1
|
Machado RS, Mathias K, Joaquim L, da Costa MDA, Tiscoski A, Gonçalves CL, Rezin GT, Petronilho F. Emerging Roles of Meningeal Lymphatic Vessels in Ischemic Stroke. Mol Neurobiol 2025:10.1007/s12035-025-04983-6. [PMID: 40289061 DOI: 10.1007/s12035-025-04983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review highlights the emerging relevance of meningeal lymphatic vessels (MLVs) in the context of ischemic stroke, challenging the conventional view of a privileged immunological central nervous system. MLVs facilitate immunological surveillance by modulating the entry of peripheral immune cells into the meningeal compartment, a process not impeded by the blood-brain barrier. In ischemic stroke, these vessels play a crucial role in the neuroinflammatory cascade, contributing to immune responses by draining antigens and signals to cervical lymph nodes. Their involvement extends to potential contributions to resolving ischemia-induced cerebral edema, impacting fluid homeostasis. The dynamic interaction among MLVs, neuroinflammation, and fluid dynamics suggests promising therapeutic approaches. Targeting these vessels for immunomodulation, fluid drainage, and preserving blood-brain barrier integrity emerges as an innovative approach to improve ischemic stroke outcomes. However, successful clinical translation awaits further exploration of the therapeutic potential of these vessels. The multifaceted contributions of MLVs provide a compelling rationale for ongoing research, aiming to fully harness their therapeutic impact in ischemic stroke management.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Health Sciences Unit, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Anita Tiscoski
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Health Sciences Unit, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Torii S, Nagaharu K, Nakanishi N, Usui H, Hori Y, Hirose K, Toyosawa S, Morii E, Narushima M, Kubota Y, Nakagawa O, Imanaka-Yoshida K, Maruyama K. Embryological cellular origins and hypoxia-mediated mechanisms in PIK3CA-driven refractory vascular malformations. EMBO Mol Med 2025:10.1038/s44321-025-00235-1. [PMID: 40234712 DOI: 10.1038/s44321-025-00235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Congenital vascular malformations, affecting 0.5% of the population, often occur in the head and neck, complicating treatment due to the critical functions in these regions. Our previous research identified distinct developmental origins for blood and lymphatic vessels in these areas, tracing them to the cardiopharyngeal mesoderm (CPM), which contributes to the development of the head, neck, and cardiovascular system in both mouse and human embryos. In this study, we investigated the pathogenesis of these malformations by expressing Pik3caH1047R in the CPM. Mice expressing Pik3caH1047R in the CPM developed vascular abnormalities restricted to the head and neck. Single-cell RNA sequencing revealed that Pik3caH1047R upregulates Vegf-a expression in endothelial cells through HIF-mediated hypoxia signaling. Human samples supported these findings, showing elevated HIF-1α and VEGF-A in malformed vessels. Notably, inhibition of HIF-1α and VEGF-A in the mouse model significantly reduced abnormal vasculature. These results highlight the role of embryonic origins and hypoxia-driven mechanisms in vascular malformations, providing a foundation for the development of therapies targeting these difficult-to-treat conditions.
Collapse
Affiliation(s)
- Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Japan
| | - Nanako Nakanishi
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Kanagawa, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
de la Cruz E, Cadenas V, Temiño S, Oliver G, Torres M. Epicardial VEGFC/D signaling is essential for coronary lymphangiogenesis. EMBO Rep 2025:10.1038/s44319-025-00431-7. [PMID: 40128409 DOI: 10.1038/s44319-025-00431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
The contractile ability of the mammalian heart critically relies on blood coronary circulation, essential to provide oxygen and nutrients to myocardial cells. In addition, the lymphatic vasculature is essential for the myocardial immune response, extracellular fluid homeostasis and response to injury. Recent studies identified different origins of coronary lymphatic endothelial cells, however, the cues that govern coronary lymphangiogenesis remain unknown. Here we show that the coronary lymphatic vasculature develops in intimate contact with the epicardium and with epicardial-derived cells. The epicardium expresses the lymphangiogenic cytokine VEGFC and its conditional deletion in the epicardium abrogates coronary lymphatic vasculature development. Interestingly, VEGFD is also expressed in the epicardium and cooperates with VEGFC in coronary lymphangiogenesis, but it does so only in females, uncovering an unsuspected sex-specific role for this cytokine. These results identify the epicardium/subepicardium as a signaling niche required for coronary lymphangiogenesis and VEGFC/D as essential mediators of this role.
Collapse
Affiliation(s)
- Ester de la Cruz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Vanessa Cadenas
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
4
|
Lupu IE, Grainger DE, Kirschnick N, Weischer S, Zhao E, Martinez-Corral I, Schoofs H, Vanhollebeke M, Jones G, Godwin J, Forrow A, Lahmann I, Riley PR, Zobel T, Alitalo K, Mäkinen T, Kiefer F, Stone OA. Direct specification of lymphatic endothelium from mesenchymal progenitors. NATURE CARDIOVASCULAR RESEARCH 2025; 4:45-63. [PMID: 39747454 PMCID: PMC11738995 DOI: 10.1038/s44161-024-00570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state. Single-cell genomics and lineage-tracing experiments revealed a population of paraxial mesoderm-derived Etv2+Prox1+ progenitors that directly give rise to LECs. Morphometric analyses of early LEC proliferation and migration, and mutants that disrupt lymphatic development supported these findings. Collectively, this work establishes a cellular blueprint for LEC specification and indicates that discrete pools of mesenchymal progenitors can give rise to specialized subtypes of ECs.
Collapse
Affiliation(s)
- Irina-Elena Lupu
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - David E Grainger
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Nils Kirschnick
- University of Münster, European Institute for Molecular Imaging, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarah Weischer
- University of Münster, Cells in Motion Interfaculty Centre, Imaging Network, Münster, Germany
| | - Erica Zhao
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Schoofs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie Vanhollebeke
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Grace Jones
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Aden Forrow
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
| | - Thomas Zobel
- University of Münster, Cells in Motion Interfaculty Centre, Imaging Network, Münster, Germany
| | - Kari Alitalo
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Helsinki, Finland
| | - Friedemann Kiefer
- University of Münster, European Institute for Molecular Imaging, Münster, Germany.
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Oliver A Stone
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
6
|
Bai Y, Chen L, Guo F, Zhang J, Hu J, Tao X, Lu Q, Li W, Chen X, Gong T, Qiu N, Jin Y, Yang L, Lei Y, Ruan C, Jing Q, Cooke JP, Wang S, Zou Y, Ge J. EphrinB2-mediated CDK5/ISL1 pathway enhances cardiac lymphangiogenesis and alleviates ischemic injury by resolving post-MI inflammation. Signal Transduct Target Ther 2024; 9:326. [PMID: 39557830 PMCID: PMC11574162 DOI: 10.1038/s41392-024-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
EphrinB2 (erythropoietin-producing hepatoma interactor B2) is a key Eph/ephrin family member, promoting angiogenesis, vasculogenesis, and lymphangiogenesis during embryonic development. However, the role of EphrinB2 in cardiac lymphangiogenesis following myocardial infarction (MI) and the potential molecular mechanism remains to be demonstrated. This study revealed that EphrinB2 prevented ischemic heart post-MI from remodeling and dysfunction by activating the cardiac lymphangiogenesis signaling pathway. Deletion of EphrinB2 impaired cardiac lymphangiogenesis and aggravated adverse cardiac remodeling and ventricular dysfunction post-MI. At the same time, overexpression of EphrinB2 stimulated cardiac lymphangiogenesis which facilitated cardiac infiltrating macrophage drainage and reduced inflammation in the ischemic heart. The beneficial effects of EphrinB2 on improving clearance of inflammatory response and cardiac function were abolished in Lyve1 knockout mice. Mechanistically, EphrinB2 accelerated cell cycling and lymphatic endothelial cell proliferation and migration by activating CDK5 and CDK5-dependent ISL1 nuclear translocation. EphrinB2 enhanced the transcriptional activity of ISL1 at the VEGFR3 (FLT4) promoter, and VEGFR3 inhibitor MAZ51 significantly diminished the EphrinB2-mediated lymphangiogenesis and deteriorated the ischemic cardiac function. We uncovered a novel mechanism of EphrinB2-driven cardiac lymphangiogenesis in improving myocardial remodeling and function after MI.
Collapse
Affiliation(s)
- Yingnan Bai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Liming Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fanghao Guo
- Center for Reproductive Medicine & Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghong Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuefei Tao
- Department of Geriatric Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qing Lu
- Department of Radiology, Shanghai Dongfang Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai JiaoMo Tong University School of Medicine, Shanghai, China
| | - Xueying Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Gong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Nan Qiu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yawei Jin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lifan Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Lei
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chengchao Ruan
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA
| | - Shijun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- Minhang Hospital, Fudan University, Shanghai, China.
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- Institute of Advanced Medicine, Henan University, Kaifeng, Henan, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Janardhan HP, Wachter BT, Trivedi CM. Lymphatic System Development and Function. Curr Cardiol Rep 2024; 26:1209-1219. [PMID: 39172295 DOI: 10.1007/s11886-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW This review delves into recent advancements in understanding generalized and organ-specific lymphatic development. It emphasizes the distinct characteristics and critical anomalies that can impair lymphatic function. By exploring developmental mechanisms, the review seeks to illuminate the profound impact of lymphatic malformations on overall health and disease progression. RECENT FINDINGS The introduction of genome sequencing, single-cell transcriptomic analysis, and advanced imaging technologies has significantly enhanced our ability to identify and characterize developmental defects within the lymphatic system. As a result, a wide range of lymphatic anomalies have been uncovered, spanning from congenital abnormalities present at birth to conditions that can become life-threatening in adulthood. Additionally, recent research highlights the heterogeneity of lymphatics, revealing organ-specific developmental pathways, unique molecular markers, and specialized physiological functions specific to each organ. A deeper understanding of the unique characteristics of lymphatic cell populations in an organ-specific context is essential for guiding future research into lymphatic disease processes. An integrated approach to translational research could revolutionize personalized medicine, where treatments are precisely tailored to individual lymphatic profiles, enhancing effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna T Wachter
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Lee H, Han DW, La H, Park C, Kang K, Kwon O, Uhm SJ, Song H, Do JT, Choi Y, Hong K. DOT1-like histone lysine methyltransferase is critical for adult vessel maintenance and functions. Anim Biosci 2024; 37:1635-1643. [PMID: 38665093 PMCID: PMC11366529 DOI: 10.5713/ab.23.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE Disruptor of telomeric silencing 1-like (DOT1L) is the only known histone H3K79 methyltransferase essential for the development of the embryonic cardiovascular system, including the heart, blood vessels, and lymphatic vessels, through transcriptional regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic development and function. However, its precise function in the postnatal cardiovascular system remains unknown. METHODS Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the vascular system during postnatal life were investigated. To assess vessel morphology and vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in vitro tube formation and cell migration assays were performed using DOT1L-depleted human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular genes in HUVECs were measured by quantitative polymerase chain reaction. RESULTS Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed vascular phenotypes, including increased vascular permeability and brain hemorrhage, when DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs led to impaired cell migration and tube formation, likely due to altered gene transcription. These findings highlight the essential role of DOT1L in maintaining vascular integrity and function during embryonic development and postnatal life. CONCLUSION Our study revealed that DOT1L is required for the maintenance of adult vascular function through the regulation of gene expression.
Collapse
Affiliation(s)
- HeeJi Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020,
China
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Ohbeom Kwon
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339,
Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
9
|
Yamaguchi S, Minamide N, Imai H, Ikeda T, Watanabe M, Imanaka-Yoshida K, Maruyama K. The development of early human lymphatic vessels as characterized by lymphatic endothelial markers. EMBO J 2024; 43:868-885. [PMID: 38351385 PMCID: PMC10907744 DOI: 10.1038/s44318-024-00045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/03/2024] Open
Abstract
Lymphatic vessel development studies in mice and zebrafish models have demonstrated that lymphatic endothelial cells (LECs) predominantly differentiate from venous endothelial cells via the expression of the transcription factor Prox1. However, LECs can also be generated from undifferentiated mesoderm, suggesting potential diversity in their precursor cell origins depending on the organ or anatomical location. Despite these advances, recapitulating human lymphatic malformations in animal models has been difficult, and considering lymphatic vasculature function varies widely between species, analysis of development directly in humans is needed. Here, we examined early lymphatic development in humans by analyzing the histology of 31 embryos and three 9-week-old fetuses. We found that human embryonic cardinal veins, which converged to form initial lymph sacs, produce Prox1-expressing LECs. Furthermore, we describe the lymphatic vessel development in various organs and observe organ-specific differences. These characterizations of the early development of human lymphatic vessels should help to better understand the evolution and phylogenetic relationships of lymphatic systems, and their roles in human disease.
Collapse
Affiliation(s)
- Shoichiro Yamaguchi
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Natsuki Minamide
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Hiroshi Imai
- Pathology Division, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-0001, Japan.
| |
Collapse
|
10
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
12
|
Jain A, Ang PS, Matrongolo MJ, Tischfield MA. Understanding the development, pathogenesis, and injury response of meningeal lymphatic networks through the use of animal models. Cell Mol Life Sci 2023; 80:332. [PMID: 37872442 PMCID: PMC11072018 DOI: 10.1007/s00018-023-04984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
Meningeal lymphatic vessels (MLVs) help maintain central nervous system (CNS) homeostasis via their ability to facilitate macromolecule waste clearance and neuroimmune trafficking. Although these vessels were overlooked for centuries, they have now been characterized in humans, non-human primates, and rodents. Recent studies in mice have explored the stereotyped growth and expansion of MLVs in dura mater, the various transcriptional, signaling, and environmental factors regulating their development and long-term maintenance, and the pathological changes these vessels undergo in injury, disease, or with aging. Key insights gained from these studies have also been leveraged to develop therapeutic approaches that help augment or restore MLV functions to improve brain health and cognition. Here, we review fundamental processes that control the development of peripheral lymphatic networks and how these might apply to the growth and expansion of MLVs in their unique meningeal environment. We also emphasize key findings in injury and disease models that may reveal additional insights into the plasticity of these vessels throughout the lifespan. Finally, we highlight unanswered questions and future areas of study that can further reveal the exciting therapeutic potential of meningeal lymphatics.
Collapse
Affiliation(s)
- Aditya Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL, 60637, USA
| | - Matthew J Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
13
|
Travisano SI, Harrison MRM, Thornton ME, Grubbs BH, Quertermous T, Lien CL. Single-nuclei multiomic analyses identify human cardiac lymphatic endothelial cells associated with coronary arteries in the epicardium. Cell Rep 2023; 42:113106. [PMID: 37676760 DOI: 10.1016/j.celrep.2023.113106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Cardiac lymphatic vessels play important roles in fluid homeostasis, inflammation, disease, and regeneration of the heart. The developing cardiac lymphatics in human fetal hearts are closely associated with coronary arteries, similar to those in zebrafish hearts. We identify a population of cardiac lymphatic endothelial cells (LECs) that reside in the epicardium. Single-nuclei multiomic analysis of the human fetal heart reveals the plasticity and heterogeneity of the cardiac endothelium. Furthermore, we find that VEGFC is highly expressed in arterial endothelial cells and epicardium-derived cells, providing a molecular basis for the arterial association of cardiac lymphatic development. Using a cell-type-specific integrative analysis, we identify a population of cardiac lymphatic endothelial cells marked by the PROX1 and the lymphangiocrine RELN and enriched in binding motifs of erythroblast transformation specific (ETS) variant (ETV) transcription factors. We report the in vivo molecular characterization of human cardiac lymphatics and provide a valuable resource to understand fetal heart development.
Collapse
Affiliation(s)
| | - Michael R M Harrison
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Matthew E Thornton
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H Grubbs
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Falk CVRC, Stanford, CA 94305, USA
| | - Ching-Ling Lien
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Surgery, Biochemistry, and Molecular Medicine, Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
14
|
Mizukami K, Higashiyama H, Arima Y, Ando K, Okada N, Kose K, Yamada S, Takeuchi JK, Koshiba-Takeuchi K, Fukuhara S, Miyagawa-Tomita S, Kurihara H. Coronary artery established through amniote evolution. eLife 2023; 12:e83005. [PMID: 37605519 PMCID: PMC10444023 DOI: 10.7554/elife.83005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Coronary arteries are a critical part of the vascular system and provide nourishment to the heart. In humans, even minor defects in coronary arteries can be lethal, emphasizing their importance for survival. However, some teleosts survive without coronary arteries, suggesting that there may have been some evolutionary changes in the morphology and function of coronary arteries in the tetrapod lineage. Here, we propose that the true ventricular coronary arteries were newly established during amniote evolution through remodeling of the ancestral coronary vasculature. In mouse (Mus musculus) and Japanese quail (Coturnix japonica) embryos, the coronary arteries unique to amniotes are established by the reconstitution of transient vascular plexuses: aortic subepicardial vessels (ASVs) in the outflow tract and the primitive coronary plexus on the ventricle. In contrast, amphibians (Hyla japonica, Lithobates catesbeianus, Xenopus laevis, and Cynops pyrrhogaster) retain the ASV-like vasculature as truncal coronary arteries throughout their lives and have no primitive coronary plexus. The anatomy and development of zebrafish (Danio rerio) and chondrichthyans suggest that their hypobranchial arteries are ASV-like structures serving as the root of the coronary vasculature throughout their lives. Thus, the ventricular coronary artery of adult amniotes is a novel structure that has acquired a new remodeling process, while the ASVs, which occur transiently during embryonic development, are remnants of the ancestral coronary vessels. This evolutionary change may be related to the modification of branchial arteries, indicating considerable morphological changes underlying the physiological transition during amniote evolution.
Collapse
Affiliation(s)
- Kaoru Mizukami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Developmental Cardiology Laboratory, International Research Center for Medical Science, Kumamoto UniversityKumamotoJapan
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | | | - Katsumi Kose
- Institute of Applied Physics, University of TsukubaTsukubaJapan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of MedicineKyotoJapan
| | - Jun K Takeuchi
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Heart Center, Department of Pediatric Cardiology, Tokyo Women’s Medical UniversityTokyoJapan
- Department of Animal Nursing Science, Yamazaki University of Animal Health TechnologyTokyoJapan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
15
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
16
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
17
|
Banda CH, Shiraishi M, Mitsui K, Okada Y, Danno K, Ishiura R, Maemura K, Chiba C, Mizoguchi A, Imanaka-Yoshida K, Maruyama K, Narushima M. Structural and functional analysis of the newt lymphatic system. Sci Rep 2023; 13:6902. [PMID: 37106059 PMCID: PMC10140069 DOI: 10.1038/s41598-023-34169-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Regeneration competent vertebrates such as newts and salamanders possess a weakened adaptive immune system characterized by multiple connections between the lymphatic system and the blood vascular system called lymphatic hearts. The role of lymphatic vasculature and these lymphaticovenous connections in regeneration is unknown. We used in-vivo near-infrared lymphangiography, ultra-high frequency ultrasonography, micro-CT lymphangiography, and histological serial section 3-dimentional computer reconstruction to evaluate the lymphatic territories of Cynops pyrrhogaster. We used our model and supermicrosurgery to show that lymphatic hearts are not essential for lymphatic circulation and limb regeneration. Instead, newts possess a novel intraosseous network of lymphatics inside the bone expressing VEGFR-3, LYVE-1 and CD-31. However, we were unable to show Prox-1 expression by these vessels. We demonstrate that adult newt bone marrow functions as both a lymphatic drainage organ and fat reservoir. This study reveals the fundamental anatomical differences between the immune system of urodeles and mammals and provides a model for investigating lymphatics and regeneration.
Collapse
Affiliation(s)
- Chihena H Banda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kohei Mitsui
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Yoshimoto Okada
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kanako Danno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Ryohei Ishiura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kaho Maemura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8571, Japan
| | - Akira Mizoguchi
- Department of Personalized Cancer Immunotherapy, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan.
| |
Collapse
|
18
|
Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2023; 290:913-930. [PMID: 34894086 DOI: 10.1111/febs.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
19
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
20
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells 2022; 11:cells11244056. [PMID: 36552820 PMCID: PMC9776475 DOI: 10.3390/cells11244056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels, as the main tube network of fluid drainage and leukocyte transfer, are responsible for the maintenance of homeostasis and pathological repairment. Recently, by using genetic lineage tracing and single-cell RNA sequencing techniques, significant cognitive progress has been made about the impact of stem/progenitor cells during lymphangiogenesis. In the embryonic stage, the lymphatic network is primarily formed through self-proliferation and polarized-sprouting from the lymph sacs. However, the assembly of lymphatic stem/progenitor cells also guarantees the sustained growth of lymphvasculogenesis to obtain the entire function. In addition, there are abundant sources of stem/progenitor cells in postnatal tissues, including circulating progenitors, mesenchymal stem cells, and adipose tissue stem cells, which can directly differentiate into lymphatic endothelial cells and participate in lymphangiogenesis. Specifically, recent reports indicated a novel function of lymphangiogenesis in transplant arteriosclerosis and atherosclerosis. In the present review, we summarized the latest evidence about the diversity and incorporation of stem/progenitor cells in lymphatic vasculature during both the embryonic and postnatal stages, with emphasis on the impact of lymphangiogenesis in the development of vascular diseases to provide a rational guidance for future research.
Collapse
|
22
|
Zhang Y, Ortsäter H, Martinez-Corral I, Mäkinen T. Cdh5-lineage-independent origin of dermal lymphatics shown by temporally restricted lineage tracing. Life Sci Alliance 2022; 5:5/11/e202201561. [PMID: 35961777 PMCID: PMC9375154 DOI: 10.26508/lsa.202201561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Temporally restricted lineage tracing reveals a non-venous source of dermal lymphatic vessels and highlights Cre induction strategy as a critical parameter for stage-specific cell labeling. The developmental origins of lymphatic endothelial cells (LECs) have been under intense research after a century-long debate. Although previously thought to be of solely venous endothelial origin, additional sources of LECs were recently identified in multiple tissues in mice. Here, we investigated the regional differences in the origin(s) of the dermal lymphatic vasculature by lineage tracing using the pan-endothelial Cdh5-CreERT2 line. Tamoxifen-induced labeling of blood ECs at E9.5, before initiation of lymphatic development, traced most of the dermal LECs but with lower efficiency in the lumbar compared with the cervical skin. By contrast, when used at E9.5 but not at E11.5, 4-hydroxytamoxifen, the active metabolite of tamoxifen that provides a tighter window of Cre activity, revealed low labeling frequency of LECs, and lymphvasculogenic clusters in the lumbar skin in particular. Temporally restricted lineage tracing thus reveals contribution of LECs of Cdh5-lineage–independent origin to dermal lymphatic vasculature. Our results further highlight Cre induction strategy as a critical parameter in defining the temporal window for stage-specific lineage tracing during early developmental stages of rapid tissue differentiation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Geng X, Srinivasan RS. Molecular Mechanisms Driving Lymphedema and Other Lymphatic Anomalies. Cold Spring Harb Perspect Med 2022; 12:a041272. [PMID: 35817543 PMCID: PMC9341459 DOI: 10.1101/cshperspect.a041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphatic vasculature regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood. Lymphatic vasculature is also critical for lipid absorption and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels, lymphatic valves, and lymphovenous valves. Defects in any of these structures could lead to lymphatic anomalies such as lymphedema, cystic lymphatic malformation, and Gorham-Stout disease. Basic research has led to a deeper understanding of the stepwise development of the lymphatic vasculature. VEGF-C and shear stress signaling pathways have evolved as critical regulators of lymphatic vascular development. Loss-of-function and gain-of-function mutations in genes that are involved in these signaling pathways are associated with lymphatic anomalies. Importantly, drugs that target these molecules are showing outstanding efficacy in treating certain lymphatic anomalies. In this article, we summarize these exciting developments and highlight the future challenges.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, USA
| |
Collapse
|
24
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells 2022; 11:cells11101692. [PMID: 35626729 PMCID: PMC9139870 DOI: 10.3390/cells11101692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.
Collapse
|
26
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
27
|
Klaourakis K, Riley PR, Vieira JM. Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:171-181. [PMID: 35099736 DOI: 10.1007/978-1-0716-2059-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development and maturation of the lymphatic vasculature are essential for organ function with disruption leading to severe phenotypes. For example, malfunction of cardiac lymphatics results in myocardial oedema, persistent inflammation and reduced cardiac output. Thus, it is important to study the process of cardiac lymphatic formation and growth from the early stages of fetal development to adulthood. In the murine heart the lymphatics continue to develop and expand postnatally with extensive growth and patterning occurring up to at least 2 weeks after birth. Here, we describe a protocol for whole-mount, multi-view imaging and quantification of lymphatic vessel parameters, including vessel junction number (i.e., branching density), vessel length, and number of vessel end points in the murine postnatal heart. This protocol is based on the use of reliable antibodies against key markers of lymphatic endothelial cells (LECs), specifically the glycoprotein lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), the vascular endothelial growth factor receptor 3 (VEGFR3; also known as Fms-related receptor tyrosine kinase 4, FLT4), the mucin-type protein podoplanin (PDPN), and the co-receptor neuropilin 2 (NRP2). For imaging and quantitative analysis of the sub-epicardial network in neonatal hearts, VEGFR3 was selected given its exclusive expression in the lymphatic endothelium. In addition to LECs, LYVE1 expression was detected in tissue-resident macrophages, PDPN in the epicardium, and NRP2 in the autonomic nervous system of the heart. Overall, we characterized the expression patterns of commonly used lymphatic markers in the context of the neonatal heart and provide an image analysis pipeline that can be adapted to study other organs and systems (e.g., blood vasculature and nerve system).
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Harris NR, Nielsen NR, Pawlak JB, Aghajanian A, Rangarajan K, Serafin DS, Farber G, Dy DM, Nelson-Maney NP, Xu W, Ratra D, Hurr SH, Qian L, Scallan JP, Caron KM. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circ Res 2022; 130:5-23. [PMID: 34789016 PMCID: PMC8756423 DOI: 10.1161/circresaha.121.318852] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.
Collapse
Affiliation(s)
- Natalie R. Harris
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Natalie R. Nielsen
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - John B. Pawlak
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Amir Aghajanian
- Department of Medicine Division of Cardiology, University
of North Carolina at Chapel Hill; 160 Dental Circle, Chapel Hill, North Carolina,
USA 27599
| | - Krsna Rangarajan
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Gregory Farber
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599,McAllister Heart Institute, University of North Carolina,
Chapel Hill, North Carolina, USA 27599
| | - Danielle M. Dy
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Disha Ratra
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Sophia H. Hurr
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology,
University of South Florida, Tampa, Florida, USA 33612
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| |
Collapse
|
29
|
Oliver G. Lymphatic endothelial cell fate specification in the mammalian embryo: An historical perspective. Dev Biol 2021; 482:44-54. [PMID: 34915023 DOI: 10.1016/j.ydbio.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
Development of the mammalian lymphatic vasculature is a stepwise process requiring the specification of lymphatic endothelial cell progenitors in the embryonic veins, and their subsequent budding to give rise to most of the mature lymphatic vasculature. In mice, formation of the lymphatic vascular network starts inside the cardinal vein at around E9.5 when a subpopulation of venous endothelial cells gets committed into the lymphatic lineage by their acquisition of Prox1 expression. Identification of critical genes regulating lymphatic development facilitated the detailed cellular and molecular characterization of some of the cellular and molecular mechanisms regulating the early steps leading to the formation of the mammalian lymphatic vasculature. A better understanding of basic aspects of early lymphatic development, and the availability of novel tools and animal models has been instrumental in the identification of important novel functional roles of this vasculature network.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
31
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
33
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
34
|
Monaghan RM, Page DJ, Ostergaard P, Keavney BD. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res 2021; 117:1877-1890. [PMID: 33067626 PMCID: PMC8262640 DOI: 10.1093/cvr/cvaa291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2019] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are part of the evolutionarily conserved VEGF signalling pathways that regulate the development and maintenance of the body's cardiovascular and lymphovascular systems. VEGFR3, encoded by the FLT4 gene, has an indispensable and well-characterized function in development and establishment of the lymphatic system. Autosomal dominant VEGFR3 mutations, that prevent the receptor functioning as a homodimer, cause one of the major forms of hereditary primary lymphoedema; Milroy disease. Recently, we and others have shown that FLT4 variants, distinct to those observed in Milroy disease cases, predispose individuals to Tetralogy of Fallot, the most common cyanotic congenital heart disease, demonstrating a novel function for VEGFR3 in early cardiac development. Here, we examine the familiar and emerging roles of VEGFR3 in the development of both lymphovascular and cardiovascular systems, respectively, compare how distinct genetic variants in FLT4 lead to two disparate human conditions, and highlight the research still required to fully understand this multifaceted receptor.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Donna J Page
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
35
|
Woods JP, Srinivasan RS, Olson LE. Sweet Dre-ams about intersectional genetics. Cell Stem Cell 2021; 28:989-990. [PMID: 34087159 DOI: 10.1016/j.stem.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Specific cell targeting with one site-specific recombinase is challenging. In this issue of Cell Stem Cell, Han et al. (2021) released a collection of Dre drivers and demonstrate how two recombinases can be combined to improve the cell specificity of lineage tracing and gene inactivation in mice.
Collapse
Affiliation(s)
- John P Woods
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
36
|
Stone OA, Zhou B, Red-Horse K, Stainier DYR. Endothelial ontogeny and the establishment of vascular heterogeneity. Bioessays 2021; 43:e2100036. [PMID: 34145927 DOI: 10.1002/bies.202100036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The establishment of distinct cellular identities was pivotal during the evolution of Metazoa, enabling the emergence of an array of specialized tissues with different functions. In most animals including vertebrates, cell specialization occurs in response to a combination of intrinsic (e.g., cellular ontogeny) and extrinsic (e.g., local environment) factors that drive the acquisition of unique characteristics at the single-cell level. The first functional organ system to form in vertebrates is the cardiovascular system, which is lined by a network of endothelial cells whose organ-specific characteristics have long been recognized. Recent genetic analyses at the single-cell level have revealed that heterogeneity exists not only at the organ level but also between neighboring endothelial cells. Thus, how endothelial heterogeneity is established has become a key question in vascular biology. Drawing upon evidence from multiple organ systems, here we will discuss the role that lineage history may play in establishing endothelial heterogeneity.
Collapse
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristy Red-Horse
- Department of Biology, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
37
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
38
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Jafree DJ, Long DA, Scambler PJ, Ruhrberg C. Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis 2021; 24:271-288. [PMID: 33825109 PMCID: PMC8205918 DOI: 10.1007/s10456-021-09784-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Faculty of Medical Sciences, University College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter J Scambler
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
40
|
das Neves SP, Delivanoglou N, Da Mesquita S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol 2021; 12:655052. [PMID: 33995074 PMCID: PMC8113819 DOI: 10.3389/fphar.2021.655052] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
A genuine and functional lymphatic vascular system is found in the meninges that sheath the central nervous system (CNS). This unexpected (re)discovery led to a reevaluation of CNS fluid and solute drainage mechanisms, neuroimmune interactions and the involvement of meningeal lymphatics in the initiation and progression of neurological disorders. In this manuscript, we provide an overview of the development, morphology and unique functional features of meningeal lymphatics. An outline of the different factors that affect meningeal lymphatic function, such as growth factor signaling and aging, and their impact on the continuous drainage of brain-derived molecules and meningeal immune cells into the cervical lymph nodes is also provided. We also highlight the most recent discoveries about the roles of the CNS-draining lymphatic vasculature in different pathologies that have a strong neuroinflammatory component, including brain trauma, tumors, and aging-associated neurodegenerative diseases like Alzheimer's and Parkinson's. Lastly, we provide a critical appraisal of the conundrums, challenges and exciting questions involving the meningeal lymphatic system that ought to be investigated in years to come.
Collapse
Affiliation(s)
| | | | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
41
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
42
|
Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, Singh MK, Uemura A, Matsuzaki F, Yoshida Y, Kurihara Y, Miyagawa-Tomita S, Kurihara H. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience 2021; 24:102305. [PMID: 33870127 PMCID: PMC8041864 DOI: 10.1016/j.isci.2021.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023] Open
Abstract
Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.
Collapse
Affiliation(s)
- Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuaki Naemura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto, Kumamoto 860-0811, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Nagao
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kenji Yoshihara
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, 8 College Road Singapore 169857, Singapore
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3, Minatojiima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.,Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, 4-7-2 Minami-Osawa, Hachioji, Tokyo 192-0364, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Feng X, Travisano S, Pearson CA, Lien CL, Harrison MRM. The Lymphatic System in Zebrafish Heart Development, Regeneration and Disease Modeling. J Cardiovasc Dev Dis 2021; 8:21. [PMID: 33669620 PMCID: PMC7922492 DOI: 10.3390/jcdd8020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Heart disease remains the single largest cause of death in developed countries, and novel therapeutic interventions are desperately needed to alleviate this growing burden. The cardiac lymphatic system is the long-overlooked counterpart of the coronary blood vasculature, but its important roles in homeostasis and disease are becoming increasingly apparent. Recently, the cardiac lymphatic vasculature in zebrafish has been described and its role in supporting the potent regenerative response of zebrafish heart tissue investigated. In this review, we discuss these findings in the wider context of lymphatic development, evolution and the promise of this system to open new therapeutic avenues to treat myocardial infarction and other cardiopathologies.
Collapse
Affiliation(s)
- Xidi Feng
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Stanislao Travisano
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Caroline A. Pearson
- Laboratory of Neurogenetics and Development, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Ching-Ling Lien
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael R. M. Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
44
|
Bordoni B, Escher AR, Tobbi F, Ducoux B, Paoletti S. Fascial Nomenclature: Update 2021, Part 2. Cureus 2021; 13:e13279. [PMID: 33604227 PMCID: PMC7880823 DOI: 10.7759/cureus.13279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
The fascial continuum is a topic of debate, in particular, its classification into a nomenclature that researchers and medical figures can agree on. Most likely, the difficulty in finding the uniqueness of this topic lies in the fact that only some scientific figures with certain specialties write articles to state their point of view. We know, however, that a matter that involves the human body cannot be taken into consideration only by some scientific arguments, but by all the notions capable of completing a multidisciplinary and impartial vision. The fascia, too often, becomes a destination for earning and selling, to the detriment of the entire scientific community. The second part of the article on fascial nomenclature tries to obtain a new definition of what could be considered the fascial continuum, based on the most innovative information in the literature; the ultimate goal is to give free reflections on the subject in full intellectual freedom.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| | - Bruno Ducoux
- Osteopathy, FROP Formation Recherche Osteopathie Prévention, Bordeaux, FRA
| | - Serge Paoletti
- Osteopathic Medicine, Académie d'Ostéopathie de France, Paris, FRA
| |
Collapse
|
45
|
Cahill TJ, Sun X, Ravaud C, Villa Del Campo C, Klaourakis K, Lupu IE, Lord AM, Browne C, Jacobsen SEW, Greaves DR, Jackson DG, Cowley SA, James W, Choudhury RP, Vieira JM, Riley PR. Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development 2021; 148:dev194563. [PMID: 33462113 PMCID: PMC7875498 DOI: 10.1242/dev.194563] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022]
Abstract
Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.
Collapse
Affiliation(s)
- Thomas J Cahill
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Cristina Villa Del Campo
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Irina-Elena Lupu
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Allegra M Lord
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Cathy Browne
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
46
|
González-Loyola A, Petrova TV. Development and aging of the lymphatic vascular system. Adv Drug Deliv Rev 2021; 169:63-78. [PMID: 33316347 DOI: 10.1016/j.addr.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature has a pivotal role in regulating body fluid homeostasis, immune surveillance and dietary fat absorption. The increasing number of in vitro and in vivo studies in the last decades has shed light on the processes of lymphatic vascular development and function. Here, we will discuss the current progress in lymphatic vascular biology such as the mechanisms of lymphangiogenesis, lymphatic vascular maturation and maintenance and the emerging mechanisms of lymphatic vascular aging.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| |
Collapse
|
47
|
Cha B, Ho YC, Geng X, Mahamud MR, Chen L, Kim Y, Choi D, Kim TH, Randolph GJ, Cao X, Chen H, Srinivasan RS. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development 2020; 147:dev195453. [PMID: 33060128 PMCID: PMC7758626 DOI: 10.1242/dev.195453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
48
|
Das RN, Yaniv K. Discovering New Progenitor Cell Populations through Lineage Tracing and In Vivo Imaging. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035618. [PMID: 32041709 DOI: 10.1101/cshperspect.a035618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of progenitor cells that generate differentiated cell types during development, regeneration, and disease states is central to understanding the mechanisms governing such transitions. For more than a century, different lineage-tracing strategies have been developed, which helped disentangle the complex relationship between progenitor cells and their progenies. In this review, we discuss how lineage-tracing analyses have evolved alongside technological advances, and how this approach has contributed to the identification of progenitor cells in different contexts of cell differentiation. We also highlight a few examples in which lineage-tracing experiments have been instrumental for resolving long-standing debates and for identifying unexpected cellular origins. This discussion emphasizes how this century-old quest to delineate cellular lineage relationships is still active, and new discoveries are being made with the development of newer methodologies.
Collapse
Affiliation(s)
- Rudra Nayan Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
49
|
Gutierrez-Miranda L, Yaniv K. Cellular Origins of the Lymphatic Endothelium: Implications for Cancer Lymphangiogenesis. Front Physiol 2020; 11:577584. [PMID: 33071831 PMCID: PMC7541848 DOI: 10.3389/fphys.2020.577584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system plays important roles in physiological and pathological conditions. During cancer progression in particular, lymphangiogenesis can exert both positive and negative effects. While the formation of tumor associated lymphatic vessels correlates with metastatic dissemination, increased severity and poor patient prognosis, the presence of functional lymphatics is regarded as beneficial for anti-tumor immunity and cancer immunotherapy delivery. Therefore, a profound understanding of the cellular origins of tumor lymphatics and the molecular mechanisms controlling their formation is required in order to improve current strategies to control malignant spread. Data accumulated over the last decades have led to a controversy regarding the cellular sources of tumor-associated lymphatic vessels and the putative contribution of non-endothelial cells to this process. Although it is widely accepted that lymphatic endothelial cells (LECs) arise mainly from pre-existing lymphatic vessels, additional contribution from bone marrow-derived cells, myeloid precursors and terminally differentiated macrophages, has also been claimed. Here, we review recent findings describing new origins of LECs during embryonic development and discuss their relevance to cancer lymphangiogenesis.
Collapse
Affiliation(s)
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Martucciello S, Turturo MG, Bilio M, Cioffi S, Chen L, Baldini A, Illingworth E. A dual role for Tbx1 in cardiac lymphangiogenesis through genetic interaction with Vegfr3. FASEB J 2020; 34:15062-15079. [PMID: 32951265 DOI: 10.1096/fj.201902202r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The transcription factor TBX1 is the major gene implicated in 22q11.2 deletion syndrome (22q11.2DS). The complex clinical phenotype includes vascular anomalies and a recent report presented new cases of primary lymphedema in 22q11.2DS patients. We have previously shown that TBX1 is required for systemic lymphatic vessel development in prenatal mice and it is critical for their survival postnatally. Using loss-of-function genetics and transgenesis in the mouse, we show here a strong genetic interaction between Tbx1 and Vegfr3 in cardiac lymphangiogenesis. Intriguingly, we found that different aspects of the cardiac lymphatic phenotype in Tbx1-Vegfr3 compound heterozygotes were regulated independently by the two genes, with Tbx1 primarily regulating vessel numbers and Vegfr3 vessel morphology. Consistent with this observation, Tbx1Cre -activated expression of a Vegfr3 transgene rescued partially the cardiac lymphatic abnormalities in compound heterozygotes. Through time-controlled genetic experiments, we show that Tbx1 is activated and required in cardiac lymphatic endothelial cell (LEC) progenitors between E10.5 and E11.5. Furthermore, we found that it is also required later in development for the growth of the cardiac lymphatics. Finally, our study revealed a differential sensitivity between ventral and dorsal cardiac lymphatics to the effects of altered Tbx1 and Vegfr3 gene dosage, and we show that this likely results from an earlier requirement for Tbx1 in ventral cardiac LEC progenitors.
Collapse
Affiliation(s)
- Stefania Martucciello
- IRCCS Neuromed, Pozzilli, Italy.,Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | | | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT", CNR, Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "ABT", CNR, Naples, Italy
| | - Li Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Antonio Baldini
- Institute of Genetics and Biophysics "ABT", CNR, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|