1
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
2
|
Incidence and Characteristics of Kidney Stones in Patients on Ketogenic Diet: A Systematic Review and Meta-Analysis. Diseases 2021; 9:diseases9020039. [PMID: 34070285 PMCID: PMC8161846 DOI: 10.3390/diseases9020039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Very-low-carbohydrate diets or ketogenic diets are frequently used for weight loss in adults and as a therapy for epilepsy in children. The incidence and characteristics of kidney stones in patients on ketogenic diets are not well studied. Methods: A systematic literature search was performed, using MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews from the databases’ inception through April 2020. Observational studies or clinical trials that provide data on the incidence and/or types of kidney stones in patients on ketogenic diets were included. We applied a random-effects model to estimate the incidence of kidney stones. Results: A total of 36 studies with 2795 patients on ketogenic diets were enrolled. The estimated pooled incidence of kidney stones was 5.9% (95% CI, 4.6–7.6%, I2 = 47%) in patients on ketogenic diets at a mean follow-up time of 3.7 +/− 2.9 years. Subgroup analyses demonstrated the estimated pooled incidence of kidney stones of 5.8% (95% CI, 4.4–7.5%, I2 = 49%) in children and 7.9% (95% CI, 2.8–20.1%, I2 = 29%) in adults, respectively. Within reported studies, 48.7% (95% CI, 33.2–64.6%) of kidney stones were uric stones, 36.5% (95% CI, 10.6–73.6%) were calcium-based (CaOx/CaP) stones, and 27.8% (95% CI, 12.1–51.9%) were mixed uric acid and calcium-based stones, respectively. Conclusions: The estimated incidence of kidney stones in patients on ketogenic diets is 5.9%. Its incidence is approximately 5.8% in children and 7.9% in adults. Uric acid stones are the most prevalent kidney stones in patients on ketogenic diets followed by calcium-based stones. These findings may impact the prevention and clinical management of kidney stones in patients on ketogenic diets.
Collapse
|
3
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
4
|
Anticonvulsant mechanisms of the ketogenic diet and caloric restriction. Epilepsy Res 2020; 168:106499. [PMID: 33190066 DOI: 10.1016/j.eplepsyres.2020.106499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
Many treatments have been proposed to control epileptic seizures, such as the ketogenic diet and caloric restriction. However, seizure control has not yet been improved completely in all patients. Probably, due to the lack of understanding regarding this neurological disorder pathogenesis or pathophysiology, including its molecular approach. Currently, there is not much information about the molecular processes and genes involved, and their relation to the possible beneficial effects of diet therapy on epilepsy. The ketogenic diet and caloric restriction are implicated in potential anti-seizure mechanisms related to the gut microbiome, metabolic pathways, hormones and neurotransmitters, mitochondria improvement, a role in inflammation, and oxidative stress, among others. In this review, we pretend to describe the molecular mechanism and the possible genes involved in the different ketogenic diet and caloric restriction mechanisms of action described to decrease neural excitability and, therefore, epileptic seizures, especially when conventional treatment is not enough to achieve control of epilepsy.
Collapse
|
5
|
Noviawaty I, Olaru E, Rondello C, Fitzsimmons B, Raghavan M. Clinical Reasoning: Ketogenic diet in adult super-refractory status epilepticus. Neurology 2020; 94:541-546. [PMID: 32107326 DOI: 10.1212/wnl.0000000000009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ika Noviawaty
- From the Department of Neurology (I.N.), University of Massachusetts Medical School, Worcester; Department of Neurology (E.O.), Queen's Medical Center, Honolulu, HI; Knoxville Hospital (C.R.), IA; and Department of Neurology (B.F., M.R.), Medical College of Wisconsin, Milwaukee.
| | - Eliza Olaru
- From the Department of Neurology (I.N.), University of Massachusetts Medical School, Worcester; Department of Neurology (E.O.), Queen's Medical Center, Honolulu, HI; Knoxville Hospital (C.R.), IA; and Department of Neurology (B.F., M.R.), Medical College of Wisconsin, Milwaukee
| | - Caitlin Rondello
- From the Department of Neurology (I.N.), University of Massachusetts Medical School, Worcester; Department of Neurology (E.O.), Queen's Medical Center, Honolulu, HI; Knoxville Hospital (C.R.), IA; and Department of Neurology (B.F., M.R.), Medical College of Wisconsin, Milwaukee
| | - Brian Fitzsimmons
- From the Department of Neurology (I.N.), University of Massachusetts Medical School, Worcester; Department of Neurology (E.O.), Queen's Medical Center, Honolulu, HI; Knoxville Hospital (C.R.), IA; and Department of Neurology (B.F., M.R.), Medical College of Wisconsin, Milwaukee
| | - Manoj Raghavan
- From the Department of Neurology (I.N.), University of Massachusetts Medical School, Worcester; Department of Neurology (E.O.), Queen's Medical Center, Honolulu, HI; Knoxville Hospital (C.R.), IA; and Department of Neurology (B.F., M.R.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
6
|
Abstract
Epilepsy is a long-term neurological disease characterized by convulsions that can be recurrent. It is mainly caused by an imbalance between excitation and inhibition in the central nervous system. Currently, the pathogenesis is still unclear, although it may be related to changes in ion channels, neurotransmitters and glial cells. In recent years, increasing attention has been paid to the role of autophagy in the development of epilepsy. This chapter focuses on the role of the mTOR pathway in epileptogenesis and the relationship between autophagy, glycogen metabolism and Lafora disease and discusses the potential role of autophagy as a target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Meihong Lv
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China
| | - Quanhong Ma
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
8
|
Weerasekera A, Sima DM, Dresselaers T, Van Huffel S, Van Damme P, Himmelreich U. Non-invasive assessment of disease progression and neuroprotective effects of dietary coconut oil supplementation in the ALS SOD1 G93A mouse model: A 1H-magnetic resonance spectroscopic study. NEUROIMAGE-CLINICAL 2018; 20:1092-1105. [PMID: 30368196 PMCID: PMC6202692 DOI: 10.1016/j.nicl.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an incurable neurodegenerative disease primarily characterized by progressive degeneration of motor neurons in the motor cortex, brainstem and spinal cord. Due to relatively fast progression of ALS, early diagnosis is essential for possible therapeutic intervention and disease management. To identify potential diagnostic markers, we investigated age-dependent effects of disease onset and progression on regional neurochemistry in the SOD1G93A ALS mouse model using localized in vivo magnetic resonance spectroscopy (MRS). We focused mainly on the brainstem region since brainstem motor nuclei are the primarily affected regions in SOD1G93A mice and ALS patients. In addition, metabolite profiles of the motor cortex were also assessed. In the brainstem, a gradual decrease in creatine levels were detected starting from the pre-symptomatic age of 70 days postpartum. During the early symptomatic phase (day 90), a significant increase in the levels of the inhibitory neurotransmitter γ- aminobutyric acid (GABA) was measured. At later time points, alterations in the form of decreased NAA, glutamate, glutamine and increased myo-inositol were observed. Also, decreased glutamate, NAA and increased taurine levels were seen at late stages in the motor cortex. A proof-of-concept (PoC) study was conducted to assess the effects of coconut oil supplementation in SODG93A mice. The PoC revealed that the coconut oil supplementation together with the regular diet delayed disease symptoms, enhanced motor performance, and prolonged survival in the SOD1G93A mouse model. Furthermore, MRS data showed stable metabolic profile at day 120 in the coconut oil diet group compared to the group receiving a standard diet without coconut oil supplementation. In addition, a positive correlation between survival and the neuronal marker NAA was found. To the best of our knowledge, this is the first study that reports metabolic changes in the brainstem using in vivo MRS and effects of coconut oil supplementation as a prophylactic treatment in SOD1G93A mice.
Collapse
Affiliation(s)
- A Weerasekera
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - D M Sima
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; icometrix, R&D department, Leuven, Belgium
| | - T Dresselaers
- Radiology, Department of Imaging and Pathology, UZ Leuven, Leuven, Belgium
| | - S Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - P Van Damme
- Department of Neurology, University Hospitals Leuven, Laboratory of Neurobiology, Leuven, Belgium; Department of Neurosciences, KU Leuven, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Holden K, Hartman AL. d-Leucine: Evaluation in an epilepsy model. Epilepsy Behav 2018; 78:202-209. [PMID: 29122492 PMCID: PMC5756680 DOI: 10.1016/j.yebeh.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current medicines do not provide sufficient seizure control for nearly one-third of patients with epilepsy. New options are needed to address this treatment gap. We recently found that the atypical amino acid d-leucine protected against acutely-induced seizures in mice, but its effect in chronic seizures has not been explored. We hypothesized that d-leucine would protect against spontaneous recurrent seizures. We also investigated whether mice lacking a previously-described d-leucine receptor (Tas1R2/R3) would be protected against acutely-induced seizures. METHODS Male FVB/NJ mice were subjected to kainic acid-induced status epilepticus and monitored by video-electroencephalography (EEG) (surgically implanted electrodes) for 4weeks before, during, and after treatment with d-leucine. Tas1R2/R3 knockout mice and controls underwent the maximal electroshock threshold (MES-T) and 6-Hz tests. RESULTS There was no difference in number of calendar days with seizures or seizure frequency with d-leucine treatment. In an exploratory analysis, mice treated with d-leucine had a lower number of dark cycles with seizures. Tas1R2/R3 knockout mice had elevated seizure thresholds in the MES-T test but not the 6-Hz test. CONCLUSIONS d-Leucine treatment was ineffective against chronic seizures after kainic acid-induced status epilepticus, but there was some efficacy during the dark cycle. Because d-leucine is highly concentrated in the pineal gland, these data suggest that d-leucine may be useful as a tool for studying circadian patterns in epilepsy. Deletion of the Tas1R2/R3 receptor protected against seizures in the MES-T test and, therefore, may be a novel target for treating seizures.
Collapse
Affiliation(s)
- Kylie Holden
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Adam L Hartman
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
10
|
Simm PJ, Bicknell-Royle J, Lawrie J, Nation J, Draffin K, Stewart KG, Cameron FJ, Scheffer IE, Mackay MT. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res 2017; 136:62-66. [PMID: 28778055 DOI: 10.1016/j.eplepsyres.2017.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 11/26/2022]
Abstract
The ketogenic diet (KD) is a medically supervised, high fat, low carbohydrate and restricted protein diet which has been used successfully in patients with refractory epilepsy. Only one published report has explored its effect on the skeleton. We postulated that the KD impairs skeletal health parameters in patients on the KD. Patients commenced on the KD were enrolled in a prospective, longitudinal study, with monitoring of Dual-energy X-ray absorptiometry (DXA) derived bone parameters including bone mineral content and density (BMD). Areal BMD was converted to bone mineral apparent density (BMAD) where possible. Biochemical parameters, including Vitamin D, and bone turnover markers, including osteocalcin, were assessed. Patients were stratified for level of mobility using the gross motor functional classification system (GMFCS). 29 patients were on the KD for a minimum of 6 months (range 0.5-6.5 years, mean 2.1 years). There was a trend towards a reduction in lumbar spine (LS) BMD Z score of 0.1562 (p=0.071) per year and 20 patients (68%) had a lower BMD Z score at the end of treatment. While less mobile patients had lower baseline Z scores, the rate of bone loss on the diet was greater in the more mobile patients (0.28 SD loss per year, p=0.026). Height adjustment of DXA data was possible for 13 patients, with a mean reduction in BMAD Z score of 0.19 SD. Only two patients sustained fractures. Mean urinary calcium-creatinine ratios were elevated (0.77), but only 1 patient developed renal calculi. Children on the KD exhibited differences in skeletal development that may be related to the diet. The changes were independent of height but appear to be exaggerated in patients who are ambulant. Clinicians should be aware of potential skeletal side effects and monitor bone health during KD treatment. Longer term follow up is required to determine adult/peak bone mass and fracture risk throughout life.
Collapse
Affiliation(s)
- Peter J Simm
- Royal Children's Hospital Melbourne, Australia; Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia.
| | | | - Jock Lawrie
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Judy Nation
- Royal Children's Hospital Melbourne, Australia
| | - Kellie Draffin
- Department of Nutrition and Dietetics, Austin Health, Australia
| | | | - Fergus J Cameron
- Royal Children's Hospital Melbourne, Australia; Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Ingrid E Scheffer
- Royal Children's Hospital Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Department of Medicine, University of Melbourne, Austin Health, Australia; Department of Paediatrics, Austin Health, Australia
| | - Mark T Mackay
- Royal Children's Hospital Melbourne, Australia; Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| |
Collapse
|
11
|
Katsu-Jiménez Y, Alves RMP, Giménez-Cassina A. Food for thought: Impact of metabolism on neuronal excitability. Exp Cell Res 2017; 360:41-46. [PMID: 28263755 DOI: 10.1016/j.yexcr.2017.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability. Crosstalk of neurons with glial populations also plays a prominent role in shaping metabolic flow in the brain. In this review, we provide an overview on how different carbon substrates and metabolic pathways impact neurotransmission, and the potential implications for neurological disorders in which neuronal excitability is deregulated, such as epilepsy.
Collapse
Affiliation(s)
- Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Renato M P Alves
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Alfredo Giménez-Cassina
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, 171 77 Stockholm, Sweden; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Department of Molecular Biology, C/ Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
12
|
|
13
|
Potent anti-seizure effects of D-leucine. Neurobiol Dis 2015; 82:46-53. [PMID: 26054437 DOI: 10.1016/j.nbd.2015.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022] Open
Abstract
There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes.
Collapse
|
14
|
Hallböök T, Sjölander A, Åmark P, Miranda M, Bjurulf B, Dahlin M. Effectiveness of the ketogenic diet used to treat resistant childhood epilepsy in Scandinavia. Eur J Paediatr Neurol 2015; 19:29-36. [PMID: 25457511 DOI: 10.1016/j.ejpn.2014.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/12/2014] [Accepted: 09/20/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND This Scandinavian collaborative retrospective study of children treated with ketogenic diet (KD) highlights indications and effectiveness over two years follow-up. METHODS Five centres specialised in KD collected data retrospectively on 315 patients started on KD from 1999 to 2009. Twenty-five patients who stopped the diet within four weeks because of compliance-problems and minor side-effects were excluded. Seizure-type(s), seizure-frequency, anti-epileptic drugs and other treatments, mental retardation, autism-spectrum disorder and motor-dysfunction were identified and treatment-response was evaluated. RESULTS An intention-to-treat analysis was used. Responders (>50% seizure-frequency reduction) at 6, 12 and 24 months were 50%, 46% and 28% respectively, seizure-free were 16%, 13% and 10%. Still on the diet were 80%, 64% and 41% after 6, 12 and 24 months. No child had an increased seizure-frequency. The best seizure outcome was seen in the group with not-daily seizures at baseline (n = 22), where 45%, 41% and 32% became seizure-free at 6, 12 and 24 months A significant improvement in seizure-frequency was seen in atonic seizures at three months and secondary generalised seizures at three and six months. Side-effects were noted in 29 subjects; most could be treated and only two stopped due to hyperlipidaemia and two due to kidney-stones. In 167 patients treated with potassium-citrate, one developed kidney-stones, compared with six of 123 without potassium-citrate treatment (relative risk = 8.1). CONCLUSIONS As the first study of implementing KD in children in the Scandinavian countries, our survey of 290 children showed that KD is effective and well tolerated, even in such severe patients with therapy-resistant epilepsy, more than daily seizures and intellectual disability in the majority of patients. Long-term efficacy of KD was comparable or even better than reported in newer AEDs. Addition of potassium citrate reduced risk of kidney-stones. Our data indicate that the response might be predicted by seizure-frequency before initiation of the diet but not by age, seizure-type or aetiology.
Collapse
Affiliation(s)
- Tove Hallböök
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Per Åmark
- Department of Neuropediatrics, Institution of Women's and Children's Health, Karolinska Hospital and Institute, Stockholm, Sweden
| | - Maria Miranda
- Department of Pediatrics, Pediatric Neurology Section, Herlev University Hospital (former Danish Epilepsy Centre Dianalund), Copenhagen University, Denmark
| | - Björn Bjurulf
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Ullevål, Norway
| | - Maria Dahlin
- Department of Neuropediatrics, Institution of Women's and Children's Health, Karolinska Hospital and Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Cardoso A, Silva D, Magano S, Pereira PA, Andrade JP. Old-onset caloric restriction effects on neuropeptide Y- and somatostatin-containing neurons and on cholinergic varicosities in the rat hippocampal formation. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9737. [PMID: 25471895 PMCID: PMC4259091 DOI: 10.1007/s11357-014-9737-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Caloric restriction is able to delay age-related neurodegenerative diseases and cognitive impairment. In this study, we analyzed the effects of old-onset caloric restriction that started at 18 months of age, in the number of neuropeptide Y (NPY)- and somatostatin (SS)-containing neurons of the hippocampal formation. Knowing that these neuropeptidergic systems seem to be dependent of the cholinergic system, we also analyzed the number of cholinergic varicosities. Animals with 6 months of age (adult controls) and with 18 months of age were used. The animals aged 18 months were randomly assigned to controls or to caloric-restricted groups. Adult and old control rats were maintained in the ad libitum regimen during 6 months. Caloric-restricted rats were fed, during 6 months, with 60 % of the amount of food consumed by controls. We found that aging induced a reduction of the total number of NPY- and SS-positive neurons in the hippocampal formation accompanied by a decrease of the cholinergic varicosities. Conversely, the 24-month-old-onset caloric-restricted animals maintained the number of those peptidergic neurons and the density of the cholinergic varicosities similar to the 12-month control rats. These results suggest that the aging-associated reduction of these neuropeptide-expressing neurons is not due to neuronal loss and may be dependent of the cholinergic system. More importantly, caloric restriction has beneficial effects in the NPY- and SS-expressing neurons and in the cholinergic system, even when applied in old age.
Collapse
Affiliation(s)
- Armando Cardoso
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | | | | | |
Collapse
|
16
|
Bejarano E, Rodríguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids 2014; 47:2113-26. [DOI: 10.1007/s00726-014-1822-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
|
17
|
Ari C, Poff AM, Held HE, Landon CS, Goldhagen CR, Mavromates N, D’Agostino DP. Metabolic therapy with Deanna Protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model. PLoS One 2014; 9:e103526. [PMID: 25061944 PMCID: PMC4111621 DOI: 10.1371/journal.pone.0103526] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity. The Deanna Protocol (DP) is a metabolic therapy that has been reported to alleviate symptoms in patients with ALS. In this study we hypothesized that alternative fuels in the form of TCA cycle intermediates, specifically arginine-alpha-ketoglutarate (AAKG), the main ingredient of the DP, and the ketogenic diet (KD), would increase motor function and survival in a mouse model of ALS (SOD1-G93A). ALS mice were fed standard rodent diet (SD), KD, or either diets containing a metabolic therapy of the primary ingredients of the DP consisting of AAKG, gamma-aminobutyric acid, Coenzyme Q10, and medium chain triglyceride high in caprylic triglyceride. Assessment of ALS-like pathology was performed using a pre-defined criteria for neurological score, accelerated rotarod test, paw grip endurance test, and grip strength test. Blood glucose, blood beta-hydroxybutyrate, and body weight were also monitored. SD+DP-fed mice exhibited improved neurological score from age 116 to 136 days compared to control mice. KD-fed mice exhibited better motor performance on all motor function tests at 15 and 16 weeks of age compared to controls. SD+DP and KD+DP therapies significantly extended survival time of SOD1-G93A mice by 7.5% (p = 0.001) and 4.2% (p = 0.006), respectively. Sixty-three percent of mice in the KD+DP and 72.7% of the SD+DP group lived past 125 days, while only 9% of the control animals survived past that point. Targeting energy metabolism with metabolic therapy produces a therapeutic effect in ALS mice which may prolong survival and quality of life in ALS patients.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Angela M. Poff
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Heather E. Held
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Carol S. Landon
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Craig R. Goldhagen
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Nicholas Mavromates
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
18
|
Kapetanakis M, Liuba P, Odermarsky M, Lundgren J, Hallböök T. Effects of ketogenic diet on vascular function. Eur J Paediatr Neurol 2014; 18:489-94. [PMID: 24703903 DOI: 10.1016/j.ejpn.2014.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/09/2014] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ketogenic diet is a well-established treatment in children with difficult to treat epilepsy. Very little is known about the long-term effects on vascular atherogenic and biochemical processes of this high-fat and low carbohydrate and protein diet. METHODS We evaluated 26 children after one year and 13 children after two years of ketogenic diet. High resolution ultrasound-based assessment was used for carotid artery intima-media thickness (cIMT), carotid artery distensibility and carotid artery compliance. Blood lipids including high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol, (LDL-C), total cholesterol (TC), apolipoprotein A (apoA), apolipoprotein B (apoB) and high-sensitivity C-reactive protein (hsCRP) were analysed. RESULTS A gradual decrease in carotid distensibility and an increase in LDL-C, apoB and the TC:LDL-C and LDL-C:HDL-C ratios were seen at three and 12 months of KD-treatment. These differences were not significant at 24 months. cIMT, BMI and hsCRP did not show any significant changes. CONCLUSIONS The initial alterations in lipids, apoB and arterial function observed within the first year of KD-treatment appear to be reversible and not significant after 24 months of treatment.
Collapse
Affiliation(s)
- M Kapetanakis
- Department of Paediatric Neurology, Pediatric Child Neurology, Skåne University Hospital, 22185 Lund, Sweden.
| | - P Liuba
- Department of Paediatric Cardiology, Pediatric Heart Center, Skåne University Hospital, 22185 Lund, Sweden.
| | - M Odermarsky
- Department of Paediatric Cardiology, Pediatric Heart Center, Skåne University Hospital, 22185 Lund, Sweden.
| | - J Lundgren
- Department of Paediatric Neurology, Pediatric Child Neurology, Skåne University Hospital, 22185 Lund, Sweden.
| | - T Hallböök
- Department of Paediatric Neurology, Pediatric Child Neurology, Skåne University Hospital, 22185 Lund, Sweden.
| |
Collapse
|
19
|
Abstract
The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate "classic KD", as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD.
Collapse
Affiliation(s)
- Lindsey B Gano
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Denver, CO
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Denver, CO
| | - Jong M Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|