1
|
Ramos R, Pham KT, Prince RC, Leiser-Miller LB, Prasad MS, Wang X, Nordberg RC, Bielajew BJ, Hu JC, Yamaga K, Oh JW, Peng T, Datta R, Astrowskaja A, Almet AA, Burns JT, Liu Y, Guerrero-Juarez CF, Tran BQ, Chu YL, Nguyen AM, Hsi TC, Lim NTL, Schoeniger S, Liu R, Pai YL, Vadivel CK, Ingleby S, McKechnie AE, van Breukelen F, Hoehn KL, Rasweiler JJ, Kohara M, Loughry WJ, Weldy SH, Cosper R, Yang CC, Lin SJ, Cooper KL, Santana SE, Bradley JE, Kiebish MA, Digman M, James DE, Merrill AE, Nie Q, Schilling TF, Astrowski AA, Potma EO, García-Castro MI, Athanasiou KA, Behringer RR, Plikus MV. Superstable lipid vacuoles endow cartilage with its shape and biomechanics. Science 2025; 387:eads9960. [PMID: 39787221 DOI: 10.1126/science.ads9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025]
Abstract
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Kim T Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Richard C Prince
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | | | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Rachel C Nordberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Kosuke Yamaga
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Anatomy, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Tao Peng
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Rupsa Datta
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Aksana Astrowskaja
- Scientific Research Laboratory of Molecular Medicine, Grodna State Medical University, Grodna, Belarus
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - John T Burns
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yuchen Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Bryant Q Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yi-Lin Chu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Anh M Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Norman T-L Lim
- National Institute of Education, Singapore, Republic of Singapore
| | - Sandra Schoeniger
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ruiqi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Yun-Ling Pai
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chella K Vadivel
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew E McKechnie
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- South African National Biodiversity Institute, Pretoria, South Africa
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Scott H Weldy
- Serrano Animal and Bird Hospital, Lake Forest, CA, USA
| | | | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Mammalogy, Burke Museum, University of Washington, Seattle, WA, USA
| | - Jeffrey E Bradley
- Department of Mammalogy, Burke Museum, University of Washington, Seattle, WA, USA
| | | | - Michelle Digman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, USA
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | | | - Eric O Potma
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Borda M, Sierra R, Cantero MJ, Gómez Bustillo S, Fiore EJ, Giardelli G, Martino Garcet M, Rebottaro ML, Bayo Fina JM, Schiavone M, Rubione J, García MG, Montaner A, Mazzolini GD, Aquino JB. The antifibrotic potential of IMT504: modulation of GLAST + Wnt1 + bone marrow stromal progenitors and hepatic microenvironment. Stem Cell Res Ther 2024; 15:278. [PMID: 39227908 PMCID: PMC11373403 DOI: 10.1186/s13287-024-03896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.
Collapse
Affiliation(s)
- Maximiliano Borda
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María José Cantero
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Sofía Gómez Bustillo
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Esteban Juan Fiore
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Gianlucca Giardelli
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Matías Martino Garcet
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - María Luz Rebottaro
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Juan Miguel Bayo Fina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Máximo Schiavone
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - Julia Rubione
- Mechanisms and Therapeutic Innovation in Pain Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina
| | - Mariana Gabriela García
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología Dr. César Milstein. Fundación Pablo Cassará, Buenos Aires City, Argentina
| | - Guillermo Daniel Mazzolini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Buenos Aires, Argentina
| | - Jorge Benjamín Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina.
| |
Collapse
|
4
|
Lynch AT, Douglas M, Kimber SJ, Birket MJ. The generation and validation of a dual cardiac HAND1-Tomato NKX2-5-GFP human embryonic stem cell line UMANe002-A-3. Stem Cell Res 2024; 77:103342. [PMID: 38460234 DOI: 10.1016/j.scr.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 03/11/2024] Open
Abstract
The transcription factor HAND1 is a critical regulator of cardiac development which is expressed in sub-populations of cardiac progenitors and cardiomyocytes. The transcription factor NKX2-5, in contrast, is expressed more widely in cardiac cells. Here we report the generation of a dual reporter hESC line where the expression of these genes can be simultaneously measured, enabling lineage analysis as well as studies of HAND1 and NKX2-5 gene regulation and protein function. This tool will have wide utility particularly for research on developmental biology and disease modelling.
Collapse
Affiliation(s)
- A T Lynch
- The University of Manchester, United Kingdom
| | - M Douglas
- The University of Manchester, United Kingdom
| | - S J Kimber
- The University of Manchester, United Kingdom
| | - M J Birket
- The University of Manchester, United Kingdom
| |
Collapse
|
5
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
6
|
Nakamura K, Watanabe Y, Boitet C, Satake S, Iida H, Yoshihi K, Ishii Y, Kato K, Kondoh H. Wnt signal-dependent antero-posterior specification of early-stage CNS primordia modeled in EpiSC-derived neural stem cells. Front Cell Dev Biol 2024; 11:1260528. [PMID: 38405136 PMCID: PMC10884098 DOI: 10.3389/fcell.2023.1260528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.
Collapse
Affiliation(s)
- Kae Nakamura
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Claire Boitet
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Université Joseph Fourier, Domaine Universitaire, Saint-Martin-d’Hères, France
| | - Sayaka Satake
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Department of Biology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kagayaki Kato
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
7
|
Douglas M, O'Loughlin C, Lynch AT, Prialgauskaite R, Adamson AD, Dibb KM, Kimber SJ, Birket MJ. The generation and validation of two NKX2-5 fluorescent reporter human embryonic stem cell lines: UMANe002-A-1 and UMANe002-A-2. Stem Cell Res 2024; 74:103262. [PMID: 38100908 DOI: 10.1016/j.scr.2023.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The transcription factor NKX2-5 is a highly conserved master regulator of heart development which is widely expressed in cardiac progenitors and cardiomyocytes. Fluorescent reporters of NKX2-5 that minimally perturb normal protein expression can enable the identification, quantification and isolation of NKX2-5-expressing cells in a normal physiological state. Here we report the generation of two new hESC lines with eGFP inserted upstream (5') or downstream (3') of NKX2-5, linked by a cleavable T2A peptide. These complementary reporters produce a robust fluorescent signal in cardiac cells and have wide utility particularly for research on developmental biology and disease modelling.
Collapse
Affiliation(s)
| | | | | | | | | | - K M Dibb
- The University of Manchester, UK
| | | | | |
Collapse
|
8
|
Cermakova K, Tao L, Dejmek M, Sala M, Montierth MD, Chan YS, Patel I, Chambers C, Loeza Cabrera M, Hoffman D, Parchem RJ, Wang W, Nencka R, Barbieri E, Hodges HC. Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF. Nucleic Acids Res 2024; 52:4-21. [PMID: 37993417 PMCID: PMC10783513 DOI: 10.1093/nar/gkad1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023] Open
Abstract
Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ling Tao
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew D Montierth
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ivanshi Patel
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Courtney Chambers
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Translational Biology and Molecular Medicine Graduate Program, Houston, TX, USA
| | - Mario Loeza Cabrera
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Dane Hoffman
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Ronald J Parchem
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
9
|
Huber PB, LaBonne C. Small molecule-mediated reprogramming of Xenopus blastula stem cells to a neural crest state. Dev Biol 2024; 505:34-41. [PMID: 37890713 PMCID: PMC11541498 DOI: 10.1016/j.ydbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Neural crest cells are a stem cell population unique to vertebrates that give rise to a diverse array of derivatives, including much of the peripheral nervous system, pigment cells, cartilage, mesenchyme, and bone. Acquisition of these cells drove the evolution of vertebrates and defects in their development underlies a broad set of neurocristopathies. Moreover, studies of neural crest can inform differentiation protocols for pluripotent stem cells and regenerative medicine applications. Xenopus embryos are an important system for studies of the neural crest and have provided numerous insights into the signals and transcription factors that control the formation and later lineage diversification of these stem cells. Pluripotent animal pole explants are a particularly powerful tool in this system as they can be cultured in simple salt solution and instructed to give rise to any cell type including the neural crest. Here we report a protocol for small molecule-mediated induction of the neural crest state from blastula stem cells and validate it using transcriptome analysis and grafting experiments. This is an powerful new tool for generating this important cell type that will facilitate future studies of neural crest development and mutations and variants linked to neurocristopathies.
Collapse
Affiliation(s)
- Paul B Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Charney RM, Prasad MS, Juan-Sing C, Patel LJ, Hernandez JC, Wu J, García-Castro MI. Mowat-Wilson syndrome factor ZEB2 controls early formation of human neural crest through BMP signaling modulation. Stem Cell Reports 2023; 18:2254-2267. [PMID: 37890485 PMCID: PMC10679662 DOI: 10.1016/j.stemcr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes. Examination of ZEB2 N-terminal mutant NC cells demonstrates its requirement for the repression of enhancers in the NC gene network and proper NC cell terminal differentiation into osteoblasts and peripheral neurons and neuroglia. This ZEB2 mutation causes early misexpression of BMP signaling ligands, which can be rescued by the attenuation of BMP. Our findings suggest that ZEB2 regulates early human NC specification by modulating proper BMP signaling and further elaborate the molecular defects underlying Mowat-Wilson syndrome.
Collapse
Affiliation(s)
- Rebekah M Charney
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Czarina Juan-Sing
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Lipsa J Patel
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jacqueline C Hernandez
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
11
|
Yankee TN, Oh S, Winchester EW, Wilderman A, Robinson K, Gordon T, Rosenfeld JA, VanOudenhove J, Scott DA, Leslie EJ, Cotney J. Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes. Nat Commun 2023; 14:4623. [PMID: 37532691 PMCID: PMC10397224 DOI: 10.1038/s41467-023-40363-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Craniofacial disorders arise in early pregnancy and are one of the most common congenital defects. To fully understand how craniofacial disorders arise, it is essential to characterize gene expression during the patterning of the craniofacial region. To address this, we performed bulk and single-cell RNA-seq on human craniofacial tissue from 4-8 weeks post conception. Comparisons to dozens of other human tissues revealed 239 genes most strongly expressed during craniofacial development. Craniofacial-biased developmental enhancers were enriched +/- 400 kb surrounding these craniofacial-biased genes. Gene co-expression analysis revealed that regulatory hubs are enriched for known disease causing genes and are resistant to mutation in the normal healthy population. Combining transcriptomic and epigenomic data we identified 539 genes likely to contribute to craniofacial disorders. While most have not been previously implicated in craniofacial disorders, we demonstrate this set of genes has increased levels of de novo mutations in orofacial clefting patients warranting further study.
Collapse
Affiliation(s)
- Tara N Yankee
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Sungryong Oh
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | | | - Andrea Wilderman
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tia Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
12
|
Saidani M, Darle A, Jarrige M, Polveche H, El Kassar L, Julié S, Bessou-Touya S, Holic N, Lemaitre G, Martinat C, Baldeschi C, Allouche J. Generating Functional and Highly Proliferative Melanocytes Derived from Human Pluripotent Stem Cells: A Promising Tool for Biotherapeutic Approaches to Treat Skin Pigmentation Disorders. Int J Mol Sci 2023; 24:ijms24076398. [PMID: 37047372 PMCID: PMC10094141 DOI: 10.3390/ijms24076398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Melanocytes are essential for skin homeostasis and protection, and their loss or misfunction leads to a wide spectrum of diseases. Cell therapy utilizing autologous melanocytes has been used for years as an adjunct treatment for hypopigmentary disorders such as vitiligo. However, these approaches are hindered by the poor proliferative capacity of melanocytes obtained from skin biopsies. Recent advances in the field of human pluripotent stem cells have fueled the prospect of generating melanocytes. Here, we have developed a well-characterized method to produce a pure and homogenous population of functional and proliferative melanocytes. The genetic stability and potential transformation of melanocytes from pluripotent stem cells have been evaluated over time during the in vitro culture process. Thanks to transcriptomic analysis, the molecular signatures all along the differentiation protocol have been characterized, providing a solid basis for standardizing the protocol. Altogether, our results promise meaningful, broadly applicable, and longer-lasting advances for pigmentation disorders and open perspectives for innovative biotherapies for pigment disorders.
Collapse
|
13
|
Copeland J, Merkuri F, Simoes-Costa M. ChIP-Seq Protocol for In Vitro Cell Differentiation Systems. Methods Mol Biol 2023; 2599:49-58. [PMID: 36427142 DOI: 10.1007/978-1-0716-2847-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In vitro differentiation systems provide a flexible platform for understanding complex developmental processes. Here, we provide a comprehensive protocol for the preparation and analysis of ChIP-seq libraries for human-induced neural crest cells (hiNCCs) from human embryonic stem cells (hESCs). This workflow is aimed at identifying interactions between transcription factors and cis regulatory elements, which serve as useful assays in uncovering gene regulatory principles during development.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Fjodor Merkuri
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Gao P, Liu S, Wang X, Ikeya M. Dental applications of induced pluripotent stem cells and their derivatives. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:162-171. [PMID: 35516907 PMCID: PMC9065891 DOI: 10.1016/j.jdsr.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontal tissue regeneration is the ideal tactic for treating periodontitis. Tooth regeneration is the potential strategy to restore the lost teeth. With infinite self-renewal, broad differentiation potential, and less ethical issues than embryonic stem cells, induced pluripotent stem cells (iPSCs) are promising cell resource for periodontal and tooth regeneration. This review summarized the optimized technologies of generating iPSC lines and application of iPSC derivatives, which reduce the risk of tumorigenicity. Given that iPSCs may have epigenetic memory from the donor tissue and tend to differentiate into lineages along with the donor cells, iPSCs derived from dental tissues may benefit for personalized dental application. Neural crest cells (NCCs) and mesenchymal stem or stomal cells (MSCs) are lineage-specific progenitor cells derived from iPSCs and can differentiate into multilineage cell types. This review introduced the updated technologies of inducing iPSC-derived NCCs and iPSC-derived MSCs and their application in periodontal and tooth regeneration. Given the complexity of periodontal tissues and teeth, it is crucial to elucidate the integrated mechanisms of all constitutive cells and the spatio-temporal interactions among them to generate structural periodontal tissues and functional teeth. Thus, more sophisticated studies in vitro and in vivo and even preclinical investigations need to be conducted.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Division of Oral Ecology and Biochemistry, Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Patel I, Parchem RJ. Regulation of Oct4 in stem cells and neural crest cells. Birth Defects Res 2022; 114:983-1002. [PMID: 35365980 PMCID: PMC9525453 DOI: 10.1002/bdr2.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
During embryonic development, cells gradually restrict their developmental potential as they exit pluripotency and differentiate into various cell types. The POU transcription factor Oct4 (encoded by Pou5f1) lies at the center of the pluripotency machinery that regulates stemness and differentiation in stem cells, and is required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Several studies have revealed that Oct4 and other stemness genes are also expressed in multipotent cell populations such as neural crest cells (NCCs), and are required to expand the NCC developmental potential. Transcriptional regulation of Oct4 has been studied extensively in stem cells during early embryonic development and reprogramming, but not in NCCs. Here, we review how Oct4 is regulated in pluripotent stem cells, and address some of the gaps in knowledge about regulation of the pluripotency network in NCCs.
Collapse
Affiliation(s)
- Ivanshi Patel
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - Ronald J. Parchem
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
17
|
Cooper F, Gentsch GE, Mitter R, Bouissou C, Healy LE, Rodriguez AH, Smith JC, Bernardo AS. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Reports 2022; 17:894-910. [PMID: 35334218 PMCID: PMC9023813 DOI: 10.1016/j.stemcr.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The spinal cord emerges from a niche of neuromesodermal progenitors (NMPs) formed and maintained by WNT/fibroblast growth factor (FGF) signals at the posterior end of the embryo. NMPs can be generated from human pluripotent stem cells and hold promise for spinal cord replacement therapies. However, NMPs are transient, which compromises production of the full range of rostrocaudal spinal cord identities in vitro. Here we report the generation of NMP-derived pre-neural progenitors (PNPs) with stem cell-like self-renewal capacity. PNPs maintain pre-spinal cord identity for 7-10 passages, dividing to self-renew and to make neural crest progenitors, while gradually adopting a more posterior identity by activating colinear HOX gene expression. The HOX clock can be halted through GDF11-mediated signal inhibition to produce a PNP and NC population with a thoracic identity that can be maintained for up to 30 passages.
Collapse
Affiliation(s)
- Fay Cooper
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics & Biostatistics Core Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Bouissou
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lyn E Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Hernandez Rodriguez
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreia S Bernardo
- Developmental Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
18
|
Cooper F, Tsakiridis A. Shaping axial identity during human pluripotent stem cell differentiation to neural crest cells. Biochem Soc Trans 2022; 50:499-511. [PMID: 35015077 PMCID: PMC9022984 DOI: 10.1042/bst20211152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| |
Collapse
|
19
|
Zyner KG, Simeone A, Flynn SM, Doyle C, Marsico G, Adhikari S, Portella G, Tannahill D, Balasubramanian S. G-quadruplex DNA structures in human stem cells and differentiation. Nat Commun 2022; 13:142. [PMID: 35013231 PMCID: PMC8748810 DOI: 10.1038/s41467-021-27719-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of cell identity during embryonic development involves the activation of specific gene expression programmes and is underpinned by epigenetic factors including DNA methylation and histone post-translational modifications. G-quadruplexes are four-stranded DNA secondary structures (G4s) that have been implicated in transcriptional regulation and cancer. Here, we show that G4s are key genomic structural features linked to cellular differentiation. We find that G4s are highly abundant in human embryonic stem cells and are lost during lineage specification. G4s are prevalent in enhancers and promoters. G4s that are found in common between embryonic and downstream lineages are tightly linked to transcriptional stabilisation of genes involved in essential cellular functions as well as transitions in the histone post-translational modification landscape. Furthermore, the application of small molecules that stabilise G4s causes a delay in stem cell differentiation, keeping cells in a more pluripotent-like state. Collectively, our data highlight G4s as important epigenetic features that are coupled to stem cell pluripotency and differentiation.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sean M Flynn
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Colm Doyle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Giovanni Marsico
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Santosh Adhikari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Guillem Portella
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
20
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
21
|
Sutton G, Kelsh RN, Scholpp S. Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Front Cell Dev Biol 2021; 9:782445. [PMID: 34912811 PMCID: PMC8667473 DOI: 10.3389/fcell.2021.782445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field's potential future directions.
Collapse
Affiliation(s)
- Gemma Sutton
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Telias M, Ben-Yosef D. Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Front Mol Neurosci 2021; 14:680018. [PMID: 34421534 PMCID: PMC8371257 DOI: 10.3389/fnmol.2021.680018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Hutcheson JD, Schlotter F, Creager MD, Li X, Pham T, Vyas P, Higashi H, Body SC, Aikawa M, Singh SA, Kos L, Aikawa E. Elastogenesis Correlates With Pigment Production in Murine Aortic Valve Leaflets. Front Cardiovasc Med 2021; 8:678401. [PMID: 34239903 PMCID: PMC8257952 DOI: 10.3389/fcvm.2021.678401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues. Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression. Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Florian Schlotter
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Heart Center Leipzig at Leipzig University, Department of Internal Medicine/Cardiology, Leipzig, Germany
| | - Michael D. Creager
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoshuang Li
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Payal Vyas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Simon C. Body
- Center for Perioperative Genomics, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
24
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
25
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
26
|
van der Valk WH, Steinhart MR, Zhang J, Koehler KR. Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 2020; 28:24-34. [PMID: 33318601 PMCID: PMC7853146 DOI: 10.1038/s41418-020-00678-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.
Collapse
Affiliation(s)
- Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA. .,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
28
|
Prasad MS, Charney RM, Patel LJ, García-Castro MI. Distinct molecular profile and restricted stem cell potential defines the prospective human cranial neural crest from embryonic stem cell state. Stem Cell Res 2020; 49:102086. [PMID: 33370869 PMCID: PMC7932500 DOI: 10.1016/j.scr.2020.102086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/14/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Neural crest cells are an embryonic multipotent stem cell population. Recent studies in model organisms have suggested that neural crest cells are specified earlier than previously thought, at blastula stages. However, the molecular dynamics of early neural crest specification, and functional changes from pluripotent precursors to early specified NC, remain to be elucidated. In this report, we utilized a robust human model of cranial neural crest formation to address the distinct molecular character of the earliest stages of neural crest specification and assess the functional differences from its embryonic stem cell precursor. Our human neural crest model reveals a rapid change in the epigenetic state of neural crest and pluripotency genes, accompanied by changes in gene expression upon Wnt-based induction from embryonic stem cells. These changes in gene expression are directly regulated by the transcriptional activity of β-catenin. Furthermore, prospective cranial neural crest cells are characterized by restricted stem cell potential compared to embryonic stem cells. Our results suggest that human neural crest induced by Wnt/β-catenin signaling from human embryonic stem cells rapidly acquire a prospective neural crest cell state defined by a unique molecular signature and endowed with limited potential compared to pluripotent stem cells.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Lipsa J Patel
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, USA.
| |
Collapse
|
29
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY, Mis EK, García-Castro MI, Khokha MK. Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects. J Clin Invest 2020; 130:813-826. [PMID: 31904590 DOI: 10.1172/jci129308] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Multipass membrane proteins have a myriad of functions, including transduction of cell-cell signals, ion transport, and photoreception. Insertion of these proteins into the membrane depends on the endoplasmic reticulum (ER) membrane protein complex (EMC). Recently, birth defects have been observed in patients with variants in the gene encoding a member of this complex, EMC1. Patient phenotypes include congenital heart disease, craniofacial malformations, and neurodevelopmental disease. However, a molecular connection between EMC1 and these birth defects is lacking. Using Xenopus, we identified defects in neural crest cells (NCCs) upon emc1 depletion. We then used unbiased proteomics and discovered a critical role for emc1 in WNT signaling. Consistent with this, readouts of WNT signaling and Frizzled (Fzd) levels were reduced in emc1-depleted embryos, while NCC defects could be rescued with β-catenin. Interestingly, other transmembrane proteins were mislocalized upon emc1 depletion, providing insight into additional patient phenotypes. To translate our findings back to humans, we found that EMC1 was necessary for human NCC development in vitro. Finally, we tested patient variants in our Xenopus model and found the majority to be loss-of-function alleles. Our findings define molecular mechanisms whereby EMC1 dysfunction causes disease phenotypes through dysfunctional multipass membrane protein topogenesis.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - June Criscione
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Woong Y Hwang
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020; 21:ijms21165792. [PMID: 32806758 PMCID: PMC7461058 DOI: 10.3390/ijms21165792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system controls the functions of sensation, movement and motor coordination of the body. Peripheral nerves can get damaged easily by trauma or neurodegenerative diseases. The injury can cause a devastating effect on the affected individual and his aides. Treatment modalities include anti-inflammatory medications, physiotherapy, surgery, nerve grafting and rehabilitation. 3D bioprinted peripheral nerve conduits serve as nerve grafts to fill the gaps of severed nerve bodies. The application of induced pluripotent stem cells, its derivatives and bioprinting are important techniques that come in handy while making living peripheral nerve conduits. The design of nerve conduits and bioprinting require comprehensive information on neural architecture, type of injury, neural supporting cells, scaffold materials to use, neural growth factors to add and to streamline the mechanical properties of the conduit. This paper gives a perspective on the factors to consider while bioprinting the peripheral nerve conduits.
Collapse
|
33
|
Pisal RV, Mokry J. BMP Inhibition in the Presence of LIF Differentiates Murine Embryonic Stem Cells to Early Neural Stem Cells. Folia Biol (Praha) 2020; 66:155-160. [PMID: 34087971 DOI: 10.14712/fb2020066050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Early mouse neural stem cells (NSCs) first appear in embryonic day E5.5 and express pluripotency markers Oct4, Sox2, Nanog and early neural marker Sox1. Early NSCs are a good model for understanding the role of various pathways that control initial neural commitment. However, a protocol for differentiation of mouse embryonic stem cells (ESCs) into early NSCs by adherent monolayer culture has not yet been established. Hence, in this study, we identified the combination of growth factors and small molecules that differentiated mouse ESCs into early NSCs and supported their proliferation. Leukaemia inhibitory factor (LIF) was the first factor to be tested and it was found that ESCs can differentiate into early neurogenic lineage in the presence of LIF. However, we found that the induction is weaker in the presence of LIF as compared to cells differentiated in its absence. GSK-3 inhibitor, along with BMP and TGF-β pathway inhibitor (dual SMAD inhibition), are commonly used to sequentially direct ESCs towards NSCs. However, when we used this combination, mouse ESCs failed to differentiate into early NSCs. We observed that by adding Wnt inhibitor to the combination of GSK-3 inhibitor, BMP inhibitor, TGF-β inhibitor and LIF, it was possible to differentiate ESCs into early NSCs. qRT-PCR analysis of early NSCs illustrated that they expressed key pluripotency genes Oct4 and Nanog, albeit at levels lower than non-differentiated ESCs, along with early neural markers Sox1 and Pax6.
Collapse
Affiliation(s)
- R V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - J Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
34
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
35
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
36
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Hackland JOS, Shelar PB, Sandhu N, Prasad MS, Charney RM, Gomez GA, Frith TJR, García-Castro MI. FGF Modulates the Axial Identity of Trunk hPSC-Derived Neural Crest but Not the Cranial-Trunk Decision. Stem Cell Reports 2019; 12:920-933. [PMID: 31091435 PMCID: PMC6524753 DOI: 10.1016/j.stemcr.2019.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
The neural crest is a transient embryonic tissue that gives rise to a multitude of derivatives in an axially restricted manner. An in vitro counterpart to neural crest can be derived from human pluripotent stem cells (hPSCs) and can be used to study neural crest ontogeny and neurocristopathies, and to generate cells for therapeutic purposes. In order to successfully do this, it is critical to define the specific conditions required to generate neural crest of different axial identities, as regional restriction in differentiation potential is partly cell intrinsic. WNT and FGF signaling have been implicated as inducers of posterior fate, but the exact role that these signals play in trunk neural crest formation remains unclear. Here, we present a fully defined, xeno-free system for generating trunk neural crest from hPSCs and show that FGF signaling directs cells toward different axial identities within the trunk compartment while WNT signaling is the primary determinant of trunk versus cranial identity.
Collapse
Affiliation(s)
- James O S Hackland
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA.
| | - Patrick B Shelar
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA
| | - Rebekah M Charney
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA
| | - Gustavo A Gomez
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA
| | - Thomas J R Frith
- University of Sheffield, Department of Biomedical Science, Sheffield S10 2TN, UK
| | - Martín I García-Castro
- University of California Riverside, Department of Biomedical Sciences, Riverside, CA 92521, USA.
| |
Collapse
|