1
|
Zhang W, Liu Y, Wu Y, Wang Z, Liu X, Hu Q, Yang L, Hu C, Wang Y. ROS-triggered biomimetic hydrogel soft scaffold for ischemic stroke repair. Biomaterials 2025; 319:123217. [PMID: 40023927 DOI: 10.1016/j.biomaterials.2025.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Millions of individuals worldwide suffer from ischemic stroke (IS). The focal hypo-perfused brain brings about hostile pathological environment, which further restricts endogenous neurogenesis post-stroke. In this work, we report an ROS-triggered hyaluronic acid (HA) and platelet lysates (pls) composite biomimetic hydrogel soft scaffold (pls gel) encapsulating matrix metalloproteinase (MMPs)-responsive triglycerol monostearate nanoparticles loaded with docosahexaenoic acid (TGMS@DHA, TD). Pls gel was chosen to be the hydrogel matrix to mimic brain extracellular matrix (ECM) to provide physical support for cell infiltration and accelerate angiogenesis as a growth factors (GFs) box. The borate ester bonded hydrogel could respond to reactive oxygen species and relieve oxidative stress. The loaded TD nanoparticles could be enzymatically cleaved by overexpressed MMPs in cerebral infarcted site, which could improve the adverse effects triggered by overexpressed MMPs. DHA with rich unsaturated bonds was proven that not only inhibit neuroinflammatory and oxidative stress, but also take part in promote neurogenesis. In brief, the ROS-triggered hydrogel scaffold pls gel@TD created an optimized microenvironment to manipulate the survival and differentiation of neural stem cells and promote endogenous regenerative repair processes. The in vitro results exhibited the biomimetic soft scaffold eliminated oxygen-glucose deprivation-derived free radical, saved mitochondrial dysfunction, reduced neuronal apoptosis, and promoted neovascularization. In the mice focal IS model, the biomimetic hydrogel scaffold regulated pathological environment in the ischemic site and induced migration and differentiation of endogenous neural stem cells, consequently relieved neuron ischemia injury. During the long-term observation, the hydrogel improved mice neurobehavioral functions. In conclusion, the hydrogel soft scaffold pls gel@TD was demonstrated to have promising therapeutic effects on remodeling pathological environment by transforming the hostile state into a pro-regenerative one in the infarct site, consequently promoting endogenous regenerative repair processes.
Collapse
Affiliation(s)
- Wen Zhang
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China
| | - Yang Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Yu Wu
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China
| | - Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Orthopedic Surgery, Ya' an People' s Hospital, Ya' an, 625000, China
| | - Li Yang
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials& College of Biomedical Engineering, Sichuan University, China; Research Unit of Minimally Invasive Treatment of Structural Heart Disease, Chinese Academy of Medical Sciences (No: 2021RU013), China.
| |
Collapse
|
2
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
3
|
Hu R, Boshans LL, Zhu B, Cai P, Tao Y, Youssef M, Girrbach GI, Song Y, Wang X, Tsankov A, Buxbaum JD, Ma S, Yang N. Expanding GABAergic Neuronal Diversity in iPSC-Derived Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626438. [PMID: 39677822 PMCID: PMC11642846 DOI: 10.1101/2024.12.03.626438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
GABAergic interneurons play a critical role in maintaining neural circuit function, and their dysfunction is implicated in various neurodevelopmental and psychiatric disorders. Traditional approaches for differentiating human pluripotent stem cells (PSCs) into neuronal cells often face challenges such as incomplete neural differentiation, prolonged culture periods, and variability across PSC lines. To address these limitations, we developed a new strategy that integrates overexpression of transcription factors ASCL1 and DLX2 with dual-SMAD and WNT inhibition, efficiently driving the differentiation of human PSCs into diverse, region-specific GABAergic neuronal types. Using single-cell sequencing, we characterized the cellular heterogeneity of GABAergic induced neurons (iNs) generated with the patterning factors (patterned iNs) and those derived solely with transcription factors (PSC-derived iNs), uncovering the regulatory mechanisms that govern their fate specification. Patterned iNs exhibited gene expression features corresponding to multiple brain regions, particularly ganglionic eminence (GE) and neocortex, while GABAergic PSC-derived iNs predominantly resembled hypothalamic and thalamic neurons. Both iN types were enriched for genes relevant to neurodevelopmental and psychiatric disorders, with patterned iNs more specifically linked to neural lineage genes, highlighting their utility for disease modeling. We further applied this protocol to investigate the impact of an ADNP syndrome-associated mutation (p.Tyr719* variant) on GABAergic neuron differentiation, revealing that this mutation disrupts GABAergic fate specification and synaptic transmission. Overall, this study expands the toolkit for disease modeling by demonstrating the complementary advantages of GABAergic PSC-derived iNs and patterned iNs in representing distinct GABAergic neuron subtypes, brain regions, and disease contexts. These approaches offer a powerful platform for elucidating the molecular mechanisms underlying various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Bohan Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiran Tao
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Youssef
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gizem Inak Girrbach
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yingnan Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuran Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sai Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead contact
| |
Collapse
|
4
|
Petrovskiy DV, Butkova TV, Nikolsky KS, Kopylov AT, Nakhod VI, Kulikova LI, Malsagova KA, Kibrik ND, Rudnev VR, Izotov AA, Kaysheva AL. Extended range proteomic analysis of blood plasma from schizophrenia patients. Front Mol Biosci 2024; 11:1483933. [PMID: 39640846 PMCID: PMC11617367 DOI: 10.3389/fmolb.2024.1483933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The high prevalence of schizophrenia worldwide makes it necessary to proceed from subjective assessment of patient's clinical symptoms in diagnosis making to searching for circulating blood biomarkers. On the one hand, searching for molecular markers and targets for therapeutics will make it possible to refine and detail the molecular mechanisms of pathology development, while on the other hand, it will offer new opportunities for elaborating novel approaches to disease diagnosis and enhance efficacy and timeliness of drug therapy. Methods In this study, we performed an extended-range proteomic analysis of plasma samples collected from 48 study subjects with confirmed diagnosis of schizophrenia and 50 healthy volunteers. The high-resolution tandem mass spectra recorded in the data-dependent acquisition mode were analyzed using the MaxQuant algorithm for the library of known protein sequences and the PowerNovo algorithm for de novo protein sequencing. Results It was demonstrated that both strategies show similar results for high-abundance proteins (≥1 μg/mL). For mid-abundance (10 ng/mL - 1 μg/mL) and low-abundance (<10 ng/mL) proteins, the results obtained by the two search strategies complement each other. Discussion Group-specific proteins for the samples of schizophrenia patients were identified, presumably being involved in synaptic plasticity, angiogenesis, transcriptional regulation, protein stabilization and degradation.
Collapse
Affiliation(s)
- Denis V. Petrovskiy
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatiana V. Butkova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kirill S. Nikolsky
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valeriya I. Nakhod
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Liudmila I. Kulikova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kristina A. Malsagova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Nikolai D. Kibrik
- Moscow Research Institute of Psychiatry – Branch of the V. Serbsky National Medical Research Centre of Psy-chiatry and Narcology of the Ministry of Health of the Russian Federation, Department of Sexology, Moscow, Russia
| | - Vladimir R. Rudnev
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexander A. Izotov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Anna L. Kaysheva
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Wu KY, Wang XC, Anderson M, Tran SD. Innovative Use of Nanomaterials in Treating Retinopathy of Prematurity. Pharmaceuticals (Basel) 2024; 17:1377. [PMID: 39459018 PMCID: PMC11509985 DOI: 10.3390/ph17101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Retinopathy of prematurity (ROP) is a severe condition primarily affecting premature infants with a gestational age (GA) of 30 weeks or less and a birth weight (BW) of 1500 g or less. The objective of this review is to examine the risk factors, pathogenesis, and current treatments for ROP, such as cryotherapy, laser photocoagulation, and anti-VEGF therapy, while exploring the limitations of these approaches. Additionally, this review evaluates emerging nanotherapeutic strategies to address these challenges, aiming to improve ROP management. METHODS A comprehensive literature review was conducted to gather data on the pathogenesis, traditional treatment methods, and novel nanotherapeutic approaches for ROP. This included assessing the efficacy and safety profiles of cryotherapy, laser treatment, anti-VEGF therapy, and nanotherapies currently under investigation. RESULTS Traditional treatments, while effective in reducing disease progression, exhibit limitations, including long-term complications, tissue damage, and systemic side effects. Nanotherapeutic approaches, on the other hand, have shown potential in offering targeted drug delivery with reduced systemic toxicity, improved ocular drug penetration, and sustained release, which could decrease the frequency of treatments and enhance therapeutic outcomes. CONCLUSIONS Nanotherapies represent a promising advancement in ROP treatment, offering safer and more effective management strategies. These innovations could address the limitations of traditional therapies, reducing complications and improving outcomes for premature infants affected by ROP. Further research is needed to confirm their efficacy and safety in clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Fernezelian D, Pfitsch S, Rastegar S, Diotel N. Mapping the cellular expression patterns of vascular endothelial growth factor aa and bb genes and their receptors in the adult zebrafish brain during constitutive and regenerative neurogenesis. Neural Dev 2024; 19:17. [PMID: 39267104 PMCID: PMC11396322 DOI: 10.1186/s13064-024-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
The complex interplay between vascular signaling and neurogenesis in the adult brain remains a subject of intense research. By exploiting the unique advantages of the zebrafish model, in particular the persistent activity of neural stem cells (NSCs) and the remarkable ability to repair brain lesions, we investigated the links between NSCs and cerebral blood vessels. In this study, we first examined the gene expression profiles of vascular endothelial growth factors aa and bb (vegfaa and vegfbb), under physiological and regenerative conditions. Employing fluorescence in situ hybridization combined with immunostaining and histology techniques, we demonstrated the widespread expression of vegfaa and vegfbb across the brain, and showed their presence in neurons, microglia/immune cells, endothelial cells and NSCs. At 1 day post-lesion (dpl), both vegfaa and vegfbb were up-regulated in neurons and microglia/peripheral immune cells (macrophages). Analysis of vegf receptors (vegfr) revealed high expression throughout the brain under homeostatic conditions, with vegfr predominantly expressed in neurons and NSCs and to a lower extent in microglia/immune cells and endothelial cells. These findings were further validated by Vegfr3 and Vegfr4 immunostainings, which showed significant expression in neurogenic radial glial cells.Following brain lesion (1 dpl), while vegfr gene expression remained stable, vegfr transcripts were detected in proliferative cells within the injured parenchyma. Collectively, our results provide a first overview of Vegf/Vegfr signaling in the brain and suggest important roles for Vegf in neurogenesis and regenerative processes.
Collapse
Affiliation(s)
- Danielle Fernezelian
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France
| | - Sabrina Pfitsch
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Nicolas Diotel
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France.
| |
Collapse
|
7
|
VanRyzin JW, Marquardt AE, McCarthy MM. Feminization of social play behavior depends on microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608675. [PMID: 39229086 PMCID: PMC11370478 DOI: 10.1101/2024.08.19.608675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Many sex differences in brain and behavior are established developmentally by the opposing processes of feminization and masculinization, which manifest following differential steroid hormone exposure in early life. The cellular mechanisms underlying masculinization are well-documented, a result of the fact that it is steroid-mediated and can be easily induced in newborn female rodents via exogenous steroid treatment. However, the study of feminization of particular brain regions has largely been relegated to being "not masculinization" given the absence of an identified initiating trigger. As a result, the mechanisms of this key developmental process remain elusive. Here we describe a novel role for microglia, the brain's innate immune cell, in the feminization of the medial amygdala and a complex social behavior, juvenile play. In the developing amygdala, microglia promote proliferation of astrocytes equally in both sexes, with no apparent effect on rates of cell division, but support cell survival selectively in females through the trophic actions of Tumor Necrosis Factor α (TNFα). We demonstrate that disrupting TNFα signaling, either by depleting microglia or inhibiting the associated signaling pathways, prevents the feminization of astrocyte density and increases juvenile play levels to that seen in males. This data, combined with our previous finding that male-like patterns of astrocyte density are sculpted by developmental microglial phagocytosis, reveals that sexual differentiation of the medial amygdala involves opposing tensions between active masculinization and active feminization, both of which require microglia but are achieved via distinct processes.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashley E Marquardt
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Margaret M McCarthy
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
8
|
Shen K, Shi Y, Wang X, Leung SW. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024:AD.202.0424. [PMID: 39122454 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Ws Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Barron A, Barrett L, Tuulari J, Karlsson L, Karlsson H, McCarthy C, O'Keeffe G. sFlt-1 impairs neurite growth and neuronal differentiation in SH-SY5Y cells and human neurons. Biosci Rep 2024; 44:BSR20240562. [PMID: 38700092 PMCID: PMC11130541 DOI: 10.1042/bsr20240562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and βIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced βIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Lauren Barrett
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| |
Collapse
|
10
|
Wang H, Zhang Z, Hongpaisan J. PKCε activator protects hippocampal microvascular disruption and memory defect in 3×Tg-Alzheimer's disease mice with cerebral microinfarcts. Front Aging Neurosci 2023; 15:1272361. [PMID: 38187357 PMCID: PMC10768563 DOI: 10.3389/fnagi.2023.1272361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Background Current evidence suggests that microvessel disease is involved in Alzheimer's disease (AD). Cerebrovascular disease correlates with cardiovascular disease and is complicated in ≈40% of AD patients. The protein kinase C (PKC) ε activator DCPLA can stimulate human antigen (Hu) R that prevents degradation and promotes the translation of mitochondrial Mn-superoxide dismutase (MnSOD) and vascular endothelial growth factor-A (VEGF) mRNAs. Methods To induce brain microinfarcts, we injected triple transgenic (3×Tg) and wild-type (WT) control mice with microbeads (20 μm caliber) into common carotid arteries, with or without the DCPLA-ME (methyl-ester) for 2 weeks. After water maze training, mice at 16 months old were examined for confocal immunohistochemistry at a single cell or microvessel level in the hippocampal CA1 area, important for spatial memory storage, and in the dorsal hippocampus by western blots. Results In 3×Tg mice without cerebral microinfarcts, an accelerating age-related increase in (mild) oxidative stress and hypoxia inducible factor (HIF)-1α, but a reduction in VEGF, mitochondrial transcription factor A (TFAM), and MnSOD were associated with capillary loss. The change was less pronounced in arterioles. However, in 3×Tg mice with cerebral microinfarcts, increasing arteriolar diameter and their wall cells were related with the strong oxidative DNA damage 8-hydroxy-2'-deoxyguanosine (8-OHdG), apoptosis (cleaved caspase 3), and sustained hypoxia (increased HIF-1α and VEGF/PKCε/extracellular signal regulated kinase or ERK pathway). Microocclusion enhanced the loss of the synaptic marker spinophilin, astrocytic number, and astrocyte-vascular coupling areas and demyelination of axons. DCPLA-ME prevented spatial memory defect; strong oxidative stress-related apoptosis; sustained hypoxia (by reducing HIF-1α and VEGF); and exaggerated cell repair in arteriolar walls, pericapillary space dilation, neuro-glial-vascular disruption, and demyelination. Conclusion In conclusion, in 3×Tg mice with cerebral microinfarcts, sustained hypoxia (increased HIF-1α and VEGF signals) is dominant with arteriolar wall thickening, and DCPLA has a protective effect on sustained hypoxia.
Collapse
Affiliation(s)
| | | | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Organization of self-advantageous niche by neural stem/progenitor cells during development via autocrine VEGF-A under hypoxia. Inflamm Regen 2023; 43:8. [PMID: 36726165 PMCID: PMC9893632 DOI: 10.1186/s41232-022-00254-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tissue stem cells are confined within a special microenvironment called niche. Stem cells in such a niche are supplied with nutrients and contacted by other cells to maintain their characters and also to keep or expand their population size. Besides, oxygen concentration is a key factor for stem cell niche. Adult neural stem/progenitor cells (NSPCs) are known to reside in a hypoxic niche. Oxygen concentration levels are lower in fetal organs including brain than maternal organs. However, how fetal NSPCs adapt to the hypoxic environment during brain development, particularly before pial and periventricular vessels start to invade the telencephalon, has not fully been elucidated. METHODS NSPCs were prepared from cerebral cortices of embryonic day (E) 11.5 or E14.5 mouse embryos and were enriched by 4-day incubation with FGF2. To evaluate NSPC numbers, neurosphere formation assay was performed. Sparsely plated NSPCs were cultured to form neurospheres under the hypoxic (1% O2) or normoxic condition. VEGF-A secreted from NSPCs in the culture medium was measured by ELISA. VEGF-A expression and Hif-1a in the developing brain was investigated by in situ hybridization and immunohistochemistry. RESULTS Here we show that neurosphere formation of embryonic NSPCs is dramatically increased under hypoxia compared to normoxia. Vegf-A gene expression and its protein secretion were both up-regulated in the NSPCs under hypoxia. Either recombinant VEGF-A or conditioned medium of the hypoxic NSPC culture enhanced the neurosphere forming ability of normoxic NSPCs, which was attenuated by a VEGF-A signaling inhibitor. Furthermore, in the developing brain, VEGF-A was strongly expressed in the VZ where NSPCs are confined. CONCLUSIONS We show that NSPCs secret VEGF-A in an autocrine fashion to efficiently maintain themselves under hypoxic developmental environment. Our results suggest that NSPCs have adaptive potential to respond to hypoxia to organize self-advantageous niche involving VEGF-A when the vascular system is immature.
Collapse
|
13
|
Zhang Y, Neng L, Sharma K, Hou Z, Johnson A, Song J, Dabdoub A, Shi X. Pericytes control vascular stability and auditory spiral ganglion neuron survival. eLife 2023; 12:e83486. [PMID: 36719173 PMCID: PMC9940910 DOI: 10.7554/elife.83486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.
Collapse
Affiliation(s)
- Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Lingling Neng
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Anatasiya Johnson
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Junha Song
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research InstituteTorontoCanada
- Department of Otolaryngology-Head & Neck Surgery, University of TorontoTorontoCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
14
|
Sakai D, Sugawara T, Kurokawa T, Murakami Y, Tomosugi M, Masuta H, Sakata-Haga H, Hatta T, Shoji H. Hif1α-dependent hypoxia signaling contributes to the survival of deep-layer neurons and cortex formation in a mouse model. Mol Brain 2022; 15:28. [PMID: 35361248 PMCID: PMC8973788 DOI: 10.1186/s13041-022-00911-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factor 1 α (Hif1α) plays a crucial role in brain development. To study the function of Hif1α in early brain development, we generated neuroepithelial cell-specific Hif1α-knockout mice. Hif1α-knockout mice died soon after birth; these mice exhibited an abnormal head shape, indicating the presence of brain defects. Morphological analysis revealed that Hif1α ablation reduced the overall size of the brain, especially affecting the telencephalon. Neuronal apoptosis predominantly occurred in deep-layer neurons, consequently the alignment of cortical layers was severely disorganized in Hif1α knockout mice. Furthermore, we demonstrated that Vegf signaling contributes to the survival of deep-layer neurons as a downstream effector of Hif1α-dependent hypoxia signaling. Taken together, our findings demonstrate that Hif1α plays a critical role in the early stages of telencephalon development.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Takeru Sugawara
- Department of Medical Life Systems, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Tomonori Kurokawa
- Department of Medical Life Systems, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Hirakata, 573-1010, Japan
| | - Mitsuhiro Tomosugi
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroko Masuta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
15
|
Differential Transcriptome Profiling Unveils Novel Deregulated Gene Signatures Involved in Pathogenesis of Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10030611. [PMID: 35327413 PMCID: PMC8945049 DOI: 10.3390/biomedicines10030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by a progressive loss of cognitive functions at a higher level than normal aging. Although the apolipoprotein (APOE) gene is a major risk factor in developing AD, other genes have also been reported to be linked with complex phenotypes. Therefore, this genome-wide expression study explored differentially expressed genes as possible novel biomarkers involved in AD. The mRNA expression dataset, GSE28146, containing 15 sample data composed of 7 AD cases from the hippocampus region with age-matched control (n = 8, >80 years), was analyzed. Using “affy” R-package, mRNA expression was calculated, while pathway enrichment analysis was performed to determine related biological processes. Of 58 differentially expressed genes, 44 downregulated and 14 upregulated genes were found to be significantly (p < 0.001) altered. The pathway enrichment analysis revealed two altered genes, i.e., dynein light chain 1 (DYNLL1) and kalirin (KLRN), associated with AD in the elderly population. The majority of genes were associated with retrograde endocannabinoid as well as vascular endothelial growth factors affecting the complex phenotypes. The DYNLL1 and KLRN genes may be involved with AD and Huntington’s disease (HD) phenotypes and represent a common genetic basis of these diseases. However, the hallmark of AD is dementia, while the classic motor sign of HD includes chorea. Our data warrant further investigation to identify the role of these genes in disease pathogenesis.
Collapse
|
16
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|