cell polarity control of mouse hair follicles. Development 2018; 145:dev168468. [PMID: 30237242 PMCID: PMC10682934 DOI: 10.1242/dev.168468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
The orientation of mouse hair follicles is controlled by the planar cell polarity (PCP) pathway. Mutations in PCP genes result in two categories of hair mis-orientation phenotype: randomly oriented and vertically oriented to the skin surface. Here, we demonstrate that the randomly oriented hair phenotype observed in frizzled 6 (Fzd6) mutants results from a partial loss of the polarity, due to the functional redundancy of another closely related frizzled gene, Fzd3 Double knockout of Fzd3 and Fzd6 globally, or only in the skin, led to vertically oriented hair follicles and a total loss of anterior-posterior polarity. Furthermore, we provide evidence that, contrary to the prevailing model, asymmetrical localization of the Fzd6 protein is not observed in skin epithelial cells. Through transcriptome analyses and in vitro studies, we show collagen triple helix repeat containing 1 (Cthrc1) to be a potential downstream effector of Fzd6, but not of Fzd3. Cthrc1 binds directly to the extracellular domains of Fzd3 and Fzd6 to enhance the Wnt/PCP signaling. These results suggest that Fzd3 and Fzd6 play a redundant role in controlling the polarity of developing skin, but through non-identical mechanisms.
Collapse
Affiliation(s)
- Bo Dong
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samantha Vold
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
23
|
Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis. Pediatr Cardiol 2018; 39:1052-1062. [PMID: 29564519 PMCID: PMC5959767 DOI: 10.1007/s00246-018-1860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023]
Abstract
The mammalian heart is the first organ to form and is critical for embryonic survival and development. With an occurrence of 1%, congenital heart defects (CHDs) are also the most common birth defects in humans, and major cause of childhood morbidity and mortality (Hoffman and Kaplan in J Am Coll Cardiol 39(12):1890-1900, 2002; Samanek in Cardiol Young 10(3):179-185, 2000). Understanding how the heart forms will not only help to determine the etiology and to design diagnostic and therapeutic approaches for CHDs, but may also provide insight into regenerative medicine to repair injured adult hearts. Mammalian heart development requires precise orchestration of growth, differentiation, and morphogenesis to remodel a simple linear heart tube into an intricate, four-chambered heart with properly connected pulmonary artery and aorta, a structural basis for establishing the pulmonary and systemic circulation. Here we will review the recent advance in our understanding of how the planar cell polarity pathway, a highly conserved morphogenetic engine in vertebrates, regulates polarized morphogenetic processes to contribute to both the arterial and venous poles development of the heart.
Collapse
|
24
|
Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles. Nat Cell Biol 2018; 20:541-552. [PMID: 29662173 PMCID: PMC6065250 DOI: 10.1038/s41556-018-0082-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.
Collapse
|
25
|
Galea GL, Nychyk O, Mole MA, Moulding D, Savery D, Nikolopoulou E, Henderson DJ, Greene NDE, Copp AJ. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. Dis Model Mech 2018; 11:dmm.032219. [PMID: 29590636 PMCID: PMC5897727 DOI: 10.1242/dmm.032219] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Human mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal ‘zippering’ until completion of closure is imminent, when a caudal-to-rostral closure point, ‘Closure 5’, arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the ∼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure. Summary: Disruption of Vangl2-dependent planar-polarised processes in the posterior neuropore (PNP) neuroepithelium and surface ectoderm preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Oleksandr Nychyk
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Matteo A Mole
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dale Moulding
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Evanthia Nikolopoulou
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
26
|
Notch pathway signaling in the skin antagonizes Merkel cell development. Dev Biol 2018; 434:207-214. [DOI: 10.1016/j.ydbio.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 01/16/2023]
|
27
|
Gong H, Wang H, Wang Y, Bai X, Liu B, He J, Wu J, Qi W, Zhang W. Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PLoS One 2018; 13:e0190933. [PMID: 29351308 PMCID: PMC5774689 DOI: 10.1371/journal.pone.0190933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
Avian species have a unique integument covered with feathers. Skin morphogenesis is a successive and complex process. To date, most studies have focused on a single developmental point or stage. Fewer studies have focused on whole transcriptomes based on the time-course of embryo integument development. To analyze the global changes in gene expression profiles, we sequenced the transcriptome of chicken embryo skin samples from day 6 to day 21 of incubation and identified 5830 differentially expressed genes (DEGs). Hierarchical clustering showed that E6 to E14 is the critical period of feather follicle morphogenesis. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs, two kinds of Wnt signaling pathways (a canonical pathway and a non-canonical pathway) changed during feather follicle and feather morphogenesis. The gene expression level of inhibitors and ligands related to the Wnt signaling pathway varied significantly during embryonic development. The results revealed a staggered phase relationship between the canonical pathway and the non-canonical pathway from E9 to E14. These analyses shed new light on the gene regulatory mechanism and provided fundamental data related to integument morphogenesis of chickens.
Collapse
Affiliation(s)
- Husile Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Hong Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - YueXing Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xue Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - JinFeng He
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - JiangHong Wu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- * E-mail: (JW); (WQ); (WZ)
| | - WangMei Qi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- * E-mail: (JW); (WQ); (WZ)
| | - WenGuang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- * E-mail: (JW); (WQ); (WZ)
| |
Collapse
|
28
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
29
|
Heck BW, Devenport D. Trans-endocytosis of Planar Cell Polarity Complexes during Cell Division. Curr Biol 2017; 27:3725-3733.e4. [PMID: 29174888 DOI: 10.1016/j.cub.2017.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
To coordinate epithelial architecture with proliferation, cell polarity proteins undergo extensive remodeling during cell division [1-3]. A dramatic example of polarity remodeling occurs in proliferative basal cells of mammalian epidermis whereupon cell division, transmembrane planar cell polarity (PCP) proteins are removed from the cell surface via bulk endocytosis [4]. PCP proteins form intercellular complexes, linked by Celsr1-mediated homophilic adhesion, that coordinate polarity non-autonomously between cells [5, 6]. Thus, the mitotic reorganization of PCP proteins must alter not only proteins intrinsic to the dividing cell but also their interacting partners on neighboring cells. Here, we show that intercellular Celsr1 complexes that connect dividing cells with their neighbors remain intact during mitotic internalization, resulting in an uptake of Celsr1 protein from interphase neighbors. Trans-internalized Celsr1 carries with it additional core PCP proteins, including the posteriorly enriched Fz6 and anteriorly enriched Vangl2. Cadherin-mediated homophilic adhesion is necessary for trans-endocytosis, and adhesive junctional PCP complexes appear to be destined for degradation upon internalization. Surprisingly, whereas Fz6 and Vangl2 both internalize in trans, Vangl2 proteins intrinsic to the dividing cell remain associated with the plasma membrane. Persistent Vangl2 stabilizes Celsr1 and impedes its internalization, suggesting that dissociation of Vangl2 from Celsr1 is a prerequisite for Celsr1 endocytosis. These results demonstrate an unexpected transfer of PCP complexes between neighbors and suggest that the Vangl2 population that persists at the membrane during cell division could serve as an internal cue for establishing PCP in new daughter cells.
Collapse
Affiliation(s)
- Bryan W Heck
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Cetera M, Leybova L, Woo FW, Deans M, Devenport D. Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns. Dev Biol 2017; 428:188-203. [PMID: 28599846 DOI: 10.1016/j.ydbio.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 11/29/2022]
Abstract
Hair follicles of the mammalian epidermis display local order and global alignment, a complex pattern instructed by the core planar cell polarity (PCP) pathway. Here we address the contributions of core PCP genes, Van Gogh-like and Frizzled, to the establishment, local refinement, and global order of embryonic and postnatal hair follicles. We find that, similar to Fz6 mutants, the disordered hair patterns of Vangl2 mutants are refined over time and eventually corrected. In both mutants, we find that tissue-level reorientation occurs through locally coordinated follicle rotation at stereotyped locations. Strikingly, Vangl2 and Fz6 mutant follicles collectively rotate with opposing directionalities, suggesting that redundant core PCP signals contribute to their directed realignment. Consistently, global follicle alignment is not restored upon conditional ablation of both Vangl1 and Vangl2 genes. Instead, spatially distinct patterns of whorls and crosses emerge and persist even after a complete cycle of hair follicle regeneration. Thus, local refinement of hair follicles into higher order patterns can occur independently of the core PCP system, however, their global alignment with the body axes requires PCP function throughout morphogenesis, growth and regeneration.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Liliya Leybova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Frank W Woo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
31
|
Chang H. Cleave but not leave: Astrotactin proteins in development and disease. IUBMB Life 2017; 69:572-577. [PMID: 28517363 DOI: 10.1002/iub.1641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
Over the years, animal studies have identified astrotactins as important membrane proteins for glial-guided neuronal migration during central nervous system development and hair follicle polarity control during skin development. Biochemical studies have revealed intramembrane proteolysis as an important feature of astrotactins. The two fragments of astrotactins remain linked together by a disulfide bond after the proteolytic cleavage. In humans, mutations in astrotactin genes have also been linked to a wide range of diseases, including several developmental brain disorders, neurodegenerative diseases and cancer. In this review, I will summarize the current knowledge of the biological function of astrotactins in development, highlight the linkage between mutations in astrotactin genes and human disease and discuss several outstanding questions that remain unanswered. © 2017 IUBMB Life, 69(8):572-577, 2017.
Collapse
Affiliation(s)
- Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
32
|
Oozeer F, Yates LL, Dean C, Formstone CJ. A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin. Sci Rep 2017; 7:1880. [PMID: 28500339 PMCID: PMC5431842 DOI: 10.1038/s41598-017-01971-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 11/11/2022] Open
Abstract
The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.
Collapse
Affiliation(s)
- Fazal Oozeer
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London, SE1 1UL, UK
| | - Laura L Yates
- MRC Harwell, Oxfordshire, OX11 0RD, UK.,Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Charlotte Dean
- MRC Harwell, Oxfordshire, OX11 0RD, UK.,Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London, SE1 1UL, UK. .,Department of Biological and Environmental Sciences, University of Hertfordshire, College lane, Hatfield, AL10 9AB, UK.
| |
Collapse
|
33
|
Putnová I, Dosedělová H, Bryja V, Landová M, Buchtová M, Štembírek J. Angled Growth of the Dental Lamina Is Accompanied by Asymmetrical Expression of the WNT Pathway Receptor Frizzled 6. Front Physiol 2017; 8:29. [PMID: 28197104 PMCID: PMC5281629 DOI: 10.3389/fphys.2017.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/11/2017] [Indexed: 11/23/2022] Open
Abstract
Frizzled 6 (FZD6) belongs to a family of proteins that serve as receptors in the WNT signaling pathway. FZD6 plays an important role in the establishment of planar cell polarity in many embryonic processes such as convergent extension during gastrulation, neural tube closure, or hair patterning. Based on its role during hair development, we hypothesized that FZD6 may have similar expression pattern and function in the dental lamina, which is also a distinct epithelial protrusion growing characteristically angled into the mesenchyme. Diphyodont minipig was selected as a model species because its dentition closely resemble human ones with successional generation of teeth initiated from the dental lamina. We revealed asymmetrical expression of FZD6 in the dental lamina of early as well as late stages during its regression with stronger expression located on the labial side of the dental lamina. During lamina regression, FZD6-positive cells were found in its superficial part and the signal coincided with the upregulation of molecules involved in epithelial-mesenchymal transition and increased migratory potential of epithelial cells. FZD6-expression was also turned on during differentiation of cells producing hard tissues, in which mature odontoblasts, ameloblasts, or surrounding osteoblasts were FZD6-positive. On the other hand, the tip of successional lamina and its lingual part, in which progenitor cells are located, exhibited FZD6-negativity. In conclusion, asymmetrical expression of FZD6 correlates with the growth directionality and side-specific morphological differences in the dental lamina of diphyodont species. Based on observed expression pattern, we propose that the dental lamina is other epithelial tissue, where planar cell polarity signaling is involved during its asymmetrical growth.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Academy of SciencesBrno, Czechia; Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical SciencesBrno, Czechia
| | - Hana Dosedělová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Academy of SciencesBrno, Czechia; Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical SciencesBrno, Czechia
| | - Vitezslav Bryja
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University Brno, Czechia
| | - Marie Landová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences Brno, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Academy of SciencesBrno, Czechia; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Academy of SciencesBrno, Czechia; Department of Maxillofacial Surgery, University Hospital OstravaOstrava, Czechia
| |
Collapse
|
34
|
Wang Y, Williams J, Rattner A, Wu S, Bassuk AG, Goffinet AM, Nathans J. Patterning of papillae on the mouse tongue: A system for the quantitative assessment of planar cell polarity signaling. Dev Biol 2016; 419:298-310. [PMID: 27612405 DOI: 10.1016/j.ydbio.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 12/16/2022]
Abstract
The dorsal surface of the mouse tongue is covered by ~7000 papillae, asymmetric epithelial protrusions that are precisely oriented to create a stereotyped macroscopic pattern. Within the context of this large-scale pattern, neighboring papillae exhibit a high degree of local order that minimizes the differences in their orientations. We show here that the orientations of lingual papillae are under the control of the core planar cell polarity (PCP) genes Vangl1, Vangl2, and Celsr1. Using K14-Cre and Nkx2.5-Cre to induce conditional knockout of Vangl1 and/or Vangl2 in the tongue epithelium, we observe more severe disruptions to local order among papillae with inactivation of larger numbers of Vangl genes, a greater role for Vangl2 than Vangl1, and a more severe phenotype with the Vangl2 Looptail (Lp) allele than the Vangl2 null allele, consistent with a dominant negative mode of action of the Vangl2Lp allele. Interestingly, Celsr1-/- tongues show disruption of both local and global order, with many papillae in the anterior tongue showing a reversed orientation. To quantify each of these phenotypes, we have developed and applied three procedures for sampling the orientations of papillae and assessing the degree of order on different spatial scales. The experiments reported here establish the dorsal surface of the mouse tongue as a favorable system for studying PCP control of epithelial patterning.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shu Wu
- Department of Neurology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Alexander G Bassuk
- Department of Neurology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Andre M Goffinet
- Institute of Neuroscience, University of Louvain Medical School and WELBIO, B1200 Brussels, Belgium
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Whishaw IQ, Kolb B. The mane effect in the horse (Equus ferus caballus): Right mane dominance enhanced in mares but not associated with left and right manoeuvres in a reining competition. Laterality 2016; 22:495-513. [PMID: 27535616 DOI: 10.1080/1357650x.2016.1219740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A human physical asymmetry is the near 90% clockwise occipitoparietal scalp hair-whorl direction in Europeans, an incidence that approximates the left lateralization of speech and right-handedness. Hair-whorl direction is also asymmetric in horses, Equus ferus caballus and placement is proposed to be related to temperament and lateralized skill in equitation manoeuvres. We describe a hair-whorl asymmetry in the horse, mane direction. Of 526, 3-year-old American Quarter horses, 69% of horses had mane directed to the right and 31% had mane directed to the left. The bias was larger in females, with 74% of females vs. 65% of males having mane directed to the right. Mane direction was unrelated to coat colour. The behavioural significance of mane asymmetry was investigated using judges' scores from a reining competition requiring symmetrical maneuvers of spin, circle and roll-back to either the left or to the right. There was no relation between mane asymmetry and overall reining performance and no relation between mane direction and scores for left or right manoeuvres. The results are discussed in relation to the significance of morphological asymmetries, neural function and the influence of planar cell polarity genes, such as Frizzled, that influence epidermal hair cell patterning.
Collapse
Affiliation(s)
- Ian Q Whishaw
- a Department of Neuroscience , Canadian Centre of Behavioural Neuroscience, University of Lethbridge , Lethbridge , AB , Canada
| | - Bryan Kolb
- a Department of Neuroscience , Canadian Centre of Behavioural Neuroscience, University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
36
|
Xiao Y, Thoresen DT, Miao L, Williams JS, Wang C, Atit RP, Wong SY, Brownell I. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development. PLoS Genet 2016; 12:e1006150. [PMID: 27414798 PMCID: PMC4944988 DOI: 10.1371/journal.pgen.1006150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance. Sonic hedgehog (Shh) is one of a limited set of signaling molecules that cells use to drive organ formation during development and tissue regeneration after birth. How Shh signaling achieves different biological effects in the same tissue is incompletely understood. Touch domes are unique sensory structures in the skin that contain innervated Merkel cells. Using mouse genetics, we show that touch domes develop in tandem with, but distinct from, primary hair follicles. Moreover, touch dome specification requires a cascade of cell-cell signaling that ends with Shh signaling from an adjacent primary hair follicle. It was previously shown that Shh signaling from sensory nerves regulates the maintenance of touch dome stem cells after birth. Thus, the critical role for Shh signaling in embryonic touch dome specification is dependent on locally produced Shh, whereas the renewal of touch dome stem cells requires Shh transported to the skin by sensory neurons. These observations suggest that the distinct functions of Shh in touch dome development and maintenance correspond to changes in the source of the Shh signal required for the varied effects.
Collapse
Affiliation(s)
- Ying Xiao
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel T. Thoresen
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lingling Miao
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan S. Williams
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Isaac Brownell
- Dermatology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|