1
|
Falsaperla R, Ruggieri M, Polizzi A, Praticò AD. From abnormal fetal movements to neonatal seizures: A literature review. Epilepsy Res 2025; 214:107557. [PMID: 40253929 DOI: 10.1016/j.eplepsyres.2025.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Fetal seizures (FS) are underestimated and underdiagnosed events with a poor prognosis that could precede neonatal seizures. FS diagnosis could be clinical or by means of ultrasound. FS causes are heterogenic. After a PubMed, Google Scholar and SCOPUS research, aimed to find publications concerning FS, we selected 23 studies, mainly case reports with literature reviews, for a total of 29 patients. We evaluated the method of diagnosis, gestational age at diagnosis of FS, FS etiology, time of etiological diagnosis, fetal/neonatal outcome and possible therapeutic options. Fetal seizures were mainly felt by the mother (20/29 cases, 69 %) or diagnosed by fetal ultrasound (17/29 cases, 58.6 %). When seizures were felt by the mother, the gestational age of the fetal seizures was comprised from 20 to 40 week (average 31.3 weeks); the range of weeks when fetal seizures were detected by ultrasound ranged from 13 to 41 weeks (average 29.3 weeks). Among the etiologies, the most frequent were Pyridoxine dependent epilepsy and arthrogryposis multiplex congenita (4/29 each, 13.8 %), followed by fatal infantile olive-ponto-cerebellar hypoplasia 3/29, 10.3 %). The outcome of the most of patients was severe, with neonatal death occurring in 12/29 (41.4 %), therapeutic abortion in 5/28 (17.2 %); death occurred later in infancy in 3/29 (10.3 %), while 8/29 (31 %) presented psychomotor delay. FS may be a prenatal sign of fetal neurological impairment. Their knowledge is crucial because an early diagnosis allow an appropriate management of pregnancy, and an early anti-convulsant treatment after birth. However, in the reported cases, the prognosis was frequently poor.
Collapse
Affiliation(s)
| | - Martino Ruggieri
- Unit of Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Agata Polizzi
- Unit of Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Andrea D Praticò
- Unit of Pediatrics, Department of Medicine and Surgery, University Kore of Enna, Enna, Italy.
| |
Collapse
|
2
|
Lo Bianco M, Fichera V, Zanghì A, Praticò AD, Falsaperla R, Vecchio M, Marino F, Palmucci S, Belfiore G, Foti P, Polizzi A. Polymicrogyria, Cobblestone Malformations, and Tubulin Mutation (Overmigration beyond Pial Limiting Membrane): Diagnosis, Treatment, and Rehabilitation Approach. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:347-358. [DOI: 10.1055/s-0044-1786999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractPolymicrogyria, cobblestone malformations, and tubulinopathies constitute a group of neuronal migration abnormalities beyond the pial limiting membrane. Their etiopathogenesis remains unclear, with proposed environmental and genetic factors, including copy number variations and single-gene disorders, recently categorized.Polymicrogyria features numerous small circumvolutions separated by large, shallow grooves, often affecting the perisylvian cortex with various presentations. Clinical manifestations vary depending on lesion degree, extent, and location, commonly including epilepsy, encephalopathies, spastic tetraparesis, mental retardation, and cortical function deficits.Cobblestone malformations exhibit a Roman-like pavement cortex, affecting both hemispheres symmetrically due to disruption of the glia limitans, frequently linked to glycosyltransferase gene mutations. Classified separately from lissencephaly type II, they are associated with congenital muscular dystrophy syndromes such as Fukuyama congenital muscular dystrophy, Walker–Warburg syndrome, and muscle–eye–brain disease.Tubulinopathies encompass diverse cerebral malformations resulting from α-tubulin isotype gene variants, exhibiting a wide clinical spectrum including motor/cognitive impairment, facial diplegia, strabismus, and epilepsy.Diagnosis relies on magnetic resonance imaging (MRI) with age-specific protocols, highlighting the gray–white junction as a polymicrogyria marker, though neonatal diagnosis may be challenging due to technical and brain maturity issues.To date, no effective treatments are available and management include physiotherapy, speech and language therapy, and vision training program for oculomotor disabilities; antiepileptic drugs are commonly necessary, and most severe forms usually require specific nutritional support.
Collapse
Affiliation(s)
- Manuela Lo Bianco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Fichera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Costanza G, Fichera V, Zanghì A, Polizzi A, Falsaperla R, Vecchio M, Palmucci S, Belfiore G, David E, Praticò AD. Periventricular Heterotopias: Neuroependymal Abnormalities. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:321-331. [DOI: 10.1055/s-0044-1786772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractPeriventricular nodular heterotopia (PVNH) is a group of malformation of cortical development characterized by ectopic neuronal nodules, located along the lateral ventricles. Magnetic resonance imaging can identify gray matter nodules located in wall of ventricles, which appear as island having the same signal of gray matter within white matter. The symptomatological spectrum is various, but the most common clinical presentation is with epileptic seizures, often a drug-resistant type. Features as severity, age of presentation, and associated malformations depend on the underlying etiology. From a genetic point of view, FLNA1 and ERMARD are acknowledged to be the main target of mutations that cause PVNH, although recently many other genes have shown a clear pathogenetic involvement. PVNH may manifest as a solitary discovery in brain imaging or present in conjunction with various other brain or systemic abnormalities. The diagnosis of PVNH is mainly carried out with electroneurophysiological and neuroimaging examinations, while the etiological diagnosis is made with genetic investigations. Treatment consists of use of anticonvulsant drugs, but no significant difference exists among them. In addition, frequently, PVNH-related seizures show poor response to drug, leading to requirement for surgical treatment, performed taking advantages from stereotactic ablative techniques that have a meaningful impact on surgical outcome.
Collapse
Affiliation(s)
- Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Palmucci
- IPTRA Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Unit of Radiology 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Emanuele David
- Unit of Radiology 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
4
|
Sciuto L, Fichera V, Zanghì A, Vecchio M, Falsaperla R, Galioto S, Palmucci S, Belfiore G, Di Napoli C, Polizzi A, Praticò AD. Lissencephaly, Pachygyrias, Band Heterotopias, RELN Pathway, and ARX Mutations (Incomplete Neuron Migration). JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:332-340. [DOI: 10.1055/s-0044-1786790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractLissencephaly (LIS) is a group of malformations of cortical development consisting of a defective neuronal migration that results in lack of formation of the normal cerebral convolutions. It includes a spectrum of defect with varying degrees of severity, from agyria and pachygyria to subcortical band heterotopia. The etiopathogenesis of LIS includes both genetic and environmental factors. Although nongenetic forms of LIS have been reported, genetic causes are certainly more frequent and to date 19 LIS-SBH-associated genes have been identified. Most common mutations involve LIS1, DCX, ARX, and RELN genes. Clinically affected individuals present with early hypotonia, which can progress to limb spasticity, seizures, and psychomotor retardation. Convulsive episodes usually appear early (first months of life) and include infantile spasms, akinetic or myoclonic seizures, up to the development of complex epileptic syndromes, including atypical absences, myoclonia, and partial or tonic–clonic seizures. Several clinical entities are associated with classical LIS, including the following: isolated lissencephaly sequence (ILS); Miller–Dieker syndrome (MDS; OMIM 247200); subcortical band heterotopia (OMIM 300067); X-linked LIS with abnormal genitalia; and LIS with cerebellar hypoplasia. Diagnosis primarily depends on genetic and neuroimaging. Magnetic resonance imaging (MRI) is the gold standard, and it detects the presence of thick cortical cortex, its location, and the layers' architecture. Based on neuroimaging, it is possible to distinguish six subtypes of gyral malformations. Clinical and therapeutic management of these patients is challenging, considering the necessity to face drug-resistant epilepsy, intellectual disability, spasticity, and dysphagia and feeding problems. At the present moment, no gene-specific treatment for LIS is available.
Collapse
Affiliation(s)
- Laura Sciuto
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Sebastiano Galioto
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Claudia Di Napoli
- Chair of Genetics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
5
|
Zovi A, Cifani C, Confalonieri C, Lasala R, Sabbatucci M, Vitiello A, Vittori S. Dietary management and access to treatment for patients with glucose deficiency syndrome type 1: an overview review with focus on the European regulatory framework. Eur J Clin Nutr 2024:10.1038/s41430-024-01490-0. [PMID: 39127841 DOI: 10.1038/s41430-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Glut-1 deficiency Syndrome (GLUT-1 DS) is a rare disease caused by a mutation in the SLC2A1 gene that codes for the glucose transporter protein GLUT-1 DS. Currently, there is no indicated drug therapy for this condition and ketogenic diet (KD) is the most effective remedy to treat it. OBJECTIVE The objective of this study was to review the published literature that evaluated the effectiveness of KD in the dietary management of GLUT-1 DS syndrome, describing the state-of-the-art the treatment pathway for patients with GLUT-1 DS syndrome in light of the current European regulatory framework within the National Health Services. METHODS The literature search was carried out on September 10, 2023, and all studies conducted in humans diagnosed with GLUT-1 deficiency syndrome and treated with KD were included. RESULTS A total of 156 scientific papers have been extracted. Applying the exclusion criteria, 38 articles have been considered eligible. In 29 out of 38 studies, the main outcome for determining the efficacy of KD was the measurement of the number of epileptic seizures, demonstrating that patients treated with KD experienced improvements with a clear reduction in the number of epileptic attacks. Currently, in the European Union, only one country provides full reimbursement by the national health system for KD. DISCUSSION Although they are crucial for the treatment of GLUT-1 DS, according with current food regulations, KD are not evaluated on the basis of an unambiguous efficacy result, but only on the basis of safety. As a result, it is desirable to carry out clinical studies in the coming years based on the determination of efficacy in target populations, also in view of the marketing of these products on the European market.
Collapse
Affiliation(s)
- Andrea Zovi
- Department of Human Health, Animal Health and Ecosystem (One Health) and International Relations, Ministry of Health, Rome, Italy.
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Ruggero Lasala
- Hospital Pharmacy of Corato, Local Health Authority of Bari, Corato, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Antonio Vitiello
- Department of Prevention, Research and Health Emergencies, Ministry of Health, Rome, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Wang YY, Zhou YQ, Luo LJ, Wang CJ, Shen N, Li H, Wang JW. Ketogenic diet therapy in children with epilepsy caused by SLC2A1 mutations: a single-center single-arm retrospective study. World J Pediatr 2024; 20:517-524. [PMID: 36303089 DOI: 10.1007/s12519-022-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND This retrospective study assessed the efficacy and safety of ketogenic diet therapies in children with epilepsy caused by SLC2A1 genetic mutations and glucose transporter type 1 deficiency syndrome. METHODS Pediatric patients with epilepsy symptoms admitted to our medical center between January 2017 and October 2021 were included if they presented with an SLC2A1 genetic mutation on whole-exome sequencing. We analyzed the patients' convulsions and treatment with antiepileptic drugs. The patients were followed up at different time periods after ketogenic diet therapies. RESULTS Six patients with SLC2A1 mutations were included in this study. The patients had seizures of different types and frequencies, and they took antiepileptic drugs to relieve their symptoms. They were then treated with a ketogenic diet for at least four months. We analyzed epilepsy control rates at 1, 2, 3, 6, and 12 months after ketogenic diet treatment. All patients were seizure-free within a month of receiving the diet therapy. All patients were followed up for six months, three were followed up for 12 months after the treatment, and there was no recurrence of epilepsy during this period. After antiepileptic drug withdrawal, none of the patients experienced seizure relapse when receiving ketogenic diet treatment alone. No severe adverse events occurred during the therapy. CONCLUSIONS Ketogenic diet therapy is very effective and safe for the treatment of epilepsy caused by SLC2A1 mutations. Therefore, patients with glucose transporter type 1 deficiency syndrome caused by SLC2A1 mutations should begin ketogenic diet treatment as soon as possible.
Collapse
Affiliation(s)
- Ying-Yan Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qing Zhou
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Juan Luo
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cui-Jin Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Clinical Research Ward, Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ji-Wen Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Murugan R, Ramya Ranjan Nayak SP, Haridevamuthu B, Priya D, Chitra V, Almutairi BO, Arokiyaraj S, Saravanan M, Kathiravan MK, Arockiaraj J. Neuroprotective potential of pyrazole benzenesulfonamide derivative T1 in targeted intervention against PTZ-induced epilepsy-like condition in in vivo zebrafish model. Int Immunopharmacol 2024; 131:111859. [PMID: 38492342 DOI: 10.1016/j.intimp.2024.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 μM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2.
Collapse
Affiliation(s)
- Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600077, India
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Pizzo F, Fichera V, Zanghì A, Praticò AD, Vecchio M, Falsaperla R, Lavalle S, Marino F, Palmucci S, Belfiore G, Polizzi A. Focal Cortical Dysplasia: Diagnosis, Classification, and Treatment Options. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:166-171. [DOI: 10.1055/s-0044-1786781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractFocal cortical dysplasias (FCDs) include a spectrum of anomalies of cortical development that consist in one or more areas with altered lamination and in some cases, neurons of abnormal morphology. Clinically, these structural anomalies led to arise of epilepsy, which is more often a focal, drug-resistant type with onset in pediatric or adolescent age. Occasionally, other symptoms have been reported in patients with FCDs, such as headache, movement disorders, and cognitive impairment. According to International League against Epilepsy scheme of 2011, three main subtypes of FCD can be distinguished, based of anatomopathological feature, radiological signs, and clinical expression. Magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography, and neurophysiology are the cornerstones of diagnosis, although their negativity cannot exclude FCD in symptomatic patients, especially in FCD type I which often is elusive. In MRI, the main finding is the irregularity of the cortical–subcortical signal, specifically reduction of cortical thickness and absence of clear demarcation between gray and white matters, which is strongly diagnostic for FCD. Epilepsy related to FCD is difficult to manage and until now there is not a clear direction for treatment's rules. FCD shows poor response to antiepileptic drugs (AEDs), and there is no evidence of some AED that has proved more efficacy than others in patients with FCDs. Considering genetical and pathophysiological recent acquisitions, mammalian target of rapamycin inhibitors may play a fundamental role in future treatment of FCDs, but nowadays, surgery still remains the main weapon, with 50% of patients who undergo neurosurgery.
Collapse
Affiliation(s)
- Francesco Pizzo
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Salvatore Lavalle
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- IPTRA Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Unit of Radiology 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Díez-Arroyo C, García-García M, Soto-Méndez MJ, Molina-Montes E, Gil-Campos M, Gil Á, Gutiérrez-Jimeno M, Hernández-Ruiz Á. Effect of the ketogenic diet as a treatment for refractory epilepsy in children and adolescents: a systematic review of reviews. Nutr Rev 2024; 82:487-502. [PMID: 37400987 DOI: 10.1093/nutrit/nuad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
CONTEXT Epilepsy is one of the most prevalent neurological disorders in childhood. Antiepileptic drugs are the preferred treatment. However, 30% of children continue suffering seizures. A ketogenic diet (KD) is one of the emerging alternative treatments. OBJECTIVE This review aims to analyze the current evidence regarding the use of a KD for the treatment of refractory epilepsy (RE) in childhood. DATA SOURCES A systematic review of reviews was performed, based on MEDLINE (PubMed) as at January 2021. DATA EXTRACTION The data extracted included the first author's last name; the year of publication; the country; the study design; the population; the diagnosis, concept, and description of KD types; and major outcome. RESULTS Twenty-one reviews were included, 8 with systematic methodology (2 of them included a meta-analysis) and 13 with unsystematic methodology. The main difference between the 2 types of reviews is the reproducibility of their methodology. Therefore, the results of each type of review were analyzed separately. Each type of review described 4 categories of KD: classic KD, modified Atkins diet (MAD), use of medium-chain triglycerides (MCTs), and low glycemic index treatment (LGIT). In terms of effectiveness, the considered systematic reviews reported reductions in the frequency of seizures greater than 50% in about half of the patients. Reviews without systematic methodology reported that 30%-60% of the children showed a 50% or greater reduction in seizures. The most frequently described adverse effects in the 8 systematic reviews were: vomiting (6/8), constipation (6/8), and diarrhea (6/8); and in the unsystematic reviews: vomiting and nausea (10/13), constipation (10/13), and acidosis (9/13). CONCLUSION KD can be an effective treatment for RE, with a more than 50% reduction in the frequency of seizures and cognitive improvement being achieved in half of the pediatric patients. The effectiveness of the various types of KD is comparable, and the KD can be adapted to the needs of the patient. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021244142.
Collapse
Affiliation(s)
- Cristina Díez-Arroyo
- Nursing Department, Faculty of Nursing, University of Valladolid, Valladolid, Spain
- Unidad de Hospitalización de Medicina Interna, Hospital Tres Mares, Reinosa, Cantabria, Spain
| | - Mónica García-García
- Nursing Department, Faculty of Nursing, University of Valladolid, Valladolid, Spain
- Servicio de Emergencias Sanitarias de SACYL, Valladolid, Spain
| | | | - Esther Molina-Montes
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBERESP (Epidemiology and Publich Health), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Gil-Campos
- CIBEROBN, (Physiopathology of Obesity and Nutrition), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Ángel Gil
- Iberoamerican Nutrition Foundation (FINUT), Armilla, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Biochemistry and Molecular Biology, II University of Granada, University of Granada, Granada, Spain
| | - Miriam Gutiérrez-Jimeno
- Departamento de Pediatría del Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Ángela Hernández-Ruiz
- Nursing Department, Faculty of Nursing, University of Valladolid, Valladolid, Spain
- Iberoamerican Nutrition Foundation (FINUT), Armilla, Granada, Spain
| |
Collapse
|
10
|
Tonetto S, Weikop P, Thomsen M. Nutritional ketosis as treatment for alcohol withdrawal symptoms in female C57BL/6J mice. Sci Rep 2024; 14:5092. [PMID: 38429369 PMCID: PMC10907582 DOI: 10.1038/s41598-024-55310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Hovedvejen 17, 1., 2000, Frederiksberg, Denmark.
| |
Collapse
|
11
|
Kumar S, Malviya R, Sundram S. Nutritional neurology: Unraveling cellular mechanisms of natural supplements in brain health. HUMAN NUTRITION & METABOLISM 2024; 35:200232. [DOI: 10.1016/j.hnm.2023.200232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zhao X, He Z, Li Y, Yang X, Li B. Atypical absence seizures and gene variants: A gene-based review of etiology, electro-clinical features, and associated epilepsy syndrome. Epilepsy Behav 2024; 151:109636. [PMID: 38232560 DOI: 10.1016/j.yebeh.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Atypical absence seizures are generalized non-convulsive seizures that often occur in children with cognitive impairment. They are common in refractory epilepsy and have been recognized as one of the hallmarks of developmental epileptic encephalopathies. Notably, pathogenic variants associated with AAS, such as GABRG2, GABRG3, SLC6A1, CACNB4, SCN8A, and SYNGAP1, are also linked to developmental epileptic encephalopathies. Atypical absences differ from typical absences in that they are frequently drug-resistant and the prognosis is dependent on the etiology or related epileptic syndromes. To improve clinicians' understanding of atypical absences and provide novel perspectives for clinical treatment, we have reviewed the electro-clinical characteristics, etiologies, treatment, and prognosis of atypical absences, with a focus on the etiology of advancements in gene variants, shedding light on potential avenues for improved clinical management.
Collapse
Affiliation(s)
| | - Zimeng He
- Shandong University, Jinan, Shandong, China
| | - Yumei Li
- Shandong University, Jinan, Shandong, China
| | - Xiaofan Yang
- Shandong University, Jinan, Shandong, China; Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Baomin Li
- Shandong University, Jinan, Shandong, China; Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Falsaperla R, Sortino V, Collotta AD, Privitera GF, Palmeri A, Mauceri L, Ruggieri M. Ketogenic Diet in Neonates with Drug-Resistant Epilepsy: Efficacy and Side Effects-A Single Center's Initial Experience. Neuropediatrics 2023; 54:315-321. [PMID: 37321250 DOI: 10.1055/s-0043-1769505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND For patients with pharmacoresistant epilepsy, a therapeutic option is ketogenic diet. Currently, data on young infants are scarce, particularly during hospitalization in the neonatal intensive care unit (NICU). OBJECTIVE The aim of the present study was to evaluate the short-term (3-month) efficacy and side effects of ketogenic diet in infants with "drugs-resistant" epilepsy treated during NICU stay. METHODS This retrospective study included infants aged under 2 months started on ketogenic diet during NICU hospitalization to treat drug-resistant epilepsy from April 2018 to November 2022. RESULTS Thirteen term-born infants were included, three (23.1%) of whom were excluded because they did not respond to the ketogenic diet. Finally, we included 10 infants. Six (60%) patients took three antiepileptics before starting the ketogenic diet, while four (40%) took more drugs. Diet had a good response in four (40%) patients. In four patients, the ketogenic diet was suspended because of the onset of serious side effects. The emetic levels of sodium, potassium, and chlorine, pH, and onset of diarrhea, constipation, and gastroesophageal reflux showed significant differences. Ketonuria was higher and blood pH lower in the group that took more than three drugs than in the group taking fewer than three drugs. CONCLUSION The ketogenic diet is efficacious and safe in infants, but the early and aggressive management of adverse reactions is important to improve the safety and effectiveness of the ketogenic treatment.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco," San Marco Hospital, University of Catania, Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ausilia Desiree Collotta
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grete Francesca Privitera
- Unit of Math and Comp Science, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Palmeri
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Mauceri
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco," San Marco Hospital, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics and Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Policlinico Hospital, Catania, Italy
| |
Collapse
|
14
|
Eaton MC, Probst YC, Smith MA. Characterizing the Discourse of Popular Diets to Describe Information Dispersal and Identify Leading Voices, Interaction, and Themes of Mental Health: Social Network Analysis. JMIR INFODEMIOLOGY 2023; 3:e38245. [PMID: 37159259 DOI: 10.2196/38245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Social media has transformed the way health messages are communicated. This has created new challenges and ethical considerations while providing a platform to share nutrition information for communities to connect and for information to spread. However, research exploring the web-based diet communities of popular diets is limited. OBJECTIVE This study aims to characterize the web-based discourse of popular diets, describe information dissemination, identify influential voices, and explore interactions between community networks and themes of mental health. METHODS This exploratory study used Twitter social media posts for an online social network analysis. Popular diet keywords were systematically developed, and data were collected and analyzed using the NodeXL metrics tool (Social Media Research Foundation) to determine the key network metrics (vertices, edges, cluster algorithms, graph visualization, centrality measures, text analysis, and time-series analytics). RESULTS The vegan and ketogenic diets had the largest networks, whereas the zone diet had the smallest network. In total, 31.2% (54/173) of the top users endorsed the corresponding diet, and 11% (19/173) claimed a health or science education, which included 1.2% (2/173) of dietitians. Complete fragmentation and hub and spoke messaging were the dominant network structures. In total, 69% (11/16) of the networks interacted, where the ketogenic diet was mentioned most, with depression and anxiety and eating disorder words most prominent in the "zone diet" network and the least prominent in the "soy-free," "vegan," "dairy-free," and "gluten-free" diet networks. CONCLUSIONS Social media activity reflects diet trends and provides a platform for nutrition information to spread through resharing. A longitudinal exploration of popular diet networks is needed to further understand the impact social media can have on dietary choices. Social media training is vital, and nutrition professionals must work together as a community to actively reshare evidence-based posts on the web.
Collapse
Affiliation(s)
- Melissa C Eaton
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Yasmine C Probst
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Marc A Smith
- Social Media Research Foundation, Redwood City, CA, United States
| |
Collapse
|
15
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic diet in children and adolescents: The effects on growth and nutritional status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| |
Collapse
|
16
|
Phitsanuwong C, Kim JA, Schimpf S, Nordli DR. Experience with the ketogenic diet in premature neonates. Epilepsia Open 2023; 8:200-204. [PMID: 36398475 PMCID: PMC9977748 DOI: 10.1002/epi4.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022] Open
Abstract
The ketogenic diet is a time-tested, potent, nonpharmacological treatment of epilepsy. However, the use of the ketogenic diet in premature neonates with epilepsy has not been previously reported. We share our experience with the use of ketogenic diet therapy in two premature neonates. Two identical twin premature neonates with SCN2A-related developmental and epileptic encephalopathy, whose seizures were refractory to multiple anti-seizure medications, were started on the classic ketogenic diet at the conceptual age of 35 weeks. Ketosis was achieved and maintained (range 2-5 mmol/L of serum beta-hydroxybutyrate level). Seizure frequency was significantly reduced (>90% reduction in both patients), and some anti-seizure medications were able to be discontinued. Initial transient weight loss and one episode of asymptomatic hypoglycemia were observed and corrected. The ketogenic diet was found to be a safe, well-tolerated, and effective treatment for seizures in two premature neonates. The side effects are tolerable and correctable. The ketogenic diet, therefore, is a treatment option for refractory seizures in this age group, when administered under expert guidance.
Collapse
Affiliation(s)
- Chalongchai Phitsanuwong
- Section of Child Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
| | - Jeong-A Kim
- Section of Child Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
| | - Stephanie Schimpf
- Section of Child Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
| | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Chen WN, Shaikh MF. Second-hit pentylenetetrazole-induced seizure model in zebrafish. HANDBOOK OF ANIMAL MODELS IN NEUROLOGICAL DISORDERS 2023:217-226. [DOI: 10.1016/b978-0-323-89833-1.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
19
|
Stegall C, Evans MC, Hollinger LE, Walz AA. Keto-Bezoar: Adverse Event Related to Initiation of Ketogenic Diet in an Infant. JPGN REPORTS 2022; 3:e179. [PMID: 37168910 PMCID: PMC10158299 DOI: 10.1097/pg9.0000000000000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 05/13/2023]
Abstract
The ketogenic diet is frequently used as part of the treatment regimen for pediatric patients with refractory epilepsy. This diet is generally well tolerated, with constipation being the most described side effect. This case highlights a previously undocumented severe complication of a "keto-bezoar" formation related to the initiation of the ketogenic diet in a young infant.
Collapse
Affiliation(s)
- Cassandra Stegall
- From the Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Melissa C. Evans
- Division of Critical Care, Department of Pediatrics, Medical University of South Carolina, Charleston, SC; and
| | - Laura E. Hollinger
- Division of Pediatric Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Alice A. Walz
- Division of Critical Care, Department of Pediatrics, Medical University of South Carolina, Charleston, SC; and
| |
Collapse
|
20
|
Ketogenic dietary therapies for epilepsy: Experience in 160 patients over 18 years. An Pediatr (Barc) 2022; 96:511-522. [DOI: 10.1016/j.anpede.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
|
21
|
Chentouf A. Ketogenic diet: a therapeutic alternative in pediatric refractory epilepsies. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2022; 6:39-45. [DOI: 10.51745/najfnr.6.13.39-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/13/2022] [Indexed: 01/05/2025]
Abstract
Several studies have demonstrated the effectiveness of ketogenic diet (KD) on refractory epilepsies, especially in children. In this category of patients, a strong collaboration between the healthcare providers and the full engagement of parents is required. The regimen is significantly effective for different types of epilepsy that are resistant to medical treatment. It can also be used as a first-line treatment, given its well tolerance. Treatment has been rolled out for children but research into its use in adults is promising. There is no international or national protocol, the implementation of this diet follows a rigor being specific to every ketogenic center. The understanding of the underlying mechanisms is not well elucidated, it would make it possible to optimize the clinical use of the ketogenic diet, but also to develop novel antiepileptic treatments. This article aims to review the different variants of KD and their prescription terms in children with intractable epilepsy.
Keywords: drug-resistant epilepsy, ketogenic diet, children, Modified Atkins Diet.
Collapse
Affiliation(s)
- Amina Chentouf
- Faculty of Medicine, Department of Neurology- Oran University-Hospital. Pediatric Accidentology Research Laboratory ACCIPED, Oran1 Ahmed BENBELLA University, 31000 Oran, Algeria
| |
Collapse
|
22
|
Pizzo F, Collotta AD, Di Nora A, Costanza G, Ruggieri M, Falsaperla R. Ketogenic diet in pediatric seizures: a randomized controlled trial review and Meta-Analysis. Expert Rev Neurother 2022; 22:169-177. [PMID: 35144527 DOI: 10.1080/14737175.2022.2030220] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The ketogenic diet is a non-pharmacologic treatment option for children with drug-resistant epilepsy. This systematic review and meta-analysis aimed to assess the efficacy of the ketogenic diet on seizures frequency in children. METHODS We reviewed the literature using Cochrane, EMBASE, MEDLINE, and highly qualified journals. Randomized controlled trials were chosen to investigate the seizures-free regime or at least 50% seizures reduction after three months from the starting of the ketogenic diet or earlier. We have selected articles from January 2011 to January 2020. RESULTS Eight articles were eligible. The data show a significant reduction in seizure frequency in the dietary treatment pediatric population. The rate of a seizures-free regime or at least 50% seizures reduction was 48.31% of patients in the intervention group. Our overall meta-analysis underlined the significant efficacy. The KD group is 5.6 times more likely than the control group to have a 50% reduction of seizures after three months of the diet or earlier. QUADAS and AMSTAR assessments showed a low risk of bias and adequate accuracy. CONCLUSION The results show that the KD reduces seizure frequency in children with drug-refractory epilepsy. KD is an effective treatment option for children and adolescents with refractory epilepsy.
Collapse
Affiliation(s)
- Francesco Pizzo
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ausilia Desiree Collotta
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico", PO "G. Rodolico", Via S. Sofia, 87, 95128, Catania, Italy
| | - Raffaele Falsaperla
- General Pediatrics and Pediatric Acute and Emergency Unit,Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico-San Marco, San Marco Hospital, University of Catania, Catania, Italy
| |
Collapse
|
23
|
Analysis of Factors That May Affect the Effectiveness of Ketogenic Diet Treatment in Pediatric and Adolescent Patients. J Clin Med 2022; 11:jcm11030606. [PMID: 35160058 PMCID: PMC8836595 DOI: 10.3390/jcm11030606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose. The aim was to find predictors for ketogenic diet (KD) treatment effectiveness. In addition, recognized factors influencing the efficacy of KD were analyzed based on the ILAE (International League Against Epilepsy) proposed Classification and Definition of the Epilepsy Syndromes. Methods. A sample of 42 patients treated with KD were analyzed. The effectiveness of KD was assessed according to the type of diet, the type of seizures, and the known (KE) or undetermined genetic etiology (UNKE). The group of KE consisted of patients with CACNA1S, CHD2, DEPDC5, KIF1A, PIGN, SCN1A, SCN8A, SLC2A1, SYNGAP1 pathogenic variants. The usefulness of the new Classification and Definition of Epilepsy Syndromes proposed by the ILAE was evaluated. Results. KD therapy was effective in 69.05% of cases. No significant correlation was observed with the type of diet used. KE was related to greater effectiveness after KD treatment. KD treatment was most effective in the reduction of non-focal seizures. Considering the ILAE proposed classification, it was found that KD efficacy was higher in patients with simultaneous focal and tonic-clonic seizures compared to patients with only tonic-clonic or focal seizures. Conclusion. The occurrence of focal seizures does not determine the potential ineffectiveness of treatment with a ketogenic diet. A significant efficacy of ketogenic diet treatment was observed in the group of patients with focal and generalized seizures, as well as epileptic and developmental encephalopathies. The etiology of epileptic seizures plays a more significant role. The new classification will make it easier to select patients who can benefit from this form of treatment.
Collapse
|
24
|
Falsaperla R, Sciuto L, La Spina L, Sciuto S, Praticò AD, Ruggieri M. Neonatal seizures as onset of Inborn Errors of Metabolism (IEMs): from diagnosis to treatment. A systematic review. Metab Brain Dis 2021; 36:2195-2203. [PMID: 34403026 PMCID: PMC8580891 DOI: 10.1007/s11011-021-00798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Neonatal seizures (NS) occur in the first 28 days of life; they represent an important emergency that requires a rapid diagnostic work-up to start a prompt therapy. The most common causes of NS include: intraventricular haemorrhage, hypoxic-ischemic encephalopathy, hypoglycemia, electrolyte imbalance, neonatal stroke or central nervous system infection. Nevertheless, an Inborn Error of Metabolism (IEM) should be suspected in case of NS especially if these are resistant to common antiseizure drugs (ASDs) and with metabolic decompensation. Nowadays, Expanded Newborn Screening (ENS) has changed the natural history of some IEMs allowing a rapid diagnosis and a prompt onset of specific therapy; nevertheless, not all IEMs are detected by such screening (e.g. Molybdenum-Cofactor Deficiency, Hypophosphatasia, GLUT1-Deficiency Syndrome) and for this reason neonatologists have to screen for these diseases in the diagnostic work-up of NS. For IEMs, there are not specific semiology of seizures and EEG patterns. Herein, we report a systematic review on those IEMs that lead to NS and epilepsy in the neonatal period, studying only those IEMs not included in the ENS with tandem mass, suggesting clinical, biochemical features, and diagnostic work-up. Remarkably, we have observed a worse neurological outcome in infants undergoing only a treatment with common AED for their seizures, in comparison to those primarily treated with specific anti-convulsant treatment for the underlying metabolic disease (e.g.Ketogenic Diet, B6 vitamin). For this reason, we underline the importance of an early diagnosis in order to promptly intervene with a targeted treatment without waiting for drug resistance to arise.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital Policlinico "Rodolico-San Marco", Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital Policlinico "Rodolico-San Marco", Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| | - Luisa La Spina
- Regional Reference Center for the Treatment and Control of Congenital Metabolic Diseases of Childhood, University Hospital Policlinico "Rodolico-San Marco", Catania, Italy
| | - Sarah Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Andrea D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Efficacy and safety of ketogenic dietary theraphies in infancy. A single-center experience in 42 infants less than two years of age. Seizure 2021; 92:106-111. [PMID: 34500220 DOI: 10.1016/j.seizure.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Ketogenic dietary therapies (KDT) are high-fat and low-carbohydrate diets that may achieve seizure control and improve cognitive state. We describe our KDT experience in infants (children less than two years of age). RESEARCH METHODS & PROCEDURES We conducted a retrospective, descriptive and observational study of 42 infants treated with KDT between 2000-2018. RESULTS The types of KDT started were: classic ketogenic diet ratio 3:1 (40), ratio 4:1 (1) and modified ketogenic diet with medium-chain triglycerides (1). Four patients switched to a modified Atkins diet. During follow-up, 79%, 57%, 38% and 17% of infants remained on KDT at 3, 6, 12 and 24 months, respectively. Seizure reduction ≥50% compared to baseline was achieved in 50%, 45%, 38% and 17% at 3, 6, 12 and 24 months, respectively. Seizure control was excellent (reduction >90%) in 33%, 31%, 26% and 12%, and seizure-free infants were 9, 9, 10 and 4, at different follow-up intervals, respectively. Sixty-three percent of infants with West syndrome were responders to KDT. Mean length of KDT was 390 days (16 days-4.9 years). Ineffectiveness was the reason for withdrawal in 50% of patients. Early adverse effects (during first month) occurred in 40% of infants. The most frequent early side effects were asymptomatic hypoglycemia and gastrointestinal disturbances. Late-onset side effects occurred in 55-14% of infants during therapy, and most frequent were hypercalciuria and dyslipidaemia. CONCLUSION KDT are useful and effective treatments in infancy. Side effects are frequent but mild and easy to manage.
Collapse
|
26
|
Calcaterra V, Verduci E, Pascuzzi MC, Magenes VC, Fiore G, Di Profio E, Tenuta E, Bosetti A, Todisco CF, D’Auria E, Zuccotti G. Metabolic Derangement in Pediatric Patient with Obesity: The Role of Ketogenic Diet as Therapeutic Tool. Nutrients 2021; 13:2805. [PMID: 34444964 PMCID: PMC8400548 DOI: 10.3390/nu13082805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is defined as a condition characterized by an excessive fat accumulation that has negative health consequences. Pediatric obesity is associated with an increased risk for many diseases, including impaired glycemic and lipidic control that may lead to the development of chronic, and potentially disabling, pathologies, such as type 2 diabetes mellitus (T2DM) and cardiovascular events, in adult life. The therapeutic strategy initially starts with interventions that are aimed at changing lifestyle and eating behavior, to prevent, manage, and potentially reverse metabolic disorders. Recently, the ketogenic diet (KD) has been proposed as a promising dietary intervention for the treatment of metabolic and cardiovascular risk factors related to obesity in adults, and a possible beneficial role has also been proposed in children. KD is very low in carbohydrate, high in fat, and moderate to high in protein that may have the potential to promote weight loss and improve lipidic derangement, glycemic control, and insulin sensitivity. In this review, we present metabolic disorders on glycemic and lipidic control in children and adolescents with obesity and indication of KD in pediatrics, discussing the role of KD as a therapeutic tool for metabolic derangement. The results of this review may suggest the validity of KD and the need to further research its potential to address metabolic risk factors in pediatric obesity.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy; (V.C.); (E.T.)
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
| | - Elvira Verduci
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Health Sciences, University of Milano, 20142 Milano, Italy
| | - Martina Chiara Pascuzzi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Giulia Fiore
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Health Sciences, University of Milano, 20142 Milano, Italy
| | - Elisabetta Di Profio
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Elisavietta Tenuta
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy; (V.C.); (E.T.)
| | - Alessandra Bosetti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
| | - Carolina Federica Todisco
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (M.C.P.); (V.C.M.); (G.F.); (E.D.P.); (A.B.); (C.F.T.); (E.D.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
27
|
Ruiz Herrero J, Cañedo Villarroya E, García Peñas JJ, García Alcolea B, Gómez Fernández B, Puerta Macfarland LA, Pedrón-Giner C. [Ketogenic dietary therapies for epilepsy: Experience in 160 patients over 18 years]. An Pediatr (Barc) 2021; 96:S1695-4033(21)00193-4. [PMID: 35650008 DOI: 10.1016/j.anpedi.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
AIM Ketogenic dietary therapies (KDT) produce anticonvulsant and neuroprotective effects, reduce seizures and improve the cognitive state in patients with epilepsy. Our purpose was to evaluate the effects of KDT in children with refractory epilepsy (effectiveness, side effects, impact on nutritional status and growth). METHODS A retrospective and prospective observational descriptive study was conducted in a Spanish tertiary hospital (January 2000 to December 2018). One hundred sixty pediatric patients with epilepsy were treated with KDT (82 males; mean age 5 years 9 months). Seizures, anti-epileptic drugs, anthropometric measures, side effects, and laboratory assessment were monitored baseline and at 3, 6, 12 and 24 months after the onset of KDT. RESULTS In these time intervals, the seizure-free patients were: 13.7, 12.5, 14.4 and 10.6%, respectively, and a reduction of seizures≥50% was achieved in 41.9, 37.5, 28.7 and 16.2%. Side effects were frequent, especially digestive disorders, hypercalciuria, hypoglycemia, hepatic dysfunction and dyslipidemia. Prealbumin, retinol binding protein, vitamin A and magnesium decreased significantly. Height was affected, especially in children below 2 years. CONCLUSIONS KDT are effective for refractory epilepsy in children. However, adverse effects are frequent, and it may affect nutritional status and growth.
Collapse
Affiliation(s)
- Jana Ruiz Herrero
- Departamento de Gastroenterología Infantil, Servicio de Pediatría, Hospital San Rafael, Madrid, España.
| | - Elvira Cañedo Villarroya
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, España
| | | | - Beatriz García Alcolea
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, España
| | - Begoña Gómez Fernández
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, España
| | | | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, España
| |
Collapse
|
28
|
Patanè F, Pasquetti E, Sullo F, Tosto M, Romano C, Salafia S, Falsaperla R. SLC2A1 and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractGlucose transporter type 1 deficiency syndrome (GLUT1DS) is caused by heterozygous, mostly de novo, mutations in SLC2A1 gene encoding the glucose transporter GLUT1, the most relevant energy transporter in the blood–brain barrier. GLUT1DS includes a broad spectrum of neurologic disturbances, from severe encephalopathy with developmental delay, to epilepsy, movement disorders, acquired microcephaly and atypical mild forms. For diagnosis, lumbar puncture and genetic analysis are necessary and complementary; an immediate response to ketogenic diet supports the diagnosis in case of high suspicion of disease and negative exams. The ketogenic diet is the first-line treatment and should be established at the initial stages of disease.
Collapse
Affiliation(s)
- Francesca Patanè
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Sullo
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Monica Tosto
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
29
|
Praticò A, Gulizia C, Gangi G, Oliva C, Romano C, Marino S, Polizzi A, Ruggieri M, Falsaperla R. SCN8A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1729142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSodium channelopathies are among the most common single-gene causes of epilepsy and have been considered model disorders for the study of genetic epilepsies. Epilepsies due to SCN8A pathogenic variants can present with a broad range of phenotypes varying from a severe epileptic encephalopathy with multiple types of drug-resistant seizure to neurodevelopmental delay, mental retardation, and electroencephalogram (EEG) findings of multifocal spike and waves (mostly in the temporal/parietal/occipital areas). In rare cases, benign familial infantile seizures and developmental delay with/without ataxia have been reported. A first-level, specific SCN8A Sanger's sequencing, although available, is rarely performed because the clinical phenotype is not strictly characteristic and several overlaps with other genetic epilepsies may occur. Given its indistinctive phenotype, diagnosis is usually performed through a specific gene panel for epileptic encephalopathies, early epilepsies, or genetic epilepsy in general, or through whole exome sequencing (WES) and more rarely through whole genome sequencing (WGS). Mutations in SCN8A occur as an autosomal dominant trait. The great majority of individuals diagnosed with SCN8A epilepsy do not have an affected parent, because usually SCN8A patients do not reproduce, and mutations are inherited as a “de novo” trait. In rare cases, SCN8A mutations may be inherited in the setting of parental germline mosaicism. SCN8A-related epilepsies have not shown a clear genotype–phenotype correlation, the same variants have been described with different clinical expressivity and this could be due to other genetic factors or to interacting environmental factors. There is no standardized treatment for SCN8A-related epilepsy because of the rarity of the disease and the unavailability of specific, targeted drugs. Treatment is based mainly on antiepileptic drugs which include classic wide-spectrum drugs such as valproic acid, levetiracetam, and lamotrigine. Sodium-channel blockers (phenytoin, carbamazepine, oxcarbazepine, and lamotrigine) have shown appreciable results in terms of seizure reduction, in particular, in patients presenting gain-of-function mutations. Nowadays, new potentially transformative gene therapy treatment approaches are currently being explored, allowing in the next future, a precision-based treatment directed against the gene defect and protein alterations.
Collapse
Affiliation(s)
- Andrea Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Carmela Gulizia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gloria Gangi
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Claudia Oliva
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
30
|
Venti V, Ciccia L, Scalia B, Sciuto L, Cimino C, Marino S, Praticò AD, Falsaperla R. KCNT1-Related Epilepsy: A Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNT1 gene encodes the sodium-dependent potassium channel reported as a causal factor for several different epileptic disorders. The gene has been also linked with cardiac disorders and in a family to sudden unexpected death in epilepsy. KCNT1 mutations, in most cases, result in a gain of function causing a neuronal hyperpolarization with loss of inhibition. Many early-onset epileptic encephalopathies related to gain of function of KCNT1 gene have been described, most often associated with two phenotypes: malignant migrating focal seizures of infancy and familial autosomal-dominant nocturnal frontal lobe epilepsy; however, there is no clear phenotype–genotype correlation, in fact same mutations have been represented in patients with West syndrome, Ohtahara syndrome, and early myoclonic encephalopathy. Additional neurologic features include intellectual disability, psychiatric disorders, hypotonia, microcephaly, strabismus, and movement disorders. Conventional anticonvulsant, vagal stimulation, and ketogenic diet have been used in the absence of clinical benefit in individuals with KCNT1-related epilepsy; in some patients, quinidine therapy off-label has been practiced successfully. This review aims to describe the characteristics of the gene, the phenotypes related to genetic mutations with the possible genotype–phenotype correlations and the treatments proposed to date, discussing the comorbidities reported in the literature.
Collapse
Affiliation(s)
- Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carla Cimino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
31
|
Motta M, Consentino MC, Fontana A, Sciuto L, Falsaperla R, Praticò ER, Salafia S, Zanghì A, Praticò AD. DNM1 Gene and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe phenotypic variety associated to mutations in dynamin 1 (DNM1), codifying the presynaptic protein DNM1 has been increasingly reported, mainly related to encephalopathy with intractable epilepsy; currently, it is known the phenotype related to DNM1 gene mutations is relatively homogeneous with developmental delay, hypotonia, and epilepsy characterized by infantile spasms and possible progression to Lennox-Gastaut syndrome. By examining all the papers published until 2020 (18 articles), we compared data from 30 patients (extrapolated from 5 papers) with DNM1 mutations, identifying 26 patients with de novo mutations in DNM1. Nine patients (33.3%) reported the recurrent mutation p.Arg237Trp. A usual phenotype observed comprises severe to deep developmental delay and muscular hypotonia in all patients with epilepsy beginning with infantile spasms, which often evolved into Lennox-Gastaut syndrome. Data about GTPase or central domains mutations, and existing structural modeling and functional suggest a dominant negative effect on DMN1 function. Generally genetic epilepsies consist of a wide spectrum of clinical features, unlike that, DNM1-related CNS impairment phenotype is quite uniform. In up to one third of patients it has been found variant p.Arg237Trp, which is one of the most frequent variant detected in epileptic encephalopathies. The understanding of DNM1 function opens up the chance that this gene would become a new therapeutic target for epilepsies.
Collapse
Affiliation(s)
- Milena Motta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | | | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Sapuppo A, Portale L, Massimino CR, Presti S, Tardino L, Marino S, Polizzi A, Falsaperla R, Praticò AD. GRIN2A and GRIN2B and Their Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractGlutamate is the most relevant excitatory neurotransmitter of the central nervous system; it binds with several receptors, including N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptor that displays voltage-dependent block by Mg2+ and a high permeability to Ca2+. GRIN2A and GRIN2B genes encode the GluN2A and GluN2B subunits of the NMDARs, which play important roles in synaptogenesis, synaptic transmission, and synaptic plasticity, as well as contributing to neuronal loss and dysfunction in several neurological disorders. Recently, individuals with a range of childhood-onset drug-resistant epilepsies, such as Landau–Kleffner or Lennox–Gastaut syndrome, intellectual disability (ID), and other neurodevelopmental abnormalities have been found to carry mutations in GRIN2A and GRIN2B, with high variable expressivity in phenotype. The first one is found mainly in epilepsy-aphasia syndromes, while the second one mainly in autism, schizophrenia, and ID, such as autism spectrum disorders. Brain magnetic resonance imaging alterations are found in some patients, even if without a clear clinical correlation. At the same time, increasing data on genotype–phenotype correlation have been found, but this is still not fully demonstrated. There are no specific therapies for the treatment of correlated NMDARs epilepsy, although some evidence with memantine, an antagonist of glutamate receptor, is reported in the literature in selected cases with mutation determining a gain of function.
Collapse
Affiliation(s)
- Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela R. Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Tardino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous Systemin Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Di Napoli C, Gennaro A, Lupica C, Falsaperla R, Leonardi R, Garozzo MT, Polizzi A, Praticò AD, Zanghì A, Ruggieri M. TSC1 and TSC2: Tuberous Sclerosis Complex and Its Related Epilepsy Phenotype. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractTuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by a multisystemic involvement. In TSC, reduced function of TSC1 and TSC2 genes products (hamartin and tuberin, respectively) leads to an hyperactivation of the mechanistic target of rapamycin (mTOR) pathway and to a consequent cell growth dysregulation. In TSC patients, neurological and neuropsychiatric manifestations, especially epilepsy and neuropsychiatric comorbidities such as autism or intellectual disability, represent the most disabling features. In particular, epilepsy occurrs up to 80% of patients, is often drug resistant and is frequently associated with neurological impairment. Due to the burden of this morbidity, different treatment strategies have been proposed with the purpose to make patients epilepsy free, such as the use of different antiepileptic drugs like vigabatrin, carbamazepine, valproic acid, and levetiracetam. More recently, a mTOR inhibitor (i.e. everolimus) has showed promising results in terms of seizures reduction.
Collapse
Affiliation(s)
- Claudia Di Napoli
- Postgraduate Training Program in Genetics, Department of Biomedical and Biotechnological Sciences, Section of Genetics, University of Catania, Catania, Italy
| | - Alessia Gennaro
- Postgraduate Training Program in Genetics, Department of Biomedical and Biotechnological Sciences, Section of Genetics, University of Catania, Catania, Italy
| | - Carmelania Lupica
- Postgraduate Training Program in Genetics, Department of Biomedical and Biotechnological Sciences, Section of Genetics, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intenstive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Roberta Leonardi
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, University of Catania, Catania, Italy
| | - Maria Teresa Garozzo
- Unit of Pediatrics and Pediatric Emergency, Hospital “Cannizzaro,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of General Surgery and Medical-Surgical Specialty, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
34
|
Garozzo MT, Caruso D, La Mendola FMC, Di Nora A, Romano K, Leonardi R, Falsaperla R, Zanghì A, Praticò AD. SYNGAP1 and Its Related Epileptic Syndromes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSynaptic Ras GTPase-activating protein 1 (SYNGAP1) is abundantly expressed in the postsynaptic space in brain tissue and has a crucial role in the regulation of the excitatory/inhibitory balance and in brain development. It is estimated that SYNGAP1 loss of function variants have an incidence of 1 to 4/10,000 individuals, mostly occurring de novo, even if few cases of vertical transmission of mosaic mutations have been reported. Loss-of-function mutations within this gene have been related with an epileptic encephalopathy characterized by eyelid myoclonia with absences (EMA) and myoclonic-atonic seizures (MAE) with early onset, commonly resistant to antiepileptic drugs (AED). Epilepsy is often associated with other clinical features, including truncal and/or facial hypotonia and/or ataxia with a wide-based and unsteady gate. Other clinical signs are intellectual disability, developmental delay, and behavioral and speech impairment, in a context of a normal neuroimaging study. In selected cases, dysmorphic features, skeletal abnormalities, and eye involvement are also described. The diagnosis of the disorder is usually established by multigene panel and, in unsolved cases, by exome sequencing. Management of the affected individuals involves different specialists and is mainly symptomatic. No clinical trials about the efficacy of AED in SYNGAP1 encephalopathy have been performed yet and Lamotrigine and valproate are commonly prescribed. In more than half of cases, however, epilepsy is refractory to AED.
Collapse
Affiliation(s)
- Maria Teresa Garozzo
- Unit of Pediatric and Pediatric Emergency, Hospital “Cannizzaro,” Catania, Italy
| | - Daniela Caruso
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Roberta Leonardi
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Mazzurco M, Pulvirenti G, Caccamo M, Presti S, Soma R, Salafia S, Praticò ER, Filosco F, Falsaperla R, Praticò AD. PCDH19-Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractProtocadherin-19 (PCDH19) is considered one of the most relevant genes related to epilepsy. To date, more than 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. More recently, mosaic-males (i.e., exhibiting the variants in less than 25% of their cells) have been described as affected by infant-onset epilepsy associated with intellectual disability, as well as compulsive or aggressive behavior and autistic features. Although little is known about the physiological role of PCDH19 protein and the pathogenic mechanisms that lead to EIEE9, many reports and clinical observation seem to suggest a relevant role of this protein in the development of cellular hyperexcitability. However, a genotype–phenotype correlation is difficult to establish. The main feature of EIEE9 consists in early onset of seizures, which generally occur in clusters lasting 1 to 5 minutes and repeating up to 10 times a day for several days. Seizures tend to present during febrile episodes, similarly to the first phases of Dravet syndrome and PCDH19 variants have been found in ∼25% of females who present with features of Dravet syndrome and testing negative for SCN1A variants. There is no “standardized” treatment for PCDH19-related epilepsy and most of the patients receiving a combination of several drugs. In this review, we focus on the latest researches on these aspects, with regard to protein expression, its known functions, and the mechanisms by which the protein acts. The clinical phenotypes related to PCDH19 mutations are also discussed.
Collapse
Affiliation(s)
| | - Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | | | - Federica Filosco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Pecora G, Sortino V, Brafa Musicoro V, Salomone G, Pizzo F, Costanza G, Falsaperla R, Zanghì A, Praticò AD. FOXG1 Gene and Its Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFOXG1 is an important transcriptional repressor found in cell precursor of the ventricular region and in neurons in the early stage of differentiation during the development of the nervous epithelium in the cerebrum and optical formation. Mutations involving FOXG1 gene have been described first in subjects with congenital Rett syndrome. They can cause seizure, delayed psychomotor development, language disorders, and autism. FOXG1 deletions or intragenic mutations also determinate reduction in head circumference, structural defects in the corpus callosum, abnormal movements, especially choreiform, and intellectual retardation with no speech. Patients with duplications of 14q12 present infantile spasms and have subsequent intellectual disability with autistic features, head circumference in the normal range, and regular aspect of corpus callosum. Clinical characteristics of patients with FOXG1 variants include growth deficit after birth associated with microcephaly, facial dysmorphisms, important delay with no language, deficit in social interaction like autism, sleep disorders, stereotypes, including dyskinesia, and seizures. In these patients, it is not characteristic a history of loss of acquired skills.
Collapse
Affiliation(s)
- Giulia Pecora
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Sortino
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Viviana Brafa Musicoro
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
37
|
Timpanaro T, La Mendola F, Billone S, Nora AD, Collotta A, Sauna A, Salafia S, Falsaperla R. TBC1D24 and Its Related Epileptic Encephalopathy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
TBC1D24, mapped to 16p13.3, encodes a protein containing a Tre2/Bub2/Cdc16 (TBC) domain, belonging to the super-family of Rab GTPase activating proteins (Rab-GAP). These proteins regulate various functions, including the regulation of the traffic of the vesicular membrane. Several TBC1D24 mutations have been related to autosomal recessive neurological disorders, including severe developmental encephalopathies with malignant early childhood epilepsy, benign epilepsy, epileptic encephalopathy, and a complex neurological syndrome characterized by deafness, onychodystrophy, bone and neurological degeneration. Mutations of TBC1D24 have also been reported in patients with nonsyndromic deafness with dominant or recessive inheritance. Mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 products in the generation of such complex spectrum of diseases remain partly unclear and future studies are needed to clarify this aspect, in order to improve the management of seizures and for the prevention of complication (including death) of newly diagnosed patients affected by TBC1D24-related disorders.
Collapse
Affiliation(s)
- Tiziana Timpanaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Sebastiano Billone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ausilia Collotta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Sauna
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
38
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
39
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
40
|
Patanè F, Pasquetti E, Sullo F, Tosto M, Sciuto L, Garozzo MT, Praticò ER, Falsaperla R. SLC25A22 and Its Related Epileptic Encephalopathies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpileptic encephalopathy is a condition in which seizures, electroencephalographic epileptiform abnormalities lead to a progressive deterioration of brain functions causing a significant psychomotor delay. One of the typical features of this heterogeneous and large group of severe disorders is the extremely early onset of seizures. The main causes of the epileptic encephalopathies include structural brain defects, inherited metabolic disorders; in this aspect, more than 100 genetic defects, including mutations in the solute carrier family 25 (SLC25A22) gene which encodes a mitochondrial glutamate carrier. To date, the main clinical phenotypes related to mutations of this gene are Ohtahara syndrome (or early infantile epileptic encephalopathy), early myoclonic encephalopathy and migrating partial seizures in infancy. In all the cases, prognosis is poor and no disease-modifying treatment is available in the present days.
Collapse
Affiliation(s)
- Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Monica Tosto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Teresa Garozzo
- Unit of Pediatric and Pediatric Emergency, Hospital “Cannizzaro,” Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
41
|
Fontana A, Consentino MC, Motta M, Costanza G, Lo Bianco M, Marino S, Falsaperla R, Praticò AD. Syntaxin Binding Protein 1 Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSyntaxin binding protein 1 (STXBP1), commonly known as MUNC18–1, is a member of SEC1 family membrane trafficking proteins; their function consists in controlling the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex assembly, making them essentials regulators of vesicle fusion. The precise function and molecular mechanism through which Munc18–1 contributes to neurotransmitter releasing is not entirely understood, but several evidences suggest its probable role in exocytosis. In 2008, heterozygous de novo mutations in neuronal protein Munc18–1 were first referred as a cause of Ohtahara syndrome development. Currently, a wide examination of the published data proved that 3.1% of patients with severe epilepsy carry a pathogenic de novo mutation including STXBP1 and approximately 10.2% of early onset epileptic encephalopathy is due to an aberrant STXBP1 form codified by the mutated gene. STXBP1 mutations can be associated to a wide clinical heterogeneity. All affected individuals show developmental delay and approximately the 95% of cases have seizures and early onset epileptic encephalopathy, characterized by infantile spasms as the main consistent feature. Burst suppression pattern and hypsarrhythmia are the most frequent EEG anomalies. Other neuronal disorders include Rett syndrome and behavioral and movement disorders. Mild dysmorphic features have been detected in a small number of cases. No genotype–phenotype correlation has been reported. Management of STXBP1 encephalopathy requires a multidisciplinary approach, including epilepsy control and neurological rehabilitation. About 25% of patients are refractory to standard therapy. A single or combined antiepileptic drugs may be required. Several studies described vigabatrin, valproic acid, levetiracetam, topiramate, clobazam, and oxcarbazepine as effective in seizure control. Lamotrigine, zonisamide, and phenobarbital are also commonly used. To date, it remains unclear which therapy is the most effective. Severe morbidity and high mortality are inevitable consequences in some of these patients.
Collapse
Affiliation(s)
- Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Milena Motta
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Portale A, Comella M, Salomone G, Di Nora A, Marino L, Leonardi R, Praticò AD, Falsaperla R. The Spectrum of KCNQ2- and KCNQ3-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNQ genes encode for a family of six transmembrane domains, single pore-loop, and K+ channel α-subunits that have a wide range of physiological correlates. In the brain, KCNQ2 and KCNQ3 heteromultimers are thought to underlie the M-current which is essential in raising the threshold for firing an action potential; mutations in these genes may cause several types of infantile epilepsies. KCNQ2-related disorders represent a continuum of overlapping neonatal epileptic phenotypes that range from KCNQ2 benign familial neonatal epilepsy (BFNE), a seizure disorder that occur in children who typically have a normal psychomotor development and are inherited as an autosomal dominant trait, to KCNQ2 early-onset epileptic encephalopathy (EOEE) as the result of a de novo pathogenic variant. KCNQ3-related disorders are rarer and include BFNE, benign familial infantile epilepsy and KCNQ3-related epileptic encephalopathy with intellectual disability with or without seizures and/or cortical visual impairment. For both KCNQ2- and KCNQ3-related disorders, it is possible to use several drugs for different classes of mutations (i.e., gain of function vs. loss of function), and usually their effects vary in relation to the clinical presentation and the phenotype of the patient. However, KCNQ2-EOEE patients have a worse response to treatment than KCNQ2-BFNE patients and usually become drug resistant with multiple daily seizures.
Collapse
Affiliation(s)
- Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lidia Marino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Leonardi
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
43
|
Filosco F, Billone S, Collotta A, Timpanaro T, Tosto M, Falsaperla R, Marino S, Zanghì A, Praticò AD. WDR45 Gene and Its Role in Pediatric Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWD repeat domain 45 (WDR45) gene has been increasingly found in patients with developmental delay (DD) and epilepsy. Previously, WDR45 de novo mutations were reported in sporadic adult and pediatric patients presenting iron accumulation, while heterozygous mutations were associated with β-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation disorders, characterized by extrapyramidal movement disorders and abnormal accumulation of iron in the basal ganglia. Overall, people harboring WDR45 mutations have moderate to severe DD and different types of seizures. The phenotype of adult patients is characterized by extrapyramidal movement, dystonia, parkinsonism, language impairment, and involvement of the substantia nigra and in the globus pallidus at brain magnetic resonance imaging. Importantly, there are no findings of brain iron accumulation in brain in BPAN patients in the first decade of life, thus suggesting a progressive course of the disease. Comparatively, the main phenotype of pediatric patients is epilepsy with early onset, most of which present infantile spasms and arrest or regression of psychomotor development. The phenotype of patients with WDR45 mutations is variable, being different if caused by somatic mosaicism or germline mutations, and presenting with a different spectrum of manifestations in males and females. The treatment of affected individuals is symptomatic. Regarding the seizures, specific, gene-based approaches with specific antiepileptic drugs are not currently available. The early diagnosis of BPAN could be useful in some aspects, such as providing families a supportive treatment to their affected children.
Collapse
Affiliation(s)
- Federica Filosco
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Sebastiano Billone
- Pediatrics Postgraduate Residency Program, University of Palermo, Palermo, Italy
| | - Ausilia Collotta
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Tiziana Timpanaro
- Unit of Pediatric Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Monica Tosto
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
44
|
MECP2-Related Disorders and Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
MECP2 (methyl-CpG binding protein-2) gene, located on chromosome Xq28, encodes for a protein particularly abundant in the brain that is required for maturation of astrocytes and neurons and is developmentally regulated. A defective homeostasis of MECP2 expression, either by haploinsufficiency or overexpression, leads to a neurodevelopmental phenotype. As MECP2 is located on chromosome X, the clinical presentation varies in males and females ranging from mild learning disabilities to severe encephalopathies and early death. Typical Rett syndrome (RTT), the most frequent phenotype associated with MECP2 mutations, primarily affects girls and it was previously thought to be lethal in males; however, MECP2 duplication syndrome, resulting from a duplication of the Xq28 region including MECP2, leads to a severe neurodevelopmental disorder in males. RTT and MECP2 duplication syndrome share overlapping clinical phenotypes including intellectual disabilities, motor deficits, hypotonia, progressive spasticity, and epilepsy. In this manuscript we reviewed literature on epilepsy related to MECP2 disorders, focusing on clinical presentation, genotype–phenotype correlation, and treatment.
Collapse
|
45
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
46
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
47
|
Salomone G, Comella M, Portale A, Pecora G, Costanza G, Lo Bianco M, Sciuto S, Praticò ER, Falsaperla R. The Spectrum of DEPDC5-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDisheveled EGL-10 and pleckstrin domain-containing protein 5 (DEPDC5) is a key member of the GAP activity toward rags complex 1 complex, which inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway. DEPDC5 loss-of-function mutations lead to an aberrant activation of the mTOR signaling. At neuronal level, the increased mTOR cascade causes the generation of epileptogenic dysplastic neuronal circuits and it is often associated with malformation of cortical development. The DEPDC5 phenotypic spectrum ranges from sporadic early-onset epilepsies with poor neurodevelopmental outcomes to familial focal epilepsies and sudden unexpected death in epilepsy; a high rate of inter- and intrafamilial variability has been reported. To date, clear genotype–phenotype correlations have not been proven. More studies are required to elucidate the significance of likely pathogenic/variants of uncertain significance. The pursuit of a molecular targeted antiepileptic therapy is a future challenge.
Collapse
Affiliation(s)
- Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Giulia Pecora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sarah Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Units of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
48
|
Pasquetti E, Lo Bianco M, Sullo F, Patanè F, Sciuto L, Polizzi A, Praticò AD, Zanghì A, Falsaperla R. SCN1B Gene: A Close Relative to SCN1A. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractOne of the first reported genes associated with epilepsy was SCN1B, which encodes for β-subunit of voltage-gated sodium channel of excitable cells and it is critical for neuronal function in both central and peripheral nervous system. β-subunits modulate the expression levels and functional properties of sodium channels and though their immunoglobulin domains may mediate interactions between channels and other proteins. Traditionally, SCN1B mutations were associated with generalized epilepsy with febrile seizures plus, a familial epilepsy syndrome characterized by heterogeneous phenotypes including febrile seizures (FS), febrile seizures plus (FS + ), mild generalized epilepsies, and severe epileptic encephalopathies. Throughout the years, SCN1B mutations have been also associated with Dravet syndrome and, more recently, with developmental and epileptic encephalopathies, expanding the spectrum associated with this gene mutations to more severe phenotypes.
Collapse
Affiliation(s)
- Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
49
|
Praticò AD, Giallongo A, Arrabito M, D'Amico S, Gauci MC, Lombardo G, Polizzi A, Falsaperla R, Ruggieri M. SCN2A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsies due to SCN2A mutations can present with a broad range of phenotypes that are still not fully understood. Clinical characteristics of SNC2A-related epilepsy may vary from neonatal benign epilepsy to early-onset epileptic encephalopathy, including Ohtahara syndrome and West syndrome, and epileptic encephalopathies occurring at later ages (usually within the first 10 years of life). Some patient may present with intellectual disability and/or autism or movement disorders and without epilepsy. The heterogeneity of the phenotypes associated to such genetic mutations does not always allow the clinician to address his suspect on this gene. For this reason, diagnosis is usually made after a multiple gene panel examination through next generation sequencing (NGS) or after whole exome sequencing (WES) or whole genome sequencing (WGS). Subsequently, confirmation by Sanger sequencing can be obtained. Mutations in SCN2A are inherited as an autosomal dominant trait. Most individuals diagnosed with SCN2A–benign familial neonatal-infantile seizures (BFNIS) have an affected parent; however, hypothetically, a child may present SCN2A-BNFNIS as the result of a de novo pathogenic variant. Almost all individuals with SCN2A and severe epileptic encephalopathies have a de novo pathogenic variant. SNC2A-related epilepsies have not shown a clear genotype–phenotype correlation; in some cases, a same variant may lead to different presentations even within the same family and this could be due to other genetic factors or to environmental causes. There is no “standardized” treatment for SCN2A-related epilepsy, as it varies in relation to the clinical presentation and the phenotype of the patient, according to its own gene mutation. Treatment is based mainly on antiepileptic drugs, which include classic wide-spectrum drugs, such as valproic acid, levetiracetam, and lamotrigine. However, specific agents, which act directly modulating the sodium channels activity (phenytoin, carbamazepine, oxcarbamazepine, lamotrigine, and zonisamide), have shown positive result, as other sodium channel blockers (lidocaine and mexiletine) or even other drugs with different targets (phenobarbital).
Collapse
Affiliation(s)
- Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marta Arrabito
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Silvia D'Amico
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Cristina Gauci
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giulia Lombardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|