1
|
Uwishema O, Ghezzawi M, Wojtara M, Esene IN, Obamiro K. Stem cell therapy use in patients with dementia: a systematic review. Int J Emerg Med 2025; 18:95. [PMID: 40350434 PMCID: PMC12067764 DOI: 10.1186/s12245-025-00876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Stem cell therapy (SCT) is increasingly recognized for its potential in managing cognitive impairment, particularly that of dementia. The application of SCT aims to restore cognitive functioning in people living with dementia. Beyond pre-clinical studies, several clinical trials have evaluated specific stem cell (SC) types for their efficacy in treating dementia. AIMS & OBJECTIVES To assess the status and efficacy of pre-clinical and clinical studies utilizing SCs as a therapeutic approach for dementia. METHODS A systematic review was conducted using two electronic databases: MEDLINE and Embase. We reviewed studies on the application of SCs in dementia, focusing on the following aspects: Animal models used in pre-clinical studies, tissue sources of SCs and donor species, and administrative routes and outcome assessments. Included papers comprised randomized control trials (RCTs) and original studies, while those involving adjuvant therapies for dementia were excluded. Quality assessment criteria included relevance to the research question, type of SCs, stage of SC transplantation, duration and route of administration, methods for outcome assessment, and the total number of animals implicated. RESULTS A total of 32 papers were included, encompassing 21 clinical trials and 11 preclinical studies. The preclinical studies employed various transgenic animal models to evaluate SCT outcomes. Animal models of dementia, particularly transgenic mice, have proven instrumental in replicating human disease mechanisms. These models facilitate understanding of pathophysiology and preclinical testing of therapeutic interventions. Studies utilizing SCT demonstrated notable improvements in spatial memory, reduced neuroinflammation, and protection against amyloid-beta (Aβ) toxicity. Key mechanisms included modulation of inflammation, microglial immune responses, neurogenesis support, and anti-amyloidogenic effects. Preclinical studies predominantly employed human placenta-derived mesenchymal stem cells (PD-MSCs), umbilical cord-derived MSCs (U-MSCs), and induced pluripotent stem cell-derived neuronal precursors. Administration routes varied, with stereotactic and intravenous injections targeting affected brain regions. Reductions in inflammatory markers such as IL-1β, TNF-α, and increases in anti-inflammatory cytokines like IL-4 and IL-10 were observed. These outcomes emphasize the immunomodulatory and neuroprotective capacities of SCT. CONCLUSION SCT shows promise in addressing dementia-related pathologies by leveraging diverse therapeutic mechanisms. Continued refinement of preclinical models and translational research is essential to bridge gaps between preclinical findings and clinical applications, potentially paving the way for novel treatments for dementia.
Collapse
Affiliation(s)
- Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda.
| | - Malak Ghezzawi
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- American University of Beirut, Beirut, Lebanon
| | - Magda Wojtara
- Department of Research and Education, Oli Health Magazine Organization, Kigali, Rwanda
- University of California, Los Angeles David Geffen School of Medicine, Los Angeles, USA
| | - Ignatius N Esene
- Neurosurgery Division, Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon
| | - Kehinde Obamiro
- James Cook University Central Queensland Centre for Rural and Remote Health, Emerald, QLD, Australia
| |
Collapse
|
2
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Wu X, Kreutz A, Dixon D, Tokar EJ. Engineering human cerebral organoids to explore mechanisms of arsenic-induced developmental neurotoxicity. Toxicol Appl Pharmacol 2025; 496:117230. [PMID: 39842615 PMCID: PMC11846691 DOI: 10.1016/j.taap.2025.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Modeling brain development and function is challenging due to complexity of the organ. Human pluripotent stem cell (PSC)-derived brain-like organoids provide new tools to study the human brain. Compared with traditional in vivo toxicological studies, these 3D models, together with 2D cellular assays, enhance our understanding of the mechanisms of developmental neurotoxicity (DNT) during the early stages of neurogenesis and offer numerous advantages including a rapid, cost-effective approach for understanding compound mechanisms and assessing chemical safety. Arsenic (As) exposure is associated with DNT, although the mechanisms involved are not well-defined. Here, we used 3D PSC-derived embryoid bodies (EBs) to recapitulate events involved in embryogenesis and neurogenesis before neural induction, and EB-derived cerebral organoids to mimic neural development in vivo. As (0.5 μM; 35 ppb) increased ectoderm differentiation within the EBs by upregulating genes (PAX6, SOX1) critical for embryonic development. Histological staining of EBs showed As disrupted neural rosette structures. qPCR and RNA-seq showed As inhibited expression of markers of mature neural cells (MAP2+/vGLUT2+) and astrocytes (GFAP+). In organoids, Ingenuity Pathway Analysis was used to identify the top 5 pathways affected by As exposure, and Gene Ontology enrichment analysis found several key signaling pathways to be inhibited by As exposure. These data provide insights into pathways contributing to As-induced inhibition of neurite outgrowth and disrupted neural rosette structures in the 2D neurite outgrowth assay and in organoids, respectively. Results herein show this multipronged 2D/3D approach can provide valuable insights into cellular events and molecular mechanisms of As-induced DNT.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Darlene Dixon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America.
| |
Collapse
|
4
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
5
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
6
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Zhou G, Pang S, Li Y, Gao J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res 2024; 19:1013-1019. [PMID: 37862203 PMCID: PMC10749595 DOI: 10.4103/1673-5374.385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo. As emerging bioengineering methods have led to the optimization of cell culture protocols, spinal cord organoids technology has made remarkable advancements in the past decade. Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes. Moreover, fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment. These qualities make spinal cord organoids valuable tools for disease modeling, drug screening, and tissue regeneration. By utilizing this emergent technology, researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases. However, at present, spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine. Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siyuan Pang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Zhao H, Yan F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev Rep 2024; 20:495-508. [PMID: 38079086 PMCID: PMC10837228 DOI: 10.1007/s12015-023-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Retinal diseases are leading causes of blindness globally. Developing new drugs is of great significance for preventing vision loss. Current drug discovery relies mainly on two-dimensional in vitro models and animal models, but translation to human efficacy and safety is biased. In recent years, the emergence of retinal organoid technology platforms, utilizing three-dimensional microenvironments to better mimic retinal structure and function, has provided new platforms for exploring pathogenic mechanisms and drug screening. This review summarizes the latest advances in retinal organoid technology, emphasizing its application advantages in high-throughput drug screening, efficacy and toxicity evaluation, and translational medicine research. The review also prospects the combination of emerging technologies such as organ-on-a-chip, 3D bioprinting, single cell sequencing, gene editing with retinal organoid technology, which is expected to further optimize retinal organoid models and advance the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medicine School, Kunming Medical University, 1168 Yuhua Street, Chunrong West Road, Chenggong District, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
10
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
11
|
Giovenale AMG, Ruotolo G, Soriano AA, Turco EM, Rotundo G, Casamassa A, D’Anzi A, Vescovi AL, Rosati J. Deepening the understanding of CNVs on chromosome 15q11-13 by using hiPSCs: An overview. Front Cell Dev Biol 2023; 10:1107881. [PMID: 36684422 PMCID: PMC9852989 DOI: 10.3389/fcell.2022.1107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.
Collapse
Affiliation(s)
- Angela Maria Giada Giovenale
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giorgia Ruotolo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amata Amy Soriano
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Maria Turco
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovannina Rotundo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angela D’Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| |
Collapse
|
12
|
Song C, Chen X, Ma J, Buhe H, Liu Y, Saiyin H, Ma L. Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids. J Tissue Eng 2023; 14:20417314221147113. [PMID: 36636100 PMCID: PMC9829995 DOI: 10.1177/20417314221147113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.
Collapse
Affiliation(s)
- Chenyun Song
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Xinyu Chen
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Jixin Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hada Buhe
- The School of Pharmacy, Fujian Medical
University, Fuzhou, People’s Republic of China
| | - Yang Liu
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hexige Saiyin
- State Key Laboratory of Genetic
Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic
of China,Hexige Saiyin, State Key Laboratory of
Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road,
Shanghai 200438, People’s Republic of China.
| | - Lixiang Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| |
Collapse
|
13
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
14
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Orieux G, Goureau O. [Are mini-brains watching you?]. Med Sci (Paris) 2022; 38:453-456. [PMID: 35608468 DOI: 10.1051/medsci/2022053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
iPSC-derived brain and retinal organoids represent biologically relevant 3D models. A new step in the field of brain and retinal organoids was reached a few months ago with the simultaneous development of brain and eye structures from human iPS cells within the same organoid. Single-cell mRNA sequencing analyses allowed the identification of various ocular and cerebral neuronal populations and electrophysiological recordings confirm the presence of functional and electrically active neurons. The coexistence within the same organoid of different cell types from visual and brain regions and the establishment of connections between these regions raise the intriguing question of its real or potential functionality and its ability to process higher-level visual information. This unique model could also be used to further understand the development of the human visual system and associated developmental diseases.
Collapse
Affiliation(s)
- Gaël Orieux
- Institut de la vision, Sorbonne Université, Inserm, CNRS, 17 rue Moreau, F-75012 Paris, France
| | - Olivier Goureau
- Institut de la vision, Sorbonne Université, Inserm, CNRS, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
16
|
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7:168. [PMID: 35610212 PMCID: PMC9127490 DOI: 10.1038/s41392-022-01024-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Shanshan Wu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Chu Chu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Coolen M, Altin N, Rajamani K, Pereira E, Siquier-Pernet K, Puig Lombardi E, Moreno N, Barcia G, Yvert M, Laquerrière A, Pouliet A, Nitschké P, Boddaert N, Rausell A, Razavi F, Afenjar A, Billette de Villemeur T, Al-Maawali A, Al-Thihli K, Baptista J, Beleza-Meireles A, Garel C, Legendre M, Gelot A, Burglen L, Moutton S, Cantagrel V. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 2022; 109:909-927. [PMID: 35390279 DOI: 10.1016/j.ajhg.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.
Collapse
Affiliation(s)
- Marion Coolen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| | - Nami Altin
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karthyayani Rajamani
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Eva Pereira
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karine Siquier-Pernet
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Emilia Puig Lombardi
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nadjeda Moreno
- HDBR Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giulia Barcia
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Marianne Yvert
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Aurore Pouliet
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Patrick Nitschké
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Antonio Rausell
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory and Molecular Genetics Service, Service de Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Féréchté Razavi
- Unité d'Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, Paris 75015, France
| | - Alexandra Afenjar
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Thierry Billette de Villemeur
- Sorbonne Université, Service de Neuropédiatrie - Pathologie du Développement, Centre de Référence Déficiences Intellectuelles de Causes Rares et Polyhandicap, Hôpital Trousseau AP-HP, Paris 75012, France
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BT, UK
| | - Ana Beleza-Meireles
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Catherine Garel
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, AP-HP, Paris 75012, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Pellegrin Hospital, Bordeaux 33300, France
| | - Antoinette Gelot
- Neuropathology, Department of Pathology, Trousseau Hospital, AP-HP, Paris 75012, France; INMED, Aix-Marseille University, INSERM UMR 1249, Marseille 13009, France
| | - Lydie Burglen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Sébastien Moutton
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Vincent Cantagrel
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| |
Collapse
|
18
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
19
|
Abstract
How "real" can a stem cell-derived human organoid be? In this issue of Cell Stem Cell, Saha et al. demonstrate that cone photoreceptors in human stem cell-derived retinal organoids can respond to light not unlike foveal cones of adult primate.
Collapse
|