1
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Rabin R, Hirsch Y, Chung WK, Ekstein J, Levy-Lahad E, Zuckerman S, Mor-Shaked H, Meiner V, Booth KT, Pappas J. Expanding the phenotypic spectrum of COLEC10-Related 3MC syndrome: A glimpse into COLEC10-Related 3MC syndrome in the Ashkenazi Jewish population. Am J Med Genet A 2022; 188:3110-3117. [PMID: 35943032 DOI: 10.1002/ajmg.a.62943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023]
Abstract
Bi-allelic variants in COLEC11 and MASP1 have been associated with 3MC syndrome, a clinical entity made of up four rare autosomal recessive disorders: Carnevale, Mingarelli, Malpuech, and Michels syndromes, characterized by variable expression of facial dysmorphia, cleft lip/palate, postnatal growth deficiency, hearing loss, cognitive impairment, craniosynostosis, radioulnar synostosis, and genital and vesicorenal anomalies. More recently, bi-allelic variants in COLEC10 have been described to be associated with 3MC syndrome. Syndromic features seen in 3MC syndrome are thought to be due to disruption of the chemoattractant properties that influence neural crest cell migration. We identified nine individuals from five families of Ashkenazi Jewish descent with homozygosity of the c.311G > T (p.Gly104Val) variant in COLEC10 and phenotype consistent with 3MC syndrome. Carrier frequency was calculated among 52,278 individuals of Jewish descent. Testing revealed 400 carriers out of 39,750 individuals of Ashkenazi Jewish descent, giving a carrier frequency of 1 in 99 or 1.01%. Molecular protein modeling suggested that the p.Gly104Val substitution alters local conformation. The c.311G > T (p.Gly104Val) variant likely represents a founder variant, and homozygosity is associated with features of 3MC syndrome. 3MC syndrome should be in the differential diagnosis for individuals with short stature, radioulnar synostosis, cleft lip and cleft palate.
Collapse
Affiliation(s)
- Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, New York, USA
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shachar Zuckerman
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Vardiella Meiner
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
5
|
Yang B, Zhou SN, Tan JN, Huang J, Chen ZT, Zhong GY, Han FH. Long Non-Coding RNA STARD13-AS Suppresses Cell Proliferation And Metastasis In Colorectal Cancer. Onco Targets Ther 2019; 12:9309-9318. [PMID: 31807011 PMCID: PMC6842744 DOI: 10.2147/ott.s217094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) is closely related with the progression of cancer in humans. The functional and regulatory roles of lncRNAs in colorectal cancer (CRC) are still largely unclear. The purpose of this study is to explore the function of lncRNA STARD13-AS in CRC. Methods The bioinformatics tool “GEPIA” was used to predict the potential expression of STARD13-AS in CRC. qRT-PCR was used to evaluate the relative expression level of STARD13-AS in CRC cells lines and tissues samples. The functional involvement of STARD13-AS in the CRC cells was assessed using MTT assay, flow cytometry, and Transwell assay. The expression levels of cyclin D, cyclin E, E-cadherin, N-cadherin, and vimentin were assessed using Western blot. Results Bioinformatics prediction and qRT-PCR results showed that STARD13-AS expression was decreased in CRC tissues. Patients with low STARD13-AS expression exhibited distant and lymphatic metastasis as well as enhancement in tumor size. STARD13-AS expression was downregulated in CRC cell lines compared to normal human colon mucosal epithelial cell line NCM460 and STARD13-AS expression in SW620 and LoVo cell lines was lowest. Moreover, we observed that while STARD13-AS overexpression suppressed the cell cycle, proliferation, migration, and invasion, while promoted apoptosis both in LoVo and SW620 cells. In addition, STARD13-AS overexpression inhibited Cyclin E, Cyclin D, N-cadherin and vimentin expression, and promoted E-cadherin expression both in LoVo and SW620 cells. Conclusion Expression of STARD13-AS suppresses cell proliferation and metastasis in CRC, suggesting that STARD13-AS might act as a potential target for CRC treatment.
Collapse
Affiliation(s)
- Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Jing Huang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhi-Tao Chen
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
6
|
Grover M, Dasari S, Bernard CE, Chikkamenahalli LL, Yates KP, Pasricha PJ, Sarosiek I, McCallum R, Koch KL, Abell TL, Kuo B, Shulman RJ, Gibbons SJ, McKenzie TJ, Kellogg TA, Kendrick ML, Tonascia J, Hamilton FA, Parkman HP, Farrugia G. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G716-G726. [PMID: 31482734 PMCID: PMC6879892 DOI: 10.1152/ajpgi.00115.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in diabetic mice. Loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages has been reported in full-thickness gastric biopsies from gastroparesis patients. We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying, and symptoms. Full-thickness gastric antrum biopsies were obtained from nine DG patients, seven IG patients, and five nondiabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1,305 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity pathway analysis and correlations were carried out. Multiple-testing corrected P < 0.05 was considered statistically significant. Seventy-three proteins were differentially expressed in DG, 132 proteins were differentially expressed in IG, and 40 proteins were common to DG and IG. In both DG and IG, "Role of Macrophages, Fibroblasts and Endothelial Cells" was the most statistically significant altered pathway [DG false discovery rate (FDR) = 7.9 × 10-9; IG FDR = 6.3 × 10-12]. In DG, properdin expression correlated with GCSI bloating (r = -0.99, FDR = 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C-ζ type, and complement C2 correlated with 4 h gastric retention (r = -0.97, FDR = 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Protein expression changes suggest a central role of macrophage-driven immune dysregulation in gastroparesis, specifically, complement activation in diabetic gastroparesis.NEW & NOTEWORTHY This study uses SOMAscan, a novel proteomics assay for determination of altered proteins and associated molecular pathways in human gastroparesis. Seventy-three proteins were changed in diabetic gastroparesis, 132 in idiopathic gastroparesis compared with controls. Forty proteins were common in both. Macrophage-based immune dysregulation pathway was most significantly affected in both diabetic and idiopathic gastroparesis. Proteins involved in the complement and prostaglandin synthesis pathway were associated with symptoms and gastric emptying delay in diabetic gastroparesis.
Collapse
Affiliation(s)
| | - Surendra Dasari
- 2Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Katherine P. Yates
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Irene Sarosiek
- 5Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | - Braden Kuo
- 8Massachusetts General Hospital, Boston, Massachusetts
| | | | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - James Tonascia
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Frank A. Hamilton
- 11National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | | | | |
Collapse
|
7
|
Han P, Liu J, Lei Y, Lin Z, Tian D, Yan W. Netrin-1 promotes the collective cell migration of liver cancer cells in a 3D cell culture model. J Physiol Biochem 2019; 75:489-498. [PMID: 31407237 DOI: 10.1007/s13105-019-00701-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/04/2019] [Indexed: 01/01/2023]
Abstract
Collective cell migration plays an important role in embryonic development, wound healing, and cancer metastasis. We aimed to investigate the expression, role, and mechanism of Netrin-1 in collective cell migration using a3D culture model. An immunohistochemical study showed that certain cells invaded surrounding tissue by collective migration and that Netrin-1 expression in these cells was increased, especially at the invasive front. In the 3D culture model, collective cell migration was clearly observed, as leader cells were followed by cells migrating along a canal. N-cadherin-mediated cell junctions were observed in collective cell migration, and Netrin-1 expression was elevated in these cells. Netrin-1 did not affect the expression of N-cadherin in 2D-cultured cells; however, in 3D culture, the overexpression of Netrin-1 increased N-cadherin and promoted the collective migration of Huh7 cells, while the knockdown of Netrin-1 decreased N-cadherin and inhibited collective migration in SK-Hep-1 cells. Interestingly, N-cadherin knockdown in Huh7 cells significantly diminished Netrin-1-promoted collective cell migration, while the overexpression of N-cadherin restored collective migration in Netrin-1-knockdown SK-Hep1 cells. These results suggest that Netrin-1 enhances N-cadherin junctions to promote liver cancer cell collective migration in 3D cell culture and may subsequently increase liver cancer metastasis.
Collapse
Affiliation(s)
- Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
8
|
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci 2019; 12:52. [PMID: 30881286 PMCID: PMC6405627 DOI: 10.3389/fnmol.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the developing organism, complex molecular programs orchestrate the generation of cells in adequate numbers, drive them to migrate along the correct pathways towards appropriate territories, eliminate superfluous cells, and induce terminal differentiation of survivors into the appropriate cell-types. Despite strict controls constraining developmental processes, malignancies can emerge in still immature organisms. This is the case of neuroblastoma (NB), a highly heterogeneous disease, predominantly affecting children before the age of 5 years. Highly metastatic forms represent half of the cases and are diagnosed when disseminated foci are detectable. NB arise from a transient population of embryonic cells, the neural crest (NC), and especially NC committed to the establishment of the sympatho-adrenal tissues. The NC is generated at the dorsal edge of the neural tube (NT) of the vertebrate embryo, under the action of NC specifier gene programs. NC cells (NCCs) undergo an epithelial to mesenchymal transition, and engage on a remarkable journey in the developing embryo, contributing to a plethora of cell-types and tissues. Various NCC sub-populations and derived lineages adopt specific migratory behaviors, moving individually as well as collectively, exploiting the different embryonic substrates they encounter along their path. Here we discuss how the specific features of NCC in development are re-iterated during NB metastatic behaviors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| |
Collapse
|
9
|
Coulthard LG, Hawksworth OA, Woodruff TM. Complement: The Emerging Architect of the Developing Brain. Trends Neurosci 2018; 41:373-384. [PMID: 29606485 DOI: 10.1016/j.tins.2018.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 01/11/2023]
Abstract
Complement activation products have long been associated with roles in the innate immune system, linking the humoral and cellular responses. However, among their recently described non-inflammatory roles, complement proteins also have multiple emerging novel functions in brain development. Within this context, separate proteins and pathways of complement have carved out physiological niches in the formation, development, and refinement of neurons. They demonstrate actions that are both reminiscent of peripheral immune actions and removed from them. We review here three key roles for complement proteins in the developing brain: progenitor proliferation, neuronal migration, and synaptic pruning.
Collapse
Affiliation(s)
- Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
Abstract
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development. It is involved in processes as diverse as cell localisation, tissue morphogenesis, and the growth and refinement of the brain. Such physiological actions of complement have also been described in adult stem cell populations, with roles in proliferation, differentiation, survival, and regeneration. With such a broad range of complement functions now described, it is likely that current research only describes a fraction of the full reach of complement proteins. Here, we review how complement control of physiological cell processes has been harnessed in stem cell populations throughout both development and in adult physiology.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Liam G Coulthard
- School of Clinical Medicine, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Susanna Mantovani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K. Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 2017; 428:88-100. [PMID: 28576690 PMCID: PMC5726978 DOI: 10.1016/j.ydbio.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear β-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.
Collapse
Affiliation(s)
- Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA; Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Jeffrey Bierly
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zeyu Han
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Christian Gutierrez
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Zachary McKinney
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
12
|
Gorelik A, Sapir T, Woodruff TM, Reiner O. Serping1/C1 Inhibitor Affects Cortical Development in a Cell Autonomous and Non-cell Autonomous Manner. Front Cell Neurosci 2017; 11:169. [PMID: 28670268 PMCID: PMC5472692 DOI: 10.3389/fncel.2017.00169] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022] Open
Abstract
Current knowledge regarding regulation of radial neuronal migration is mainly focused on intracellular molecules. Our unbiased screen aimed at identification of non-cell autonomous mechanisms involved in this process detected differential expression of Serping1 or C1 inhibitor, which is known to inhibit the initiation of the complement cascade. The complement cascade is composed of three pathways; the classical, lectin, and the alternative pathway; the first two are inhibited by C1 inhibitor, and all three converge at the level of C3. Knockdown or knockout of Serping1 affected neuronal stem cell proliferation and impaired neuronal migration in mice. Knockdown of Serping1 by in utero electroporation resulted in a migration delay of the electroporated cells as well as their neighboring cells demonstrating a non-cell autonomous effect. Cellular polarity was also affected. Most importantly, expression of protein components mimicking cleaved C3 rescued the knockdown of Serping1, indicating complement pathway functionality. Furthermore, we propose that this activity is mediated mainly via the complement peptide C5a receptors. Whereas addition of a selective C3a receptor agonist was minimally effective, the addition of a dual C3aR/C5a receptor agonist significantly rescued Serping1 knockdown-mediated neuronal migration defects. Our findings suggest that modulating Serping1 levels in the developing brain may affect the complement pathway in a complex way. Collectively, our findings demonstrate an unorthodox activity for the complement pathway during brain development.
Collapse
Affiliation(s)
- Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovot, Israel
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of QueenslandSt Lucia, QLD, Australia
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
13
|
Bahm I, Barriga EH, Frolov A, Theveneau E, Frankel P, Mayor R. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration. Development 2017; 144:2456-2468. [PMID: 28526750 PMCID: PMC5536867 DOI: 10.1242/dev.147926] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. Summary: PDGF-A and its receptor control Xenopus neural crest migration by promoting EMT and contact inhibition of locomotion, acting via N-cadherin regulation at early stages of development and working as chemoattractant later.
Collapse
Affiliation(s)
- Isabel Bahm
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.,London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Antonina Frolov
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, Jenkins D, Morton J, Hansen SW, Bacchelli C, Beales PL, Hernandez-Hernandez V. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Genet 2017; 13:e1006679. [PMID: 28301481 PMCID: PMC5373641 DOI: 10.1371/journal.pgen.1006679] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to developmental abnormalities. The main features include facial dysmorphism, craniosynostosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC). We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in 3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respectively, form heteromeric complexes. We show COLEC10 is expressed in the base membrane of the palate during murine embryo development. We demonstrate how mutations in COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp) impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together, these findings provide further evidence linking the lectin complement pathway and complement factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and 3MC etiology. The 3MC syndrome is a unifying term amalgamating four rare recessive genetic disorders with overlapping features namely; Mingarelli, Malpuech, Michels and Carnevale syndromes. It is characterised by facial malformations including, high-arched eyebrows, cleft lip/palate, hypertelorism, developmental delay and hearing loss. We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 were mutated in 3MC syndrome patients. Here we describe a new gene from the same pathway, COLEC10, mutated in 3MC patients. Our results show that COLEC10 is expressed in craniofacial tissues during development. We demonstrate how CL-L1, the protein expressed by COLEC10, can act as a cellular chemoattractant in vitro, controlling cell movement and migration. We overexpressed constructs carrying COLEC10 non-sense mutations found in our patients, CL-L1 failed to be expressed and secreted. Moreover, when we expressed a missense COLEC10 construct, CL-L1 was expressed but failed to be secreted. In sum, we discovered a new gene, COLEC10, mutated in 3MC syndrome and we propose a pathogenic mechanism for 3MC relating to the failure of CL-L1 function and its craniofacial developmental consequences.
Collapse
Affiliation(s)
- Mustafa M. Munye
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Diaz-Font
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louise Ocaka
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maiken L. Henriksen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom
| | - Angela Brady
- North West Thames Regional Genetics Service, Kennedy-Galton Centre, Northwick Park Hospital, London, United Kingdom
| | - Dagan Jenkins
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jenny Morton
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Soren W. Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Chiara Bacchelli
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Philip L. Beales
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| | - Victor Hernandez-Hernandez
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| |
Collapse
|
15
|
Hawksworth OA, Coulthard LG, Woodruff TM. Complement in the fundamental processes of the cell. Mol Immunol 2016; 84:17-25. [PMID: 27894513 DOI: 10.1016/j.molimm.2016.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Abstract
Once regarded solely as an activator of innate immunity, it is now clear that the complement system acts in an assortment of cells and tissues, with immunity only one facet of a diverse array of functions under the influence of the complement proteins. Throughout development, complement activity has now been demonstrated from early sperm-egg interactions in fertilisation, to regulation of epiboly and organogenesis, and later in refinement of cerebral synapses. Complement has also been shown to regulate homeostasis of adult tissues, controlling cell processes such as migration, survival, repair, and regeneration. Given the continuing emergence of such novel actions of complement, the existing research likely represents only a fraction of the myriad of functions of this complex family of proteins. This review is focussed on outlining the current knowledge of complement family members in the regulation of cell processes in non-immune systems. It is hoped this will spur research directed towards revealing more about the role of complement in these fundamental cell processes.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Liam G Coulthard
- School of Medicine, University of Queensland, Herston, Australia; Royal Brisbane and Women's Hospital, Herston, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
16
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Han X, Wang L, Ning Y, Li S, Wang Z. Long non-coding RNA AFAP1-AS1 facilitates tumor growth and promotes metastasis in colorectal cancer. Biol Res 2016; 49:36. [PMID: 27578191 PMCID: PMC5006422 DOI: 10.1186/s40659-016-0094-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Long non-coding RNAs can regulate tumorigenesis of various cancers. Dys-regulation of lncRNA-AFAP1-AS1 has not been studied in colorectal carcinoma (CRC). This study was to examine the function involvement of AFAP1-AS1 in tumor growth and metastasis of CRC. METHODS Relative expression of AFAP1-AS1 in CRC tissues and CRC cells lines was determined using quantitative real-time PCR (qRT-PCR). Functional involvement of AFAP1-AS1 in tumor proliferation and metastasis was evaluated in AFAP1-AS1-specific siRNA-treated CRC cells and in CRC cell xenograft. Expression of epithelial-mesenchymal transition (EMT)-related gene expression was determined using western blot. RESULTS Relative expression of AFAP1-AS1 was significantly elevated in CRC tissues and CRC HCT116 and SW480 cell lines. AFAP1-AS1 knock-down suppressed SW480 cell proliferation, colony formation, migration and invasion. Also AFAP1-AS1 knock-down inhibited tumor metastasis-associated genes expression in terms of EMT. This carcinostatic action by AFAP1-AS1 knock-down was further confirmed by suppression of tumor formation and hepatic metastasis of CRC cells in nude mice. CONCLUSION lncRNA-AFAP1-AS1 knock-down exhibits antitumor effect on colorectal carcinoma in respects of suppression of cell proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Xu Han
- General surgery, Chao-Yang Hospital of Capital Medical University, 8 Gongtinan Rd, Beijing, 10001, People's Republic of China.,Anorectal surgery, Beihua University, Jilin, 132001, People's Republic of China
| | - Lingling Wang
- Department of Neurology, Beihua University, Jilin, 132001, People's Republic of China
| | - Yu Ning
- Anorectal surgery, Beihua University, Jilin, 132001, People's Republic of China
| | - Shuang Li
- Anorectal surgery, Beihua University, Jilin, 132001, People's Republic of China
| | - Zhenjun Wang
- General surgery, Chao-Yang Hospital of Capital Medical University, 8 Gongtinan Rd, Beijing, 10001, People's Republic of China.
| |
Collapse
|