1
|
Hao H, Yuan Y, Ito A, Eberand BM, Tjondro H, Cielesh M, Norris N, Moreno CL, Maxwell JWC, Neely GG, Payne RJ, Kebede MA, Urbauer RJB, Passam FH, Larance M, Haltiwanger RS. FUT10 and FUT11 are protein O-fucosyltransferases that modify protein EMI domains. Nat Chem Biol 2025; 21:598-610. [PMID: 39775168 PMCID: PMC11949838 DOI: 10.1038/s41589-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively. Like POFUT1/2, POFUT3/4 function in the endoplasmic reticulum, require folded domain structures for modification and participate in a non-canonical endoplasmic reticulum quality control pathway for EMI domain-containing protein secretion. This finding expands the O-fucosylation repertoire and provides an entry point for further exploration in this emerging field of O-fucosylation.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Youxi Yuan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Regional Fish Institute, Ltd., Kyoto, Japan
| | - Benjamin M Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry Tjondro
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Norris
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Freda H Passam
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|
2
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
3
|
Liu ZX, Zou TT, Liu HH, Jia HB, Zhang XQ. Knockout of the fcsk gene in zebrafish causes neurodevelopmental defects. Zool Res 2025; 46:313-324. [PMID: 40049660 PMCID: PMC12000135 DOI: 10.24272/j.issn.2095-8137.2024.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 04/18/2025] Open
Abstract
Congenital disorders of glycosylation (CDG) are a cluster of monogenic disorders resulting from defects in glycosylation. FCSK encodes fucokinase, an enzyme that catalyzes the phosphorylation of L-fucose to generate fucose-1-phosphate, an important step in fucosylation. Mutations in FCSK lead to CDG with an autosomal recessive inheritance pattern, primarily manifesting as developmental delay, hypotonia, and brain abnormalities. However, no fcsk mutant animal models have yet been established. This study constructed the first fcsk knockout ( fcsk -/-) zebrafish model using CRISPR/Cas9 technology. Notably, fcsk -/- zebrafish exhibited impaired growth, characterized by delayed epiboly and DNA accumulation during early embryonic development, as well as brain atrophy in adulthood. Larval-stage fcsk -/- zebrafish displayed locomotor deficits and increased susceptibility to pentylenetetrazole-induced seizures. In adulthood, fcsk -/- zebrafish showed neurodevelopmental abnormalities, including increased anxiety, decreased aggression, reduced social preference, and impaired memory. Additionally, total protein fucosylation was markedly reduced in fcsk -/- zebrafish, accompanied by decreased expression of pofut2, which encodes protein O-fucosyltransferase 2, an enzyme involved in the fucosylation salvage pathway. Apoptotic activity was elevated in the midbrain-hindbrain boundary (MHB) of fcsk -/- zebrafish. Supplementation with GDP-L-fucose or the human FCSK gene restored developmental defects and total protein fucosylation in fcsk -/- zebrafish. RNA sequencing revealed dysregulated gene expression associated with glycosylation, apoptosis, and neurodegenerative diseases. These findings suggest that fcsk -/- zebrafish exhibit neurodevelopmental disorders, providing the first fcsk gene knockout animal model and offering a platform for investigating the molecular underpinnings of the disease and facilitating drug screening efforts.
Collapse
Affiliation(s)
- Zhen-Xing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting-Ting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui-Hui Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hai-Bo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China. E-mail:
| | - Xian-Qin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China. E-mail:
| |
Collapse
|
4
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Houlahan CB, Kong Y, Johnston B, Cielesh M, Chau TH, Fenwick J, Coleman PR, Hao H, Haltiwanger RS, Thaysen-Andersen M, Passam FH, Larance M. Analysis of the Healthy Platelet Proteome Identifies a New Form of Domain-Specific O-Fucosylation. Mol Cell Proteomics 2024; 23:100717. [PMID: 38237698 PMCID: PMC10879016 DOI: 10.1016/j.mcpro.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.
Collapse
Affiliation(s)
- Callum B Houlahan
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yvonne Kong
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bede Johnston
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jemma Fenwick
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Coleman
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Huilin Hao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia; Institute for Glyco-Core Research, Nagoya University, Nagoya, Aichi, Japan
| | - Freda H Passam
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Nandadasa S, Martin D, Deshpande G, Robert KL, Stack MS, Itoh Y, Apte SS. Degradomic Identification of Membrane Type 1-Matrix Metalloproteinase as an ADAMTS9 and ADAMTS20 Substrate. Mol Cell Proteomics 2023; 22:100566. [PMID: 37169079 PMCID: PMC10267602 DOI: 10.1016/j.mcpro.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Imaging Core Facility, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Karyn L Robert
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry and Harper Cancer Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yoshifumi Itoh
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Berardinelli SJ, Sillato AR, Grady RC, Neupane S, Ito A, Haltiwanger RS, Holdener BC. O-fucosylation of thrombospondin type I repeats is dispensable for trafficking thrombospondin 1 to platelet secretory granules. Glycobiology 2023; 33:301-310. [PMID: 36721988 PMCID: PMC10191222 DOI: 10.1093/glycob/cwad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Thrombospondin 1 (THBS1) is a secreted extracellular matrix glycoprotein that regulates a variety of cellular and physiological processes. THBS1's diverse functions are attributed to interactions between the modular domains of THBS1 with an array of proteins found in the extracellular matrix. THBS1's three Thrombospondin type 1 repeats (TSRs) are modified with O-linked glucose-fucose disaccharide and C-mannose. It is unknown whether these modifications impact trafficking and/or function of THBS1 in vivo. The O-fucose is added by Protein O-fucosyltransferase 2 (POFUT2) and is sequentially extended to the disaccharide by β3glucosyltransferase (B3GLCT). The C-mannose is added by one or more of four C-mannosyltransferases. O-fucosylation by POFUT2/B3GLCT in the endoplasmic reticulum has been proposed to play a role in quality control by locking TSR domains into their three-dimensional fold, allowing for proper secretion of many O-fucosylated substrates. Prior studies showed the siRNA knockdown of POFUT2 in HEK293T cells blocked secretion of TSRs 1-3 from THBS1. Here we demonstrated that secretion of THBS1 TSRs 1-3 was not reduced by CRISPR-Cas9-mediated knockout of POFUT2 in HEK293T cells and demonstrated that knockout of Pofut2 or B3glct in mice did not reduce the trafficking of endogenous THBS1 to secretory granules of platelets, a major source of THBS1. Additionally, we demonstrated that all three TSRs from platelet THBS1 were highly C-mannosylated, which has been shown to stabilize TSRs in vitro. Combined, these results suggested that POFUT2 substrates with TSRs that are also modified by C-mannose may be less susceptible to trafficking defects resulting from the loss of the glucose-fucose disaccharide.
Collapse
Affiliation(s)
- Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew R Sillato
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Zhang Q, Kanyomse Q, Luo C, Mo Q, Zhao X, Wang L, Peng W, Ren G. The Prognostic Value of ADAMTS8 and Its Role as a Tumor Suppressor in Breast Cancer. Cancer Invest 2023; 41:119-132. [PMID: 36346393 DOI: 10.1080/07357907.2022.2128367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A disintegrin-like and metalloprotease with therombospondin type1 motif 8 (ADAMTS8) plays an important role in many malignancies. However, the clinical and biological significance of ADAMTS8 in breast cancer remain unknown. In this study, the clinical data from 1066 breast cancer patients were analyzed by The Cancer Genome Atlas (TCGA) database, and were analyzed using the correlation between ADAMTS8 expression and the clinicopathological features and prognoses. The CCK-8 assay, clone formation assay, flow cytometry and Transwell assay were used to characterize the effects of ADAMTS8 on proliferation, migration and invasion of breast cancer cells. Gene set enrichment analysis (GSEA) and western blotting were used to identify the potential molecular mechanism on how ADAMTS8 exert its biological function. ADAMTS8 overexpression correlated longer overall survival (OS) and progression-free survival (PFS). ADAMTS8 was considered as an independent prognostic factor for OS. ADAMTS8 overexpression inhibited breast cancer cell proliferation, migration and invasion in vitro, and induced G2/M cell cycle arrest. ADAMTS8 was also involved in cell cycle regulation and was associated with the EGFR/Akt signaling pathway. ADAMTS8 knockdown showed the reverse effect. Together, the results showed that ADAMTS8 functioned as a tumor suppressor gene (TGS) and could be a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Qia Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quist Kanyomse
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenghao Luo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfan Mo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XunPing Zhao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Sosicka P, Ng BG, Pepi LE, Shajahan A, Wong M, Scott DA, Matsumoto K, Xia ZJ, Lebrilla CB, Haltiwanger RS, Azadi P, Freeze HH. Origin of cytoplasmic GDP-fucose determines its contribution to glycosylation reactions. J Cell Biol 2022; 221:e202205038. [PMID: 36053214 PMCID: PMC9441714 DOI: 10.1083/jcb.202205038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Biosynthesis of macromolecules requires precursors such as sugars or amino acids, originating from exogenous/dietary sources, reutilization/salvage of degraded molecules, or de novo synthesis. Since these sources are assumed to contribute to one homogenous pool, their individual contributions are often overlooked. Protein glycosylation uses monosaccharides from all the above sources to produce nucleotide sugars required to assemble hundreds of distinct glycans. Here, we demonstrate that cells identify the origin/heritage of the monosaccharide, fucose, for glycosylation. We measured the contribution of GDP-fucose from each of these sources for glycan synthesis and found that different fucosyltransferases, individual glycoproteins, and linkage-specific fucose residues identify and select different GDP-fucose pools dependent on their heritage. This supports the hypothesis that GDP-fucose exists in multiple, distinct pools, not as a single homogenous pool. The selection is tightly regulated since the overall pool size remains constant. We present novel perspectives on monosaccharide metabolism, which may have a general applicability.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Maurice Wong
- Department of Chemistry, University of California Davis, Davis, CA
| | - David A. Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
10
|
Metabolic utilization and remodeling of glycan biosynthesis using fucose analogs. Biochim Biophys Acta Gen Subj 2022; 1866:130243. [PMID: 36087787 DOI: 10.1016/j.bbagen.2022.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fucose (Fuc), a monosaccharide present at the core or the termini of glycans, critically regulates various biological phenomena and is associated with various diseases. Specifically detecting Fuc residues or inhibiting the fucosylation pathway is pivotal in understanding the mechanisms of how fucosylated glycans are related to biological processes and diseases and in developing novel therapeutic agents. SCOPE OF REVIEW This review focuses on chemical biology approaches using Fuc analogs developed for metabolically labeling fucosylated glycans or inhibiting the biosynthesis of fucosylated glycans. MAJOR CONCLUSIONS Developed Fuc analogs have different potency, specificity and effects on protein and cellular functions. Developing highly enzyme-specific probes and inhibitors is desirable for future investigations. GENERAL SIGNIFICANCE Chemical glycobiology approaches using sugar analogs are useful for revealing novel mechanisms of inter-relationships among sugar metabolism pathways and manipulating glycan expression to develop new glycan-targeted therapies.
Collapse
|
11
|
Berardinelli SJ, Eletsky A, Valero-González J, Ito A, Manjunath R, Hurtado-Guerrero R, Prestegard JH, Woods RJ, Haltiwanger RS. O-fucosylation stabilizes the TSR3 motif in thrombospondin-1 by interacting with nearby amino acids and protecting a disulfide bond. J Biol Chem 2022; 298:102047. [PMID: 35597280 PMCID: PMC9198472 DOI: 10.1016/j.jbc.2022.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by β3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.
Collapse
Affiliation(s)
- Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Alexander Eletsky
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Jessika Valero-González
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Atsuko Ito
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Rajashri Manjunath
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Ramon Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - James H Prestegard
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
12
|
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biol 2022; 107:77-96. [DOI: 10.1016/j.matbio.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
13
|
Wang J, Miao Y, Wicklein R, Sun Z, Wang J, Jude KM, Fernandes RA, Merrill SA, Wernig M, Garcia KC, Südhof TC. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 2021; 184:5869-5885.e25. [PMID: 34758294 PMCID: PMC8620742 DOI: 10.1016/j.cell.2021.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Wicklein
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinzhao Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean A Merrill
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, Böttcher A, Ansarullah, Irmler M, Beckers J, Cernilogar FM, Schotta G, Theis FJ, Lickert H. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 2021; 23:692-703. [PMID: 34168324 PMCID: PMC8277579 DOI: 10.1038/s41556-021-00694-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
15
|
Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, Haltiwanger RS. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem 2021; 297:100843. [PMID: 34058199 PMCID: PMC8233153 DOI: 10.1016/j.jbc.2021.100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes, have mutations in the gene encoding β1,3-glucosyltransferase [B3GLCT]). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - James L Mull
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
16
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
17
|
Jiang S, Jiang Y, Cao Y, Zhao Y, Liu H, Wang X, He Z, Song Z, Wang X, Liu G, Cui R. The use of pan-cancer analysis of ADAMTS9 expression in various cancer types. Epigenomics 2021; 13:253-256. [PMID: 33502246 DOI: 10.2217/epi-2020-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Shijun Jiang
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, Heilongjiang 163311, PR China
| | - Ying Jiang
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Yingli Cao
- Department of pathology, Heilongjiang Nursing College, Harbin, Heilongjiang 150000, PR China
| | - Yiyang Zhao
- The 1st Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510000, PR China
| | - Hongfeng Liu
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Xiuli Wang
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Zikang He
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Zheyao Song
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Xingyun Wang
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Gang Liu
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Rongjun Cui
- Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| |
Collapse
|
18
|
Tsukamoto Y, Takeuchi H. Other Types of Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:117-135. [PMID: 34495532 DOI: 10.1007/978-3-030-70115-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
O-Linked glycosylation such as O-fucose, O-glucose, and O-N-acetylglucosamine are considered to be unusual. As suggested by the high levels of evolutional conservation, these O-glycans are fundamentally important for life. In the last two decades, our understanding of the importance of these glycans has greatly advanced. In particular, identification of the glycosyltransferases responsible for the biosynthesis of these glycans has accelerated basic research on the functional significance and molecular mechanisms by which these O-glycans regulate protein functions as well as clinical research on human diseases due to changes in these types of O-glycosylation. Notably, Notch receptor signaling is modified with and regulated by these types of O-glycans. Here, we summarize the current view of the structures and the significance of these O-glycans mainly in the context of Notch signaling regulation and human diseases.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| |
Collapse
|
19
|
Zhang A, Berardinelli SJ, Leonhard-Melief C, Vasudevan D, Liu TW, Taibi A, Giannone S, Apte SS, Holdener BC, Haltiwanger RS. O-Fucosylation of ADAMTSL2 is required for secretion and is impacted by geleophysic dysplasia-causing mutations. J Biol Chem 2020; 295:15742-15753. [PMID: 32913123 DOI: 10.1074/jbc.ra120.014557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Indexed: 01/20/2023] Open
Abstract
ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-β binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose β1-3-fucose (GlcFuc) disaccharide by β1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2 -/- but not in B3GLCT -/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | - Deepika Vasudevan
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Ta-Wei Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew Taibi
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Sharee Giannone
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA.
| |
Collapse
|
20
|
Ma C, Takeuchi H, Hao H, Yonekawa C, Nakajima K, Nagae M, Okajima T, Haltiwanger RS, Kizuka Y. Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int J Mol Sci 2020; 21:ijms21176007. [PMID: 32825463 PMCID: PMC7503990 DOI: 10.3390/ijms21176007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycans critically regulate the physiological functions of proteins and cells. Alterations in levels of fucosylated glycans are associated with various diseases. For detection and functional modulation of fucosylated glycans, chemical biology approaches using fucose (Fuc) analogs are useful. However, little is known about how efficiently each unnatural Fuc analog is utilized by enzymes in the biosynthetic pathway of fucosylated glycans. We show here that three clickable Fuc analogs with similar but distinct structures labeled cellular glycans with different efficiency and protein specificity. For instance, 6-alkynyl (Alk)-Fuc modified O-Fuc glycans much more efficiently than 7-Alk-Fuc. The level of GDP-6-Alk-Fuc produced in cells was also higher than that of GDP-7-Alk-Fuc. Comprehensive in vitro fucosyltransferase assays revealed that 7-Alk-Fuc is commonly tolerated by most fucosyltransferases. Surprisingly, both protein O-fucosyltransferases (POFUTs) could transfer all Fuc analogs in vitro, likely because POFUT structures have a larger space around their Fuc binding sites. These findings demonstrate that labeling and detection of fucosylated glycans with Fuc analogs depend on multiple cellular steps, including conversion to GDP form, transport into the ER or Golgi, and utilization by each fucosyltransferase, providing insights into design of novel sugar analogs for specific detection of target glycans or inhibition of their functions.
Collapse
Affiliation(s)
- Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Huilin Hao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Chizuko Yonekawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Japan;
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Disease, Osaka University, Suita 565-0871, Japan;
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3356
| |
Collapse
|
21
|
Holdener BC, Percival CJ, Grady RC, Cameron DC, Berardinelli SJ, Zhang A, Neupane S, Takeuchi M, Jimenez-Vega JC, Uddin SMZ, Komatsu DE, Honkanen R, Dubail J, Apte SS, Sato T, Narimatsu H, McClain SA, Haltiwanger RS. ADAMTS9 and ADAMTS20 are differentially affected by loss of B3GLCT in mouse model of Peters plus syndrome. Hum Mol Genet 2020; 28:4053-4066. [PMID: 31600785 DOI: 10.1093/hmg/ddz225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Peters plus syndrome (MIM #261540 PTRPLS), characterized by defects in eye development, prominent forehead, hypertelorism, short stature and brachydactyly, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. Protein O-fucosyltransferase 2 (POFUT2) and B3GLCT work sequentially to add an O-linked glucose β1-3fucose disaccharide to properly folded thrombospondin type 1 repeats (TSRs). Forty-nine proteins are predicted to be modified by POFUT2, and nearly half are members of the ADAMTS superfamily. Previous studies suggested that O-linked fucose is essential for folding and secretion of POFUT2-modified proteins and that B3GLCT-mediated extension to the disaccharide is essential for only a subset of targets. To test this hypothesis and gain insight into the origin of PTRPLS developmental defects, we developed and characterized two mouse B3glct knockout alleles. Using these models, we tested the role of B3GLCT in enabling function of ADAMTS9 and ADAMTS20, two highly conserved targets whose functions are well characterized in mouse development. The mouse B3glct mutants developed craniofacial and skeletal abnormalities comparable to PTRPLS. In addition, we observed highly penetrant hydrocephalus, white spotting and soft tissue syndactyly. We provide strong genetic and biochemical evidence that hydrocephalus and white spotting in B3glct mutants resulted from loss of ADAMTS20, eye abnormalities from partial reduction of ADAMTS9 and cleft palate from loss of ADAMTS20 and partially reduced ADAMTS9 function. Combined, these results provide compelling evidence that ADAMTS9 and ADAMTS20 were differentially sensitive to B3GLCT inactivation and suggest that the developmental defects in PTRPLS result from disruption of a subset of highly sensitive POFUT2/B3GLCT targets such as ADAMTS20.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel C Cameron
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ao Zhang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Takashi Sato
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hisashi Narimatsu
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Steve A McClain
- Department of Dermatology and Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Hadjantonakis AK, Siggia ED, Simunovic M. In vitro modeling of early mammalian embryogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:134-143. [PMID: 32440574 DOI: 10.1016/j.cobme.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic embryology endeavors to use stem cells to recapitulate the first steps of mammalian development that define the body axes and first stages of fate assignment. Well-engineered synthetic systems provide an unparalleled assay to disentangle and quantify the contributions of individual tissues as well as the molecular components driving embryogenesis. Experiments using a mixture of mouse embryonic and extra-embryonic stem cell lines show a surprising degree of self-organization akin to certain milestones in the development of intact mouse embryos. To further advance the field and extend the mouse results to human, it is crucial to develop a better control of the assembly process as well as to establish a deeper understanding of the developmental state and potency of cells used in experiments at each step of the process. We review recent advances in the derivation of embryonic and extraembryonic stem cells, and we highlight recent efforts in reconstructing the structural and signaling aspects of embryogenesis in three-dimensional tissue cultures.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Department of Chemical Engineering, Columbia Univerisity, 116 and Broadway, New York, NY 10025
| |
Collapse
|
23
|
ADAMTS9-Regulated Pericellular Matrix Dynamics Governs Focal Adhesion-Dependent Smooth Muscle Differentiation. Cell Rep 2019; 23:485-498. [PMID: 29642006 PMCID: PMC5987776 DOI: 10.1016/j.celrep.2018.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022] Open
Abstract
Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM.
Collapse
|
24
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
25
|
Wang LW, Nandadasa S, Annis DS, Dubail J, Mosher DF, Willard BB, Apte SS. A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9) regulates fibronectin fibrillogenesis and turnover. J Biol Chem 2019; 294:9924-9936. [PMID: 31085586 PMCID: PMC6597835 DOI: 10.1074/jbc.ra118.006479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The secreted metalloprotease ADAMTS9 has dual roles in extracellular matrix (ECM) turnover and biogenesis of the primary cilium during mouse embryogenesis. Its gene locus is associated with several human traits and disorders, but ADAMTS9 has few known interacting partners or confirmed substrates. Here, using a yeast two-hybrid screen for proteins interacting with its C-terminal Gon1 domain, we identified three putative ADAMTS9-binding regions in the ECM glycoprotein fibronectin. Using solid-phase binding assays and surface plasmon resonance experiments with purified proteins, we demonstrate that ADAMTS9 and fibronectin interact. ADAMTS9 constructs, including those lacking Gon1, co-localized with fibronectin fibrils formed by cultured fibroblasts lacking fibrillin-1, which co-localizes with fibronectin and binds several ADAMTSs. We observed no fibrillar ADAMTS9 staining after blockade of fibroblast fibronectin fibrillogenesis with a peptide based on the functional upstream domain of a Staphylococcus aureus adhesin. These findings indicate that ADAMTS9 binds fibronectin dimers and fibrils directly through multiple sites in both molecules. Proteolytically active ADAMTS9, but not a catalytically inactive variant, disrupted fibronectin fibril networks formed by fibroblasts in vitro, and ADAMTS9-deficient RPE1 cells assembled a robust fibronectin fibril network, unlike WT cells. Targeted LC-MS analysis of fibronectin digested by ADAMTS9-expressing cells identified a semitryptic peptide arising from cleavage at Gly2196-Leu2197 We noted that this scissile bond is in the linker between fibronectin modules III17 and I10, a region targeted also by other proteases. These findings, along with stronger fibronectin staining previously observed in Adamts9 mutant embryos, suggest that ADAMTS9 contributes to fibronectin turnover during ECM remodeling.
Collapse
Affiliation(s)
| | | | - Douglas S Annis
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Belinda B Willard
- the Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | | |
Collapse
|
26
|
Carter NJ, Roach ZA, Byrnes MM, Zhu Y. Adamts9 is necessary for ovarian development in zebrafish. Gen Comp Endocrinol 2019; 277:130-140. [PMID: 30951722 DOI: 10.1016/j.ygcen.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
Expression of adamts9 (A disintegrin and metalloprotease with thrombospondin type-1 motif, member 9) increases dramatically in the somatic cells surrounding oocytes during ovulation in vertebrates from zebrafish to human. However, the function of Adamts9 during ovulation has not been determined due to the embryonic lethality of knockouts in mice and Drosophila. To identify the role of Adamts9 during ovulation we generated knockout (adamts9-/-) zebrafish using CRISPR/Cas9 and characterized the effects of the mutation. From 1047 fish generated by crossing adamts9+/- pairs, we found significantly fewer adult adamts9-/- fish (4%) than predicted by Mendelian ratios (25%). Of the mutants found, there was a significant male bias (82%). Only 3 female mutants were identified (7%), and they had small ovaries with few stage III and IV oocytes compared to wildtype (wt) counterparts of comparable size and age. Astoundingly, the remaining mutants (11%) did not appear to have normal testis or ovaries. Instead there was a pair of transparent, ovarian-like membranous shells that filled the abdominal cavity. Histological examination confirmed that shells were largely empty with no internal structure. Surprisingly, seminiferous tubules and various spermatocytes including mature spermatozoa were observed on the periphery of these transparent shells. No female or female like knockouts were observed to release eggs, and no ovulated oocytes were observed in histological sections. To our knowledge, this is the first report of an adamts9 global knockout model in any adult vertebrates and the first description of how gonadal sex and structure are affected- highlighting the importance of Adamts9 during gonadal development and the value of zebrafish as a model organism.
Collapse
Affiliation(s)
| | - Zachary Adam Roach
- Department of Biology, East Carolina University, Greenville 27858, NC, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville 27858, NC, USA.
| |
Collapse
|
27
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
28
|
Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol 2019; 56:78-86. [PMID: 30690220 DOI: 10.1016/j.sbi.2018.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be directly linked to protein via an O-linkage to Serine or Threonine residues located within consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both cases, the O-linked fucose can also be elongated with other sugars. Here, we describe the biological importance of these O-fucose glycans and molecular mechanisms by which they affect the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets including several extracellular proteases. Recent data show O-fucose glycans mediate their effects by participating in both intermolecular and intramolecular interactions.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
29
|
Bandini G, Leon DR, Hoppe CM, Zhang Y, Agop-Nersesian C, Shears MJ, Mahal LK, Routier FH, Costello CE, Samuelson J. O-Fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J Biol Chem 2018; 294:1967-1983. [PMID: 30538131 DOI: 10.1074/jbc.ra118.005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes disseminated infections that can produce neurological damage in fetuses and immunocompromised individuals. Microneme protein 2 (MIC2), a member of the thrombospondin-related anonymous protein (TRAP) family, is a secreted protein important for T. gondii motility, host cell attachment, invasion, and egress. MIC2 contains six thrombospondin type I repeats (TSRs) that are modified by C-mannose and O-fucose in Plasmodium spp. and mammals. Here, using MS analysis, we found that the four TSRs in T. gondii MIC2 with protein O-fucosyltransferase 2 (POFUT2) acceptor sites are modified by a dHexHex disaccharide, whereas Trp residues within three TSRs are also modified with C-mannose. Disruption of genes encoding either POFUT2 or the putative GDP-fucose transporter (NST2) resulted in loss of MIC2 O-fucosylation, as detected by an antibody against the GlcFuc disaccharide, and in markedly reduced cellular levels of MIC2. Furthermore, in 10-15% of the Δpofut2 or Δnst2 vacuoles, MIC2 accumulated earlier in the secretory pathway rather than localizing to micronemes. Dissemination of tachyzoites in human foreskin fibroblasts was reduced for these knockouts, which both exhibited defects in attachment to and invasion of host cells comparable with the Δmic2 phenotype. These results, indicating that O-fucosylation of TSRs is required for efficient processing of MIC2 and for normal parasite invasion, are consistent with the recent demonstration that Plasmodium falciparum Δpofut2 strain has decreased virulence and also support a conserved role for this glycosylation pathway in quality control of TSR-containing proteins in eukaryotes.
Collapse
Affiliation(s)
- Giulia Bandini
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carolin M Hoppe
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Yue Zhang
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Carolina Agop-Nersesian
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Melanie J Shears
- the Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Lara K Mahal
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Françoise H Routier
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Catherine E Costello
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - John Samuelson
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
30
|
Khurana S, Coffey MJ, John A, Uboldi AD, Huynh MH, Stewart RJ, Carruthers VB, Tonkin CJ, Goddard-Borger ED, Scott NE. Protein O-fucosyltransferase 2-mediated O-glycosylation of the adhesin MIC2 is dispensable for Toxoplasma gondii tachyzoite infection. J Biol Chem 2018; 294:1541-1553. [PMID: 30514763 DOI: 10.1074/jbc.ra118.005357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous, obligate intracellular eukaryotic parasite that causes congenital birth defects, disease in immunocompromised individuals, and blindness. Protein glycosylation plays an important role in the infectivity and evasion of immune responses of many eukaryotic parasites and is also of great relevance to vaccine design. Here we demonstrate that micronemal protein 2 (MIC2), a motility-associated adhesin of T. gondii, has highly glycosylated thrombospondin repeat (TSR) domains. Using affinity-purified MIC2 and MS/MS analysis along with enzymatic digestion assays, we observed that at least seven C-linked and three O-linked glycosylation sites exist within MIC2, with >95% occupancy at these O-glycosylation sites. We found that addition of O-glycans to MIC2 is mediated by a protein O-fucosyltransferase 2 homolog (TgPOFUT2) encoded by the TGGT1_273550 gene. Even though POFUT2 homologs are important for stabilizing motility-associated adhesins and for host infection in other apicomplexan parasites, loss of TgPOFUT2 in T. gondii had only a modest impact on MIC2 levels and the wider parasite proteome. Consistent with this, both plaque formation and tachyzoite invasion were broadly similar in the presence or absence of TgPOFUT2. These findings indicate that TgPOFUT2 O-glycosylates MIC2 and that this glycan, in contrast to previous findings in another study, is dispensable in T. gondii tachyzoites and for T. gondii infectivity.
Collapse
Affiliation(s)
- Sachin Khurana
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Coffey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan John
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca J Stewart
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ethan D Goddard-Borger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| |
Collapse
|
31
|
Lira-Navarrete E, Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation. Acta Crystallogr F Struct Biol Commun 2018; 74:443-450. [PMID: 30084393 PMCID: PMC6096484 DOI: 10.1107/s2053230x18004788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Protein O-fucosylation is an important post-translational modification (PTM) found in cysteine-rich repeats in proteins. Protein O-fucosyltransferases 1 and 2 (PoFUT1 and PoFUT2) are the enzymes responsible for this PTM and selectively glycosylate specific residues in epidermal growth factor-like (EGF) repeats and thrombospondin type I repeats (TSRs), respectively. Within the past six years, crystal structures of both enzymes have been reported, revealing important information on how they recognize protein substrates and achieve catalysis. Here, the structural information available today is summarized and how PoFUT1 and PoFUT2 employ different catalytic mechanisms is discussed.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI–IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Fundación ARAID, Avenida de Ranillas, 50018 Zaragoza, Spain
| |
Collapse
|
32
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat Commun 2017; 8:561. [PMID: 28916755 PMCID: PMC5601480 DOI: 10.1038/s41467-017-00571-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism. The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Collapse
|
34
|
Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 2017; 7:41871. [PMID: 28176809 PMCID: PMC5296908 DOI: 10.1038/srep41871] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Secreted metalloproteases have diverse roles in the formation, remodeling, and the destruction of extracellular matrix. Recessive mutations in the secreted metalloprotease ADAMTS17 cause ectopia lentis and short stature in humans with Weill-Marchesani-like syndrome and primary open angle glaucoma and ectopia lentis in dogs. Little is known about this protease or its connection to fibrillin microfibrils, whose major component, fibrillin-1, is genetically associated with ectopia lentis and alterations in height. Fibrillin microfibrils form the ocular zonule and are present in the drainage apparatus of the eye. We show that recombinant ADAMTS17 has unique characteristics and an unusual life cycle. It undergoes rapid autocatalytic processing in trans after its secretion from cells. Secretion of ADAMTS17 requires O-fucosylation and its autocatalytic activity does not depend on propeptide processing by furin. ADAMTS17 binds recombinant fibrillin-2 but not fibrillin-1 and does not cleave either. It colocalizes to fibrillin-1 containing microfibrils in cultured fibroblasts and suppresses fibrillin-2 (FBN2) incorporation in microfibrils, in part by transcriptional downregulation of Fbn2 mRNA expression. RNA in situ hybridization detected Adamts17 expression in specific structures in the eye, skeleton and other organs, where it may regulate the fibrillin isoform composition of microfibrils.
Collapse
|
35
|
Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep 2016; 6:33974. [PMID: 27687499 PMCID: PMC5043182 DOI: 10.1038/srep33974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023] Open
Abstract
Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.
Collapse
|