1
|
Zuo H, Jiang W, Gao J, Ma Z, Li C, Peng Y, Jin J, Zhan X, Lv W, Liu X, Hu J, Zhang M, Jia Y, Xu Z, Tang J, Zheng R, Zuo B. SYISL Knockout Promotes Embryonic Muscle Development of Offspring by Modulating Maternal Gut Microbiota and Fetal Myogenic Cell Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410953. [PMID: 39680624 PMCID: PMC11809340 DOI: 10.1002/advs.202410953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum. Both fecal microbiota transplantation and butyrate feeding significantly increase muscle fiber numbers in offspring, with butyrate inhibiting histone deacetylases and increasing histone acetylation in embryonic muscle. Combined analysis of RNA-seq between wild-type and SYISL knockout mice with ChIP-seq for H3K9ac and H3K27ac reveals that SYISL and maternal microbiota interaction regulates myogenesis via the butyrate-HDAC-H3K9ac/H3K27ac pathway. Furthermore, scRNA-seq analysis shows that SYISL knockout alone significantly increases the number and proportion of myogenic cells and their dynamics, independently of regulating histone acetylation levels. Cell communication analysis suggests that this may be due to the downregulation of signaling pathways such as MSTN and TGFβ. Overall, multiple pathways are highlighted through which SYISL influences embryonic muscle development, offering valuable insights for treating muscle diseases and improving livestock production.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianwei Gao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zhibo Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Chen Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jingjing Hu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Mengdi Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yiming Jia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medicine ScienceHubei University of MedicineShiyan442000China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
2
|
Xiao H, Li M, Zhong Y, Patel A, Xu R, Zhang C, Athy TW, Fang S, Xu T, Du S. Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock. FASEB J 2025; 39:e70283. [PMID: 39760245 PMCID: PMC11740226 DOI: 10.1096/fj.202401875r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq. The results showed that the top upregulated genes encode mostly cytosolic heat shock proteins. Co-IP assay revealed that the upregulated cytosolic Hsp70s associate with myosin chaperone UNC45b which is critical for myosin protein folding and sarcomere assembly. Strikingly, several hsp70 genes also display muscle-specific upregulation in response to heat shock-induced stress in zebrafish embryos. To investigate the regulation of hsp gene upregulation and its functional significance in muscle cells, we generated heat shock factor 1 (hsf-/-) knockout zebrafish mutants and analyzed hsp gene expression and muscle phenotype in the smyd1b-/-single and hsf1-/-;smyd1b-/- double-mutant embryos. The results showed that knockout of hsf1 blocked the hsp gene upregulation and worsened the muscle defects in smyd1b-/- mutant embryos. Moreover, we demonstrated that Hsf1 is essential for fish survival under heat shock (HS) conditions. Together, these studies uncover a correlation between Smyd1b deficiency and the Hsf1-activated heat shock response (HSR) in regulating muscle protein homeostasis and myofibril assembly and demonstrate that the Hsf1-mediated hsp gene upregulation is vital for the survival of zebrafish larvae under thermal stress conditions.
Collapse
Affiliation(s)
- Huanhuan Xiao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Mofei Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Tianjin Normal University, Tianjin, China
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Avani Patel
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Rui Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas W. Athy
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Tianjun Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
3
|
Pan Z, Li W, Bialobzyski S, Chen Y, O'Hara E, Sun HZ, Schwartzkopf-Genswein K, Guan LL. Profiling of blood miRNAomes revealed the potential regulatory role of miRNAs in various lameness phenotypes in feedlot cattle. BMC Genomics 2024; 25:1190. [PMID: 39695421 DOI: 10.1186/s12864-024-10807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Lameness is a collective term for multiple foot diseases in cattle including, but not limited to, foot rot (FR), digital dermatitis (DD), and toe tip necrosis (TTN), which is a critical welfare concern. The diagnosis of specific phenotypes of lameness in feedlot cattle is challenging and primarily relies on visual assessments. However, different lameness phenotypes share similar clinical symptoms and there is a limited understanding of potential biomarkers relating to such disease for further molecular diagnosis. This study aimed to identify blood miRNA profiles of feedlot cattle with various lameness phenotypes and whether they could be potential diagnostic markers to differentiate lameness phenotypes and predictive lameness recovery. RESULTS MicroRNAome profiles were generated for the whole blood samples collected from feedlot cattle at Week 0 (W0) before treatment (n = 106) and longitudinal miRNA expression profiles relating to lameness recovery from W0 to W2 (n = 140) using RNA-seq. Ten miRNAs were selected to verify miRNA sequencing accuracy using stem-loop RT-qPCR. A total of 321 miRNAs were identified to be expressed in bovine blood samples with three (all downregulated, average log2fold change = -1.32), seven (two downregulated with average log2fold change = -1.15, five upregulated with average log2fold change = 1.68), six (three downregulated with average log2fold change = -1.23, three upregulated with average log2fold change = 3.31), and fourteen (eight downregulated with average log2fold change = -1.24, six upregulated with average log2fold change = 1.26) miRNAs differentially expressed (DE) miRNAs in DD, FR, TTN, and FR combined with DD (FRDD) compared to healthy control at W0 (defined as pre-treatment DE miRNAs), respectively. The predicted functions of identified DE miRNAs among different lameness phenotypes were mainly related to Zinc-finger, muscle cell development, and host inflammatory responses. Furthermore, the longitudinal miRNA expression profiles revealed that a total of eight miRNA changed patterns from W0 to W2, with the BTB/POZ-like domain being the most enriched function by longitudinal miRNA expression profiles in both unrecovered and recovered cattle. A total of nine miRNAs (five downregulated with average log2fold change = -2.4, four upregulated with average log2fold change = 3.7) from W0 to W2 were differentially expressed in unrecovered cattle compared to the recovered cattle, with functions associated with transcription regulation and Zinc-finger. Moreover, the area under the receiver operating characteristics (ROC) curve (AUC) revealed that pre-treatment DE miRNAs could serve as good diagnostic markers to differentiate any two of four phenotypes of lameness, with bta-miR-339b being able to differentiate all lameness phenotypes. Moreover, pre-treatment DE miRNAs could also predict the recovery of three lameness phenotypes (DD, FRDD, TTN) with good to excellent predictiveness. CONCLUSION Our results comprehensively assessed the blood miRNAomes in response to various lameness phenotypes, promoting the understanding of miRNA-regulated mechanisms of lameness in feedlot cattle. The diagnostic miRNA markers were also identified to differentiate within lameness phenotypes and predictive lameness recovery, shedding light on accurate on-farm lameness detection.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Wentao Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Sonja Bialobzyski
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Eoin O'Hara
- Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
4
|
Ly QK, Nguyen MT, Ngo THP, Lee W. Essential Role of Cortactin in Myogenic Differentiation: Regulating Actin Dynamics and Myocardin-Related Transcription Factor A-Serum Response Factor (MRTFA-SRF) Signaling. Int J Mol Sci 2024; 25:13564. [PMID: 39769327 PMCID: PMC11677934 DOI: 10.3390/ijms252413564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation. CTTN expression declined during myogenic differentiation, paralleling the reduction in MyoD, suggesting a potential role in the early stages of myogenesis. We also found that CTTN knockdown in C2C12 myoblasts reduced filamentous actin, enhanced globular actin levels, and inhibited the nuclear translocation of MRTFA, resulting in suppressed SRF activity. This led to the subsequent downregulation of myogenic regulatory factors, such as MyoD and MyoG. Furthermore, CTTN knockdown reduced the nuclear localization of YAP1, a mechanosensitive transcription factor, further supporting its regulatory roles in cell cycle and proliferation. Consequently, CTTN depletion impeded proliferation, differentiation, and myotube formation in C2C12 myoblasts, highlighting its dual role in the coordination of cell cycle regulation and myogenic differentiation of progenitor cells during myogenesis. This study identifies CTTN as an essential regulator of myogenic differentiation via affecting the actin remodeling-MRTFA-SRF signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Thanh Huu Phan Ngo
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
- Section of Molecular and Cellular Medicine, Medical Institute of Dongguk University, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Xu R, Li S, Chien CJ, Zhong Y, Xiao H, Fang S, Du S. Expression of Smyd1b_tv1 by Alternative Splicing in Cardiac Muscle is Critical for Sarcomere Organization in Cardiomyocytes and Heart Function. Mol Cell Biol 2024; 44:543-561. [PMID: 39320962 PMCID: PMC11583600 DOI: 10.1080/10985549.2024.2402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/27/2024] Open
Abstract
Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. smyd1b encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing. While smyd1 alternative splicing is evolutionarily conserved, the isoform-specific expression and function of Smyd1b_tv1 and Smyd1b_tv2 remained unknown. Here we analyzed their expression and function in skeletal and cardiac muscles. Our analysis revealed expression of smyd1b_tv1 predominately in cardiac and smyd1b_tv2 in skeletal muscles. Using zebrafish models expressing only one isoform, we demonstrated that Smyd1b_tv1 is essential for cardiomyocyte differentiation and fish viability, whereas Smyd1b_tv2 is dispensable for heart development and fish survival. Cellular and biochemical analyses revealed that Smyd1b_tv1 differs from Smyd1b_tv2 in protein localization and binding with myosin chaperones. While Smyd1b_tv2 diffused in the cytosol of muscle cells, Smyd1b_tv1 was localized to M-lines and essential for sarcomere organization in cardiomyocytes. Co-IP analysis revealed a stronger binding of Smyd1b_tv1 with chaperones and cochaperones compared with Smyd1b_tv2. Collectively, these findings highlight the nonequivalence of Smyd1b isoforms in cardiomyocyte differentiation, emphasizing the critical role of Smyd1b_tv1 in cardiac function.
Collapse
Affiliation(s)
- Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Siping Li
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Chien-Ju Chien
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanhuan Xiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Nguyen MT, Ly QK, Kim HJ, Lee W. WAVE2 Is a Vital Regulator in Myogenic Differentiation of Progenitor Cells through the Mechanosensitive MRTFA-SRF Axis. Cells 2023; 13:9. [PMID: 38201213 PMCID: PMC10778525 DOI: 10.3390/cells13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal myogenesis is an intricate process involving the differentiation of progenitor cells into myofibers, which is regulated by actin cytoskeletal dynamics and myogenic transcription factors. Although recent studies have demonstrated the pivotal roles of actin-binding proteins (ABPs) as mechanosensors and signal transducers, the biological significance of WAVE2 (Wiskott-Aldrich syndrome protein family member 2), an ABP essential for actin polymerization, in myogenic differentiation of progenitor cells has not been investigated. Our study provides important insights into the regulatory roles played by WAVE2 in the myocardin-related transcription factor A (MRTFA)-serum response factor (SRF) signaling axis and differentiation of myoblasts. We demonstrate that WAVE2 expression is induced during myogenic differentiation and plays a pivotal role in actin cytoskeletal remodeling in C2C12 myoblasts. Knockdown of WAVE2 in C2C12 cells reduced filamentous actin levels, increased globular actin accumulation, and impaired the nuclear translocation of MRTFA. Furthermore, WAVE2 depletion in myoblasts inhibited the expression and transcriptional activity of SRF and suppressed cell proliferation in myoblasts. Consequently, WAVE2 knockdown suppressed myogenic regulatory factors (i.e., MyoD, MyoG, and SMYD1) expressions, thereby hindering the differentiation of myoblasts. Thus, this study suggests that WAVE2 is essential for myogenic differentiation of progenitor cells by modulating the mechanosensitive MRTFA-SRF axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Cordeiro-Spinetti E, Rothbart SB. Lysine methylation signaling in skeletal muscle biology: from myogenesis to clinical insights. Biochem J 2023; 480:1969-1986. [PMID: 38054592 DOI: 10.1042/bcj20230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.
Collapse
Affiliation(s)
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, U.S.A
| |
Collapse
|
8
|
Li F, Xu M, Miao J, Hu N, Wang Y, Wang L. Down-regulated Smyd1 participated in the inhibition of myoblast differentiation induced by cigarette smoke extract. Toxicol Lett 2023; 383:S0378-4274(23)00211-4. [PMID: 37385529 DOI: 10.1016/j.toxlet.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The histone methyltransferase Smyd1 is essential for muscle development; however, its role in smoking-induced skeletal muscle atrophy and dysfunction has not been investigated thus far. In this study, Smyd1 was overexpressed or knocked down in C2C12 myoblasts by an adenovirus vector and cultured in differentiation medium containing 5% cigarette smoke extract (CSE) for 4 days. CSE exposure resulted in inhibition of C2C12 cell differentiation and downregulation of Smyd1 expression, whereas Smyd1 overexpression reduced the degree of inhibition of myotube differentiation caused by CSE exposure. CSE exposure activated P2RX7-mediated apoptosis and pyroptosis, caused increased intracellular reactive oxygen species (ROS) levels, and impaired mitochondrial biogenesis and increased protein degradation by downregulating PGC1α, whereas Smyd1 overexpression partially restored the altered protein levels caused by CSE exposure. Smyd1 knockdown alone produced a phenotype similar to CSE exposure, and Smyd1 knockdown during CSE exposure aggravated the degree of inhibition of myotube differentiation and the degree of activation of P2RX7. CSE exposure suppressed H3K4me2 expression, and chromatin immunoprecipitation confirmed the transcriptional regulation of P2rx7 by H3K4me2 modification. Our findings suggest that CSE exposure mediates C2C12 cell apoptosis and pyroptosis through the Smyd1-H3K4me2-P2RX7 axis, and inhibits PGC1α expression to impair mitochondrial biosynthesis and increase protein degradation by inhibiting Smyd1 expression, ultimately leading to abnormal C2C12 myoblasts differentiation and impaired myotube formation.
Collapse
Affiliation(s)
- Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province.
| |
Collapse
|
9
|
Zhu L, Brown MA, Sims RJ, Tiwari GR, Nie H, Mayfield RD, Tucker HO. Lysine Methyltransferase SMYD1 Regulates Myogenesis via skNAC Methylation. Cells 2023; 12:1695. [PMID: 37443729 PMCID: PMC10340688 DOI: 10.3390/cells12131695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The SMYD family is a unique class of lysine methyltransferases (KMTases) whose catalytic SET domain is split by a MYND domain. Among these, Smyd1 was identified as a heart- and skeletal muscle-specific KMTase and is essential for cardiogenesis and skeletal muscle development. SMYD1 has been characterized as a histone methyltransferase (HMTase). Here we demonstrated that SMYD1 methylates is the Skeletal muscle-specific splice variant of the Nascent polypeptide-Associated Complex (skNAC) transcription factor. SMYD1-mediated methylation of skNAC targets K1975 within the carboxy-terminus region of skNAC. Catalysis requires physical interaction of SMYD1 and skNAC via the conserved MYND domain of SMYD1 and the PXLXP motif of skNAC. Our data indicated that skNAC methylation is required for the direct transcriptional activation of myoglobin (Mb), a heart- and skeletal muscle-specific hemoprotein that facilitates oxygen transport. Our study revealed that the skNAC, as a methylation target of SMYD1, illuminates the molecular mechanism by which SMYD1 cooperates with skNAC to regulate transcriptional activation of genes crucial for muscle functions and implicates the MYND domain of the SMYD-family KMTases as an adaptor to target substrates for methylation.
Collapse
Affiliation(s)
- Li Zhu
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA; (L.Z.); (M.A.B.); (H.N.)
- Department of Pathology, Lokey Stem Cell Research Building, 1291 Welch Rd Rm. G2035, Stanford, CA 94305, USA
| | - Mark A. Brown
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA; (L.Z.); (M.A.B.); (H.N.)
- Department of Clinical Sciences and Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert J. Sims
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA; (L.Z.); (M.A.B.); (H.N.)
- Flare Therapeutics, Cambridge, MA 02142, USA
| | - Gayatri R. Tiwari
- Center for Biomedical Research Services, Department of Neuroscience, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX 78712, USA (R.D.M.)
| | - Hui Nie
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA; (L.Z.); (M.A.B.); (H.N.)
- Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R. Dayne Mayfield
- Center for Biomedical Research Services, Department of Neuroscience, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX 78712, USA (R.D.M.)
| | - Haley O. Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA; (L.Z.); (M.A.B.); (H.N.)
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| |
Collapse
|
10
|
Szulik MW, Valdez S, Walsh M, Davis K, Bia R, Horiuchi E, O'Very S, Laxman AK, Sandaklie-Nicolova L, Eberhardt DR, Durrant JR, Sheikh H, Hickenlooper S, Creed M, Brady C, Miller M, Wang L, Garcia-Llana J, Tracy C, Drakos SG, Funai K, Chaudhuri D, Boudina S, Franklin S. SMYD1a protects the heart from ischemic injury by regulating OPA1-mediated cristae remodeling and supercomplex formation. Basic Res Cardiol 2023; 118:20. [PMID: 37212935 PMCID: PMC10203008 DOI: 10.1007/s00395-023-00991-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
| | - Steven Valdez
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Maureen Walsh
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean O'Very
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Anil K Laxman
- Metabolic Phenotypic Core Facility, University of Utah, Salt Lake City, UT, USA
| | | | - David R Eberhardt
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Hanin Sheikh
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Samuel Hickenlooper
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Magnus Creed
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Cameron Brady
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Mickey Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Li Wang
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - June Garcia-Llana
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Christopher Tracy
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
12
|
Yoshida GM, Yáñez JM. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data. Evol Appl 2022; 15:537-552. [PMID: 35505881 PMCID: PMC9046923 DOI: 10.1111/eva.13240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Through imputation of genotypes, genome-wide association study (GWAS) and genomic prediction (GP) using whole-genome sequencing (WGS) data are cost-efficient and feasible in aquaculture breeding schemes. The objective was to dissect the genetic architecture of growth traits under chronic heat stress in rainbow trout (Oncorhynchus mykiss) and to assess the accuracy of GP based on imputed WGS and different preselected single nucleotide polymorphism (SNP) arrays. A total of 192 and 764 fish challenged to a heat stress experiment for 62 days were genotyped using a customized 1 K and 26 K SNP panels, respectively, and then, genotype imputation was performed from a low-density chip to WGS using 102 parents (36 males and 66 females) as the reference population. Imputed WGS data were used to perform GWAS and test GP accuracy under different preselected SNP scenarios. Heritability was estimated for body weight (BW), body length (BL) and average daily gain (ADG). Estimates using imputed WGS data ranged from 0.33 ± 0.05 to 0.55 ± 0.05 for growth traits under chronic heat stress. GWAS revealed that the top five cumulatively SNPs explained a maximum of 0.94%, 0.86% and 0.51% of genetic variance for BW, BL and ADG, respectively. Some important functional candidate genes associated with growth-related traits were found among the most important SNPs, including signal transducer and activator of transcription 5B and 3 (STAT5B and STAT3, respectively) and cytokine-inducible SH2-containing protein (CISH). WGS data resulted in a slight increase in prediction accuracy compared with pedigree-based method, whereas preselected SNPs based on the top GWAS hits improved prediction accuracies, with values ranging from 1.2 to 13.3%. Our results support the evidence of the polygenic nature of growth traits when measured under heat stress. The accuracies of GP can be improved using preselected variants from GWAS, and the use of WGS marginally increases prediction accuracy.
Collapse
Affiliation(s)
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- Núcleo Milenio INVASALConcepciónChile
| |
Collapse
|
13
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
14
|
Xu R, Du S. Overexpression of Lifeact-GFP Disrupts F-Actin Organization in Cardiomyocytes and Impairs Cardiac Function. Front Cell Dev Biol 2021; 9:746818. [PMID: 34765602 PMCID: PMC8576398 DOI: 10.3389/fcell.2021.746818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lifeact-GFP is a frequently used molecular probe to study F-actin structure and dynamic assembly in living cells. In this study, we generated transgenic zebrafish models expressing Lifeact-GFP specifically in cardiac muscles to investigate the effect of Lifeact-GFP on heart development and its application to study cardiomyopathy. The data showed that transgenic zebrafish with low to moderate levels of Lifeact-GFP expression could be used as a good model to study contractile dynamics of actin filaments in cardiac muscles in vivo. Using this model, we demonstrated that loss of Smyd1b, a lysine methyltransferase, disrupted F-actin filament organization in cardiomyocytes of zebrafish embryos. Our studies, however, also demonstrated that strong Lifeact-GFP expression in cardiomyocytes was detrimental to actin filament organization in cardiomyocytes that led to pericardial edema and early embryonic lethality of zebrafish embryos. Collectively, these data suggest that although Lifeact-GFP is a good probe for visualizing F-actin dynamics, transgenic models need to be carefully evaluated to avoid artifacts induced by Lifeact-GFP overexpression.
Collapse
Affiliation(s)
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
16
|
Stability of Smyd1 in endothelial cells is controlled by PML-dependent SUMOylation upon cytokine stimulation. Biochem J 2021; 478:217-234. [PMID: 33241844 DOI: 10.1042/bcj20200603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
Smyd1 is an epigenetic modulator of gene expression that has been well-characterized in muscle cells. It was recently reported that Smyd1 levels are modulated by inflammatory processes. Since inflammation affects the vascular endothelium, this study aimed to characterize Smyd1 expression in endothelial cells. We detected Smyd1 in human endothelial cells (HUVEC and EA.hy926 cells), where the protein was largely localized in PML nuclear bodies (PML-NBs). By transfection of EA.hy926 cells with expression vectors encoding Smyd1, PML, SUMO1, active or mutant forms of the SUMO protease SuPr1 and/or the SUMO-conjugation enzyme UBC9, as well as Smyd1- or PML-specific siRNAs, in the presence or absence of the translation blocker cycloheximide or the proteasome-inhibitor MG132, and supported by computational modeling, we show that Smyd1 is SUMOylated in a PML-dependent manner and thereby addressed for degradation in proteasomes. Furthermore, transfection with Smyd1-encoding vectors led to PML up-regulation at the mRNA level, while PML transfection lowered Smyd1 protein stability. Incubation of EA.hy926 cells with the pro-inflammatory cytokine TNF-α resulted in a constant increase in Smyd1 mRNA and protein over 24 h, while incubation with IFN-γ induced a transient increase in Smyd1 expression, which peaked at 6 h and decreased to control values within 24 h. The IFN-γ-induced increase in Smyd1 was accompanied by more Smyd1 SUMOylation and more/larger PML-NBs. In conclusion, our data indicate that in endothelial cells, Smyd1 levels are regulated through a negative feedback mechanism based on SUMOylation and PML availability. This molecular control loop is stimulated by various cytokines.
Collapse
|
17
|
Jiao S, Xu R, Du S. Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles. J Genet Genomics 2021; 48:208-218. [PMID: 33958316 PMCID: PMC9234968 DOI: 10.1016/j.jgg.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1amb5) or smyd1b (smyd1bsa15678) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1bsa15678 single mutant, and almost completely diminish in smyd1amb5; smyd1bsa15678 double mutant, but not in smyd1amb5 mutant. Similar defects are also observed in cardiac muscles of smyd1bsa15678 mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1bsa15678 and smyd1amb5; smyd1bsa15678 mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
Collapse
Affiliation(s)
- Shuang Jiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| |
Collapse
|
18
|
Cell geometry and the cytoskeleton impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase. Sci Rep 2020; 10:20598. [PMID: 33244033 PMCID: PMC7691988 DOI: 10.1038/s41598-020-75833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.
Collapse
|
19
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
20
|
Heart Transplantation from Biventricular Support in Infant with Novel SMYD1 Mutation. Pediatr Cardiol 2019; 40:1745-1747. [PMID: 31278431 DOI: 10.1007/s00246-019-02139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
SET and MYND domain-containing protein 1 (SMYD1) has been shown to be responsible for the development of fast twitch and cardiac muscle. Mutations in SMYD1 have been shown to be uniformly fatal in laboratory studies, and not previously described in living humans. We describe here the care of an infant suffering from cardiac failure due to an SMYD1 mutation requiring biventricular assist devices as a bridge to successful heart transplantation. The patient is now doing well 2 years post-transplant and represents a known survivor of a suspected uniformly fatal genetic mutation.
Collapse
|
21
|
Fan LL, Ding DB, Huang H, Chen YQ, Jin JY, Xia K, Xiang R. A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin Chem Lab Med 2019; 57:532-539. [PMID: 30205637 DOI: 10.1515/cclm-2018-0578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 11/15/2022]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a serious disorder and one of the leading causes of mortality worldwide. HCM is characterized as left ventricular hypertrophy in the absence of any other loading conditions. In previous studies, mutations in at least 50 genes have been identified in HCM patients. Methods In this research, the genetic lesion of an HCM patient was identified by whole exome sequencing. Real-time polymerase chain reaction (PCR), immunofluorescence and Western blot were used to analyze the effects of the identified mutation. Results According to whole exome sequencing, we identified a de novo mutation (c.814T>C/p.F272L) of SET and MYND domain containing histone methyltransferase 1 (SMYD1) in a Chinese patient with HCM exhibiting syncope. We then generated HIS-SMYD1-pcDNA3.1+ (WT and c.814T>C/p.F272L) plasmids for transfection into AC16 cells to functionalize the mutation. The immunofluorescence experiments indicated that this mutation may block the SMYD1 protein from entering the nucleus. Both Western blot and real-time PCR revealed that, compared with cells transfected with WT plasmids, the expression of HCM-associated genes such as β-myosin heavy chains, SMYD1 chaperones (HSP90) and downstream targets including TGF-β were all disrupted in cells transfected with the mutant plasmid. Previous studies have demonstrated that SMYD1 plays a crucial role in sarcomere organization and heart development. Conclusions This novel mutation (c.814T>C/p.F272L) may be the first identified disease-causing mutation of SMYD1 in HCM patients worldwide. Our research expands the spectrum of HCM-causing genes and contributes to genetic counseling for HCM patients.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Dong-Bo Ding
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Ya-Qin Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Kun Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China.,Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
22
|
Hit identification of SMYD3 enzyme inhibitors using structure-based pharmacophore modeling. Future Med Chem 2019; 11:1107-1117. [DOI: 10.4155/fmc-2018-0462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: SMYD3 enzyme is overexpressed in many types of cancer and its role in the methylation of cytoplasmic mitogen-activated protein kinase, kinase kinase 2 (MAP3K2), has been linked to promotion of Kras-driven cancer in pancreatic ductal and lung adenocarcinoma. Materials & methods: A hybrid 3D structure-based pharmacophore model was generated using crystal structures of SMYD3 complexed with sinefungin and was used to search for potential SMYD3 inhibitors through virtual screening of the Maybridge database. The retrieved hits from screening were further docked into the binding site of SMYD3 using CDOCKER docking algorithms. The top-ranked hits were selected and their inhibitory activity was evaluated. Results & conclusion: The results obtained helped us to find an SMYD3 small molecule hit inhibitor scaffold.
Collapse
|
23
|
Cai M, Han L, Liu L, He F, Chu W, Zhang J, Tian Z, Du S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J 2019; 33:6209-6225. [PMID: 30817176 PMCID: PMC6463926 DOI: 10.1096/fj.201801578r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Two smyd1 paralogues, smyd1a and smyd1b, have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 smyd1a mutant alleles and analyzed the muscle defects in smyd1a and smyd1b single and double mutants in zebrafish. We demonstrated that knockout of smyd1a alone had no visible effect on muscle development and fish survival. This was in contrast to the smyd1b mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The smyd1a and smyd1b double mutants, however, showed a stronger muscle defect compared with smyd1a or smyd1b mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that smyd1a; smyd1b double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of hsp40 and hsp90-α1 gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants.
Collapse
Affiliation(s)
- Mengxin Cai
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Lichen Han
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lusha Liu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Fisheries, Ocean University of China, Qingdao, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants. Diseases 2018; 7:diseases7010001. [PMID: 30577454 PMCID: PMC6473627 DOI: 10.3390/diseases7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
SET and MYND Domain 1 (SMYD1) is a cardiac and skeletal muscle-specific, histone methyl transferase that is critical for both embryonic and adult heart development and function in both mice and men. We report here that skeletal muscle-specific, myogenin (myoG)-Cre-mediated conditional knockout (CKO) of Smyd1 results in perinatal death. As early as embryonic day 12.5, Smyd1 CKOs exhibit multiple skeletal muscle defects in proliferation, morphology, and gene expression. However, all myotonic descendants are not afflicted equally. Trunk muscles are virtually ablated with excessive accumulation of brown adipose tissue (BAT), forelimb muscles are disorganized and improperly differentiated, but other muscles, such as the masseter, are normal. While expression of major myogenic regulators went unscathed, adaptive and innate immune transcription factors critical for BAT development/physiology were downregulated. Whereas classical mitochondrial BAT accumulation went unscathed following loss of SMYD1, key transcription factors, including PRDM16, UCP-1, and CIDE-a that control skeletal muscle vs. adipose fate, were downregulated. Finally, in rare adults that survive perinatal lethality, SMYD1 controls specification of some, but not all, skeletal muscle fiber-types.
Collapse
|
25
|
Dong QQ, Wang QT, Wang L, Jiang YX, Liu ML, Hu HJ, Liu Y, Zhou H, He HP, Zhang TC, Luo XG. SMYD3-associated pathway is involved in the anti-tumor effects of sulforaphane on gastric carcinoma cells. Food Sci Biotechnol 2018; 27:1165-1173. [PMID: 30263847 PMCID: PMC6085256 DOI: 10.1007/s10068-018-0337-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/26/2017] [Accepted: 02/11/2018] [Indexed: 12/13/2022] Open
Abstract
Sulforaphane (SFN), a natural compound derived from cruciferous vegetables, has been proved to possess potent anti-cancer activity. SMYD3 is a histone methyltransferase which is closely related to the proliferation and migration of cancer cells. This study showed that SFN could dose-dependently induce cell cycle arrest, stimulate apoptosis, and inhibit proliferation and migration of gastric carcinoma cells. Accompanied with these anti-cancer effects, SMYD3 and its downstream genes, myosin regulatory light chain 9, and cysteine-rich angiogenic inducer 61, was downregulated by SFN. Furthermore, overexpression of SMYD3 via transfection could abolish the effects of SFN, suggesting that SMYD3 might be an important mediator of SFN. To the best of our knowledge, this is the first report describing the role of SMYD3 in the anti-cancer of SFN. These findings might throw light on the development of novel anti-cancer drugs and functional food using SFN-rich cruciferous vegetables.
Collapse
Affiliation(s)
- Qing-Qing Dong
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Qiu-Tong Wang
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Lei Wang
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Ya-Xin Jiang
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Mei-Ling Liu
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Hai-Jie Hu
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Yong Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| | - Hao Zhou
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Hong-Peng He
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Tong-Cun Zhang
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Xue-Gang Luo
- State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of Education, Tianjin, 300457 People’s Republic of China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
26
|
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. CURRENT OPINION IN PHYSIOLOGY 2017; 1:140-152. [PMID: 29435515 DOI: 10.1016/j.cophys.2017.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Christopher Tracy
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Junco S Warren
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Marta Szulik
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Li Wang
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - June Garcia
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Kristi Russell
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Mickey Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
27
|
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3:17071. [PMID: 29152378 PMCID: PMC5683310 DOI: 10.1038/cddiscovery.2017.71] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, Rome, Italy
| |
Collapse
|
28
|
Quantification of Embryonic Myofiber Development by Immunofluorescence. Methods Mol Biol 2017. [PMID: 28842909 DOI: 10.1007/978-1-4939-7283-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mammalian myogenesis occurs in two distinct phases, primary and secondary, which are temporally separated. The primary wave occurs shortly after somitogenesis producing embryonic myofibers. The secondary wave occurs after somitogenesis producing fetal myofibers that form adjacent to the embryonic myofibers. The myogenic cells that give rise to these two waves have distinct characteristics as do the myofibers they produce. The objective of this chapter is to describe our methods for quantifying embryonic and fetal myofiber development in mouse embryos using immunofluorescence.
Collapse
|
29
|
Jensen JH, Madsen LB, Panitz F, Hornshøj H, Nielsen RO, Bendixen C, Oksbjerg N, Thomsen B. Transcriptome dynamics during proliferation and differentiation of porcine primary satellite cells. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
31
|
Stewart MD, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, Valenzuela N, Wu HJ, Burns AR, Rasmussen TL, Tucker HO, Schwartz RJ. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech 2016; 9:347-59. [PMID: 26935107 PMCID: PMC4833328 DOI: 10.1242/dmm.022491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.
Collapse
Affiliation(s)
- M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Ashley Benham
- Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jasmine Nguyen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harry J Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Tara L Rasmussen
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, Institute for Cellular Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
32
|
Franklin S, Kimball T, Rasmussen TL, Rosa-Garrido M, Chen H, Tran T, Miller MR, Gray R, Jiang S, Ren S, Wang Y, Tucker HO, Vondriska TM. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am J Physiol Heart Circ Physiol 2016; 311:H1234-H1247. [PMID: 27663768 PMCID: PMC5130490 DOI: 10.1152/ajpheart.00235.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022]
Abstract
All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1.
Collapse
Affiliation(s)
- Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; and
| | - Todd Kimball
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tara L Rasmussen
- Department of Molecular Genetics and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas
| | - Manuel Rosa-Garrido
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Haodong Chen
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tam Tran
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Mickey R Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; and
| | - Ricardo Gray
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shanxi Jiang
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shuxun Ren
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Haley O Tucker
- Department of Molecular Genetics and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas
| | - Thomas M Vondriska
- Departments of Anesthesiology & Perioperative Medicine, Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
33
|
Rudeck S, Etard C, Khan MM, Rottbauer W, Rudolf R, Strähle U, Just S. A compact unc45b-promoter drives muscle-specific expression in zebrafish and mouse. Genesis 2016; 54:431-8. [PMID: 27295336 PMCID: PMC5113797 DOI: 10.1002/dvg.22953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022]
Abstract
Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven Rudeck
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Muzamil M Khan
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | | | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|