1
|
Yin H, Sun X, Yang K, Lan Y, Lu Z. Regulation of dentate gyrus pattern separation by hilus ectopic granule cells. Cogn Neurodyn 2025; 19:10. [PMID: 39801911 PMCID: PMC11718051 DOI: 10.1007/s11571-024-10204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 01/16/2025] Open
Abstract
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear. Therefore, in this paper, we will construct the DG neuronal circuit and focus on discussing effects of HEGCs on pattern separation numerically. The obtained results showed that HEGCs impaired pattern separation efficiency since the sparse firing of granule cells (GCs) was destroyed. We provided new insights into the underlining mechanisms of HEGCs impairing pattern separation through analyzing two excitatory circuits: GC-HEGC-GC and GC-Mossy cell (MC)-GC, both of which involve the participation of HEGCs within the DG. It is revealed that the recurrent excitatory circuit GC-HEGC-GC formed by HEGCs mossy fiber sprouting significantly enhanced GCs activity, consequently disrupted pattern separation. However, another excitatory circuit had negligible effects on pattern separation due to the direct and indirect influences of MCs on GCs, which in turn led to the GCs sparse firing. Thus, HEGCs impair DG pattern separation mainly through the GC-HEGC-GC circuit and therefore ablating HEGCs may be one of the effective ways to improve pattern separation in patients with epilepsy.
Collapse
Affiliation(s)
- Haibin Yin
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Kai Yang
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Zeying Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| |
Collapse
|
2
|
Zhu XH, Zhou YP, Zhang Q, Zhu MY, Song XW, Li J, Chen J, Shi Y, Sun KJ, Zhang YJ, Zhang J, Xia T, Huang BS, Meng F, Zhou QG. A novel anti-epileptogenesis strategy of temporal lobe epilepsy based on nitric oxide donor. EMBO Mol Med 2025; 17:85-111. [PMID: 39653809 PMCID: PMC11730642 DOI: 10.1038/s44321-024-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular mechanism underlying the role of hippocampal hilar interneuron degeneration in temporal lobe epilepsy (TLE) remains unclear. Especially, very few studies have focused on the role of neuronal nitric oxide synthase (nNOS, encoded by Nos1) containing hilar interneurons in TLE. In the present study, Nos1 conditional knockout mice were constructed, and we found that selective deletion of Nos1 in hilar interneurons rather than dentate granular cells (DGCs) triggered epileptogenesis. The level of nNOS was downregulated in patients and mice with TLE. Nos1 deletion led to excessive epilepsy-like excitatory input circuit formation and hyperexcitation of DGCs. Replenishment of hilar nNOS protein blocked epileptogenic development and memory impairment in pilocarpine-induced TLE mice. Moreover, chronic treatment with DETA/NONOate, a slowly released exogenous nitric oxide (NO) donor, prevented aberrant neural circuits of DGCs and the consequent epileptogenesis without acute antiseizure effects. Therefore, we concluded that NO donor therapy may be a novel anti-epileptogenesis strategy, different from existing antiseizure medications (ASMs), for curing TLE.
Collapse
Affiliation(s)
- Xian-Hui Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Hygiene Vocational Technology College, Changzhou, 213002, China
| | - Qiao Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Suqian First Hospital, Nanjing Medical University, Suqian, 223800, China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Centre of Medicinal Preparations, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xiao-Wei Song
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, 226001, China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jiang Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210032, China
| | - Yun Shi
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210032, China
| | - Kang-Jian Sun
- Department of Neurosurgery, Nanjing Jinling University, Nanjing, 210002, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, Human Brain Tissue Resource Center of Nanjing Medical University, National Health and Disease Human Brain Tissue Resource Center-sub-center of Nanjing Medical University, Nanjing, 211166, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Tian Xia
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Bao-Sheng Huang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
- Department of Pharmacy of First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Aussel A, Ranta R, Aron O, Colnat-Coulbois S, Maillard L, Buhry L. Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. J Comput Neurosci 2022; 50:519-535. [PMID: 35971033 DOI: 10.1007/s10827-022-00829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events and their interactions with the sleep-wake cycle are not yet fully understood. Indeed, medial temporal lobe epilepsy is associated with hippocampal abnormalities both at the neuronal (channelopathies, impaired potassium and chloride dynamics) and network level (neuronal and axonal loss, mossy fiber sprouting), with more frequent seizures during wakefulness compared with slow-wave sleep. In this article, starting from our previous computational modeling work of the hippocampal formation based on realistic topology and synaptic connectivity, we study the role of micro- and mesoscale pathological conditions of the epileptic hippocampus in the generation and maintenance of seizure-like theta and interictal oscillations. We show, through the simulations of hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and sclerosis account for seizure-like theta activity, (ii) but they have antagonist effects (seizure-like activity occurrence increases with sprouting but decreases with sclerosis), (iii) though impaired potassium and chloride dynamics have little influence on the generation of seizure-like activity, they do play a role on the generation of interictal patterns, and (iv) seizure-like activity and fast ripples are more likely to occur during wakefulness and interictal spikes during sleep.
Collapse
Affiliation(s)
- Amélie Aussel
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France. .,Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.
| | - Radu Ranta
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France
| | - Olivier Aron
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Sophie Colnat-Coulbois
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Louise Maillard
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France
| |
Collapse
|
4
|
Tejada J, Roque AC. Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy. Epilepsy Behav 2021; 121:106841. [PMID: 31864945 DOI: 10.1016/j.yebeh.2019.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy has been a central topic in computational neuroscience, and in silico models have shown to be excellent tools to integrate and evaluate findings from animal and clinical settings. Among the different languages and tools for computational modeling development, NEURON stands out as one of the most used and mature neurosimulators. However, despite the vast quantity of models developed with NEURON, a fragmentation problem is evident in the great majority of models related to the same type of cell or cell properties. This fragmentation causes a lack of interoperability between the models because of differences in parameters. The problem is not related to the neurosimulator, which is prepared to reuse elements of other models, but related to decisions made during the model development, when it is not uncommon to adjust parameter values according to the necessities of the study. Here, this problem is presented by studying computational models related to temporal lobe epilepsy and the definitions of hippocampal CA1 pyramidal cells. The current assessment aims to highlight the implications of fragmentation for reliable modeling and the need to adopt a framework that allows a better interoperability between different models. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil; Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
5
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
6
|
Mnemonic discrimination in patients with unilateral mesial temporal lobe epilepsy relates to similarity and number of events stored in memory. Neurobiol Learn Mem 2020; 169:107177. [DOI: 10.1016/j.nlm.2020.107177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
|
7
|
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife 2017; 6:e26517. [PMID: 29165247 PMCID: PMC5737656 DOI: 10.7554/elife.26517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Collapse
Affiliation(s)
- Marcel Beining
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
- Faculty of BiosciencesGoethe UniversityFrankfurtGermany
| | - Lucas Alberto Mongiat
- Instituto de Investigación en Biodiversidad y MedioambienteUniversidad Nacional del Comahue-CONICETSan Carlos de BarilocheArgentina
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
| |
Collapse
|
8
|
Chavlis S, Poirazi P. Pattern separation in the hippocampus through the eyes of computational modeling. Synapse 2017; 71. [PMID: 28316111 DOI: 10.1002/syn.21972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
Pattern separation is a mnemonic process that has been extensively studied over the years. It entails the ability -of primarily hippocampal circuits- to distinguish between highly similar inputs, via generating different neuronal activity (output) patterns. The dentate gyrus (DG) in particular has long been hypothesized to implement pattern separation by detecting and storing similar inputs as distinct representations. The ways in which these distinct representations can be generated have been explored in a number of theoretical and computational modeling studies. Here, we review two categories of pattern separation models: those that address the phenomenon in an abstract mathematical fashion and those that delve into the underlying biological mechanisms by taking into account the anatomy and/or physiology of hippocampal circuits. We summarize the strategies, findings and limitations of these modeling approaches in the light of new experimental findings and propose a unifying framework whereby different network, cellular and sub-cellular mechanisms converge to a common goal: controlling sparsity, the key determinant of pattern separation in the DG.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), N. Plastira 100, Heraklion, Crete, 70013, Greece.,Department of Biology, University of Crete, Vasilika Vouton, P.O. Box 2208, Heraklion, Crete, 71409, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), N. Plastira 100, Heraklion, Crete, 70013, Greece
| |
Collapse
|
9
|
Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 2017; 27:89-110. [PMID: 27784124 PMCID: PMC5217096 DOI: 10.1002/hipo.22675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
Abstract
The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
- Department of Biology, School of Sciences and EngineeringUniversity of CreteHeraklionCreteGreece
| | - Panagiotis C. Petrantonakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| |
Collapse
|
10
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5:e18566. [PMID: 28009257 DOI: 10.7554/elife.18566.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
- Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
11
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5. [PMID: 28009257 PMCID: PMC5313080 DOI: 10.7554/elife.18566] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI:http://dx.doi.org/10.7554/eLife.18566.001
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
12
|
Alexander A, Maroso M, Soltesz I. Organization and control of epileptic circuits in temporal lobe epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:127-54. [PMID: 27323941 PMCID: PMC5140277 DOI: 10.1016/bs.pbr.2016.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When studying the pathological mechanisms of epilepsy, there are a seemingly endless number of approaches from the ultrastructural level-receptor expression by EM-to the behavioral level-comorbid depression in behaving animals. Epilepsy is characterized as a disorder of recurrent seizures, which are defined as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain" (Fisher et al., 2005). Such abnormal activity typically does not occur in a single isolated neuron; rather, it results from pathological activity in large groups-or circuits-of neurons. Here we choose to focus on two aspects of aberrant circuits in temporal lobe epilepsy: their organization and potential mechanisms to control these pathological circuits. We also look at two scales: microcircuits, ie, the relationship between individual neurons or small groups of similar neurons, and macrocircuits, ie, the organization of large-scale brain regions. We begin by summarizing the large body of literature that describes the stereotypical anatomical changes in the temporal lobe-ie, the anatomical basis of alterations in microcircuitry. We then offer a brief introduction to graph theory and describe how this type of mathematical analysis, in combination with computational neuroscience techniques and using parameters obtained from experimental data, can be used to postulate how microcircuit alterations may lead to seizures. We then zoom out and look at the changes which are seen over large whole-brain networks in patients and animal models, and finally we look to the future.
Collapse
Affiliation(s)
- A Alexander
- Stanford University, Stanford, CA, United States
| | - M Maroso
- Stanford University, Stanford, CA, United States
| | - I Soltesz
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
13
|
Bui A, Kim HK, Maroso M, Soltesz I. Microcircuits in Epilepsy: Heterogeneity and Hub Cells in Network Synchronization. Cold Spring Harb Perspect Med 2015; 5:5/11/a022855. [PMID: 26525454 DOI: 10.1101/cshperspect.a022855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epilepsy is a complex disorder involving neurological alterations that lead to the pathological development of spontaneous, recurrent seizures. For decades, seizures were thought to be largely repetitive, and had been examined at the macrocircuit level using electrophysiological recordings. However, research mapping the dynamics of large neuronal populations has revealed that seizures are not simply recurrent bursts of hypersynchrony. Instead, it is becoming clear that seizures involve a complex interplay of different neurons and circuits. Herein, we will review studies examining microcircuit changes that may underlie network hyperexcitability, discussing observations from network theory, computational modeling, and optogenetics. We will delve into the idea of hub cells as pathological centers for seizure activity, and will explore optogenetics as a novel avenue to target and treat pathological circuits. Finally, we will conclude with a discussion on future directions in the field.
Collapse
Affiliation(s)
- Anh Bui
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Hannah K Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Mattia Maroso
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|