1
|
Hossain MA, Saiful Islam SM, Quinn JM, Huq F, Moni MA. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J Biomed Inform 2019; 100:103313. [DOI: 10.1016/j.jbi.2019.103313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/20/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
|
2
|
Lapointe F, Turcotte S, Véronneau S, Rola-Pleszczynski M, Stankova J. Role of Protein Tyrosine Phosphatase Epsilon (PTP ε) in Leukotriene D 4-Induced CXCL8 Expression. J Pharmacol Exp Ther 2019; 369:270-281. [PMID: 30867226 DOI: 10.1124/jpet.118.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLT1R)-interacting proteins, we identified protein tyrosine phosphatase ε (PTPε) in a yeast two-hybrid assay. Since both proteins are closely linked to asthma, we further investigated their association. Using a human embryonic kidney cell line 293 (HEK-293) cell line stably transfected with the receptor (HEK-LT1), as well as human primary monocytes, we found that PTPε colocalized with CysLT1R in both resting and leukotriene D4 (LTD4)-stimulated cells. Cotransfection of HEK-LT1 with PTPε had no effect on CysLT1R expression or LTD4-induced internalization, but it inhibited LTD4-induced CXC chemokine 8 (CXCL8) promoter transactivation, protein expression, and secretion. Moreover, reduced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), but not of p38 or c-Jun-N-terminal kinase 1 or 2 mitogen-activated protein kinases (MAPKs), was observed upon LTD4 stimulation of HEK-LT1 coexpressing cytosolic (cyt-) PTPε, but not receptor (R) PTPε The increased interaction of cyt-PTPε and ERK1/2 after LTD4 stimulation was shown by coimmunoprecipitation. In addition, enhanced ERK1/2 phosphorylation and CXCL8 secretion were found in LTD4-stimulated human monocytes transfected with PTPε-specific siRNAs, adding support to a regulatory/inhibitory role of PTPε in CysLT1R signaling. Given that the prevalence of severe asthma is increasing, the identification of PTPε as a new potential therapeutic target may be of interest.
Collapse
Affiliation(s)
- Fanny Lapointe
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sylvie Turcotte
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steeve Véronneau
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marek Rola-Pleszczynski
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Liang J, Shi J, Wang N, Zhao H, Sun J. Tuning the Protein Phosphorylation by Receptor Type Protein Tyrosine Phosphatase Epsilon (PTPRE) in Normal and Cancer Cells. J Cancer 2019; 10:105-111. [PMID: 30662530 PMCID: PMC6329871 DOI: 10.7150/jca.27633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine phosphorylation is an important post-translation modification of proteins that is controlled by tyrosine kinases and phosphatases. Disruption of the balance between the activity of tyrosine kinases and phosphatases may result in diseases. Receptor type protein tyrosine phosphatase epsilon (PTPRE) is closely related with receptor type protein tyrosine phosphatase alpha (PTPRA). PTPRE has been studied in osteoclast cells, nerve cells, hematopoietic cells, cancer cells and others, and it has different functions among various tissues. In this review, we summarized the current knowledge about the regulation of PTPRE on cellular signal transduction and its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Jinping Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China.,Ningxia Key laboratory of Clinical and Pathogenic Microbiology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun Shi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China
| | - Na Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China
| | - Hui Zhao
- School of Biomedical Science, Faculty of Medicine, the Chinese University of Hong Kong
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China.,Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal 2017; 15:29. [PMID: 28784162 PMCID: PMC5547543 DOI: 10.1186/s12964-017-0186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. METHODS We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. RESULTS Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. CONCLUSIONS SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells.
Collapse
Affiliation(s)
- Gahana Advani
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ya Chee Lim
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Catimel
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Nadia L. Y. Ng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Anderly C. Chüeh
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mai Tran
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heather Verkade
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3052 Australia
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Ching-Seng Ang
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Michael Griffin
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heung-Chin Cheng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
5
|
Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. CHINESE JOURNAL OF CANCER 2014; 34:61-9. [PMID: 25322863 PMCID: PMC4360074 DOI: 10.5732/cjc.014.10146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play an important role in regulating cell signaling events in coordination with tyrosine kinases to control cell proliferation, apoptosis, survival, migration, and invasion. Receptor-type protein tyrosine phosphatases (PTPRs) are a subgroup of PTPs that share a transmembrane domain with resulting similarities in function and target specificity. In this review, we summarize genetic and epigenetic alterations including mutation, deletion, amplification, and promoter methylation of PTPRs in cancer and consider the consequences of PTPR alterations in different types of cancers. We also summarize recent developments using PTPRs as prognostic or predictive biomarkers and/or direct targets. Increased understanding of the role of PTPRs in cancer may provide opportunities to improve therapeutic approaches.
Collapse
Affiliation(s)
- Yu Du
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
6
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
7
|
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8:1385-97. [PMID: 23139636 PMCID: PMC3492796 DOI: 10.7150/ijbs.5141] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.
Collapse
Affiliation(s)
- Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, JAPAN.
| |
Collapse
|
8
|
Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, and capillary formation. Blood 2012; 120:2745-56. [PMID: 22898603 DOI: 10.1182/blood-2011-12-398040] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP-1/CD148 is a receptor-like protein tyrosine phosphatase with antiproliferative and tumor-suppressive functions. Interestingly, it also positively regulates Src family kinases in hematopoietic and endothelial cells, where we showed it promotes VE-cadherin-associated Src activation and endothelial cell survival upon VEGF stimulation. However, the molecular mechanism involved and its biologic functions in endothelial cells remain ill-defined. We demonstrate here that DEP-1 is phosphorylated in a Src- and Fyn-dependent manner on Y1311 and Y1320, which bind the Src SH2 domain. This allows DEP-1-catalyzed dephosphorylation of Src inhibitory Y529 and favors the VEGF-induced phosphorylation of Src substrates VE-cadherin and Cortactin. Accordingly, RNA interference (RNAi)-mediated knockdown of DEP-1 or expression of DEP-1 Y1311F/Y1320F impairs Src-dependent biologic responses mediated by VEGF including permeability, invasion, and branching capillary formation. In addition, our work further reveals that above a threshold expression level, DEP-1 can also dephosphorylate Src Y418 and attenuate downstream signaling and biologic responses, consistent with the quiescent behavior of confluent endothelial cells that express the highest levels of endogenous DEP-1. Collectively, our findings identify the VEGF-dependent phosphorylation of DEP-1 as a novel mechanism controlling Src activation, and show this is essential for the proper regulation of permeability and the promotion of the angiogenic response.
Collapse
|
9
|
Nunes-Xavier CE, Elson A, Pulido R. Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J Biol Chem 2011; 287:3433-44. [PMID: 22117074 DOI: 10.1074/jbc.m111.293928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased tyrosine phosphorylation has been correlated with human cancer, including breast cancer. In general, the activation of tyrosine kinases (TKs) can be antagonized by the action of protein-tyrosine phosphatases (PTPs). However, in some cases PTPs can potentiate the activation of TKs. In this study, we have investigated the functional role of PTPε in human breast cancer cell lines. We found the up-regulation and activation of receptor PTPε (RPTPε) in MCF-7 cells and MDA-MB-231 upon PMA, FGF, and serum stimulation, which depended on EGFR and ERK1/2 activity. Diminishing the expression of PTPε in human breast cancer cells abolished ERK1/2 and AKT activation, and decreased the viability and anchorage-independent growth of the cells. Conversely, stable MCF-7 cell lines expressing inducible high levels of ectopic PTPε displayed higher activation of ERK1/2 and anchorage-independent growth. Our results demonstrate that expression of PTPε is up-regulated and activated in breast cancer cell lines, through EGFR, by sustained activation of the ERK1/2 pathway, generating a positive feedback regulatory loop required for survival of human breast cancer cells.
Collapse
|
10
|
Wang PS, Wang J, Xiao ZC, Pallen CJ. Protein-tyrosine phosphatase alpha acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination. J Biol Chem 2009; 284:33692-702. [PMID: 19812040 DOI: 10.1074/jbc.m109.061770] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinase Fyn plays a key role in oligodendrocyte differentiation and myelination in the central nervous system, but the molecules responsible for regulating Fyn activation in these processes remain poorly defined. Here we show that receptor-like protein-tyrosine phosphatase alpha (PTPalpha) is an important positive regulator of Fyn activation and signaling that is required for the differentiation of oligodendrocyte progenitor cells (OPCs). PTPalpha is expressed in OPCs and is up-regulated during differentiation. We used two model systems to investigate the role of PTPalpha in OPC differentiation: the rat CG4 cell line where PTPalpha expression was silenced by small interfering RNA, and oligosphere-derived primary OPCs isolated from wild-type and PTPalpha-null mouse embryos. In both cell systems, the ablation of PTPalpha inhibited differentiation and morphological changes that accompany this process. Although Fyn was activated upon induction of differentiation, the level of activation was severely reduced in cells lacking PTPalpha, as was the activation of Fyn effector molecules focal adhesion kinase, Rac1, and Cdc42, and inactivation of Rho. Interestingly, another downstream effector of Fyn, p190RhoGAP, which is responsible for Rho inactivation during differentiation, was not affected by PTPalpha ablation. In vivo studies revealed defective myelination in the PTPalpha(-/-) mouse brain. Together, our findings demonstrate that PTPalpha is a critical regulator of Fyn activation and of specific Fyn signaling events during differentiation, and is essential for promoting OPC differentiation and central nervous system myelination.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
11
|
Kaimachnikov NP, Kholodenko BN. Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBS J 2009; 276:4102-18. [PMID: 19627364 DOI: 10.1111/j.1742-4658.2009.07117.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src-family kinases (SFKs) play a pivotal role in growth factor signaling, mitosis, cell motility and invasiveness. In their basal state, SFKs maintain a closed autoinhibited conformation, where the Src homology 2 domain interacts with an inhibitory phosphotyrosine in the C-terminus. Activation involves dephosphorylation of this inhibitory phosphotyrosine, followed by intermolecular autophosphorylation of a specific tyrosine residue in the activation loop. The spatiotemporal dynamics of SFK activation controls cell behavior, yet these dynamics remain largely uninvestigated. In the present study, we show that the basic properties of the Src activation/deactivation cycle can bring about complex signaling dynamics, including oscillations, toggle switches and excitable behavior. These intricate dynamics do not require imposed external feedback loops and occur at constant activities of Src inhibitors and activators, such as C-terminal Src kinase and receptor-type protein tyrosine phosphatases. We demonstrate that C-terminal Src kinase and receptor-type protein tyrosine phosphatase underexpression or their simultaneous overexpression can transform Src response patterns into oscillatory or bistable responses, respectively. Similarly, Src overexpression leads to dysregulation of Src activity, promoting sustained self-perpetuating oscillations. Distinct types of responses can allow SFKs to trigger different cell-fate decisions, where cellular outcomes are determined by the stimulation threshold and history. Our mathematical model helps to understand the puzzling experimental observations and suggests conditions where these different kinetic behaviors of SFKs can be tested experimentally.
Collapse
Affiliation(s)
- Nikolai P Kaimachnikov
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Akimoto M, Mishra K, Lim KT, Tani N, Hisanaga SI, Katagiri T, Elson A, Mizuno K, Yakura H. Protein Tyrosine Phosphatase ε is a Negative Regulator of FcεRI-mediated Mast Cell Responses. Scand J Immunol 2009; 69:401-11. [DOI: 10.1111/j.1365-3083.2009.02235.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Teutschbein J, Schartl M, Meierjohann S. Interaction of Xiphophorus and murine Fyn with focal adhesion kinase. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:168-74. [PMID: 18930841 DOI: 10.1016/j.cbpc.2008.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
The Src family kinase/Focal Adhesion Kinase (FAK) complex is a signaling platform playing a crucial role in transformation downstream of oncogenic growth factor receptors. In the case of melanoma in Xiphophorus fish, the oncogenic EGF receptor orthologue Xiphophorus melanoma receptor kinase (Xmrk) effects continuous activation of the Src family kinase Fyn, but not of the other family members Src or Yes. Here, Fyn is strongly involved in promoting many tumorigenic events. Although Fyn is expressed in most mammalian tissues, there are only few reports of its involvement in the development of solid tumors. To find out whether the prominent role of Xiphophorus Fyn is based on an altered binding to its important binding partner FAK when compared to its mammalian Fyn counterparts, we performed yeast-two-hybrid analyses. We compared Xiphophorus and murine Fyn with respect to their binding to full-length and truncated FAK constructs. We found that interaction with FAK occurs similarly for Xiphophorus and mouse Fyn. Both phosphorylated FAK residue Y397 and FAK proline-rich domain are involved in Fyn binding. We also found interaction of FAK and Fyn in human melanoma cell lines. These data suggest a possible, yet unrecognized role of Fyn in the tumorigenesis of human melanoma, too.
Collapse
Affiliation(s)
- Janka Teutschbein
- Physiological Chemistry I, University of Würzburg, Biocenter, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
14
|
Aga-Mizrachi S, Brutman-Barazani T, Jacob AI, Bak A, Elson A, Sampson SR. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology 2008; 149:605-14. [PMID: 18006633 DOI: 10.1210/en.2007-0908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whereas positive regulatory events triggered by insulin binding to insulin receptor (IR) have been well documented, the mechanism by which the activated IR is returned to the basal status is not completely understood. Recently studies focused on the involvement of protein tyrosine phosphatases (PTPs) and how they might influence IR signaling. In this study, we examined the possibility that cytosolic PTPepsilon (cytPTPepsilon) is involved in IR signaling. Studies were performed on L6 skeletal muscle cells. cytPTPepsilon was overexpressed by using pBABE retroviral expression vectors. In addition, we inhibited cytPTPepsilon by RNA silencing. We found that insulin induced rapid association of cytPTPepsilon with IR. Interestingly, this association appeared to occur in the plasma membrane and on stimulation with insulin the two proteins internalized together. Moreover, it appeared that almost all internalized IR was associated with cytPTPepsilon. We found that knockdown of cytPTPepsilon by RNA silencing increased insulin-induced tyrosine phosphorylation of IR and IR substrate (IRS)-1 as well as phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Moreover, overexpression of wild-type cytPTPepsilon reduced insulin-induced tyrosine phosphorylation of IR, IRS-1, and phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Finally, insulin-induced tyrosine phosphorylation of IR and IRS-1 was greater in skeletal muscle from mice lacking the cytPTPepsilon gene than that from wild-type control animals. We conclude that cytPTPepsilon serves as another major candidate negative regulator of IR signaling in skeletal muscle.
Collapse
Affiliation(s)
- Shlomit Aga-Mizrachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Berman-Golan D, Granot-Attas S, Elson A. Protein tyrosine phosphatase epsilon and Neu-induced mammary tumorigenesis. Cancer Metastasis Rev 2008; 27:193-203. [DOI: 10.1007/s10555-008-9124-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Grande SM, Bannish G, Fuentes-Panana EM, Katz E, Monroe JG. Tonic B-cell and viral ITAM signaling: context is everything. Immunol Rev 2007; 218:214-34. [PMID: 17624955 DOI: 10.1111/j.1600-065x.2007.00535.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of an immunoreceptor tyrosine-based activation motif (ITAM) makes immunoreceptors different from other signaling receptors, like integrins, G-coupled protein receptors, chemokine receptors, and growth factor receptors. This unique motif has the canonical sequence D/Ex(0-2)YxxL/Ix(6-8)YxxL/I, where x represents any amino acid and is present at least once in all immunoreceptor complexes. Immunoreceptors can promote survival, activation, and differentiation by transducing signals through these highly conserved motifs. Traditionally, ITAM signaling is thought to occur in response to ligand-induced aggregation, although evidence indicates that ligand-independent tonic signaling also provides functionally relevant signals. The majority of proteins containing ITAMs are transmembrane proteins that exist as part of immunoreceptor complexes. However, oncogenic viruses also have ITAM-containing proteins. In this review, we discuss what is known about tonic signaling by both cellular and viral ITAM-containing proteins and speculate what we might learn from each context.
Collapse
Affiliation(s)
- Shannon M Grande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
17
|
Sines T, Granot-Attas S, Weisman-Welcher S, Elson A. Association of tyrosine phosphatase epsilon with microtubules inhibits phosphatase activity and is regulated by the epidermal growth factor receptor. Mol Cell Biol 2007; 27:7102-12. [PMID: 17709387 PMCID: PMC2168897 DOI: 10.1128/mcb.02096-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key mediators that link physiological cues with reversible changes in protein structure and function; nevertheless, significant details concerning their regulation in vivo remain unknown. We demonstrate that PTPepsilon associates with microtubules in vivo and is inhibited by them in a noncompetitive manner. Microtubule-associated proteins, which interact strongly with microtubules in vivo, significantly increase binding of PTPepsilon to tubulin in vitro and further reduce phosphatase activity. Conversely, disruption of microtubule structures in cells reduces their association with PTPepsilon, alters the subcellular localization of the phosphatase, and increases its specific activity. Activation of the epidermal growth factor receptor (EGFR) increases the PTPepsilon-microtubule association in a manner dependent upon EGFR-induced phosphorylation of PTPepsilon at Y638 and upon microtubule integrity. These events are transient and occur with rapid kinetics similar to EGFR autophosphorylation, suggesting that activation of the EGFR transiently down-regulates PTPepsilon activity near the receptor by promoting the PTPepsilon-microtubule association. Tubulin also inhibits the tyrosine phosphatase PTP1B but not receptor-type PTPmu or the unrelated alkaline phosphatase. The data suggest that reversible association with microtubules is a novel, physiologically regulated mechanism for regulation of tyrosine phosphatase activity in cells.
Collapse
Affiliation(s)
- Tal Sines
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
18
|
Berman-Golan D, Elson A. Neu-mediated phosphorylation of protein tyrosine phosphatase epsilon is critical for activation of Src in mammary tumor cells. Oncogene 2007; 26:7028-37. [PMID: 17486066 DOI: 10.1038/sj.onc.1210505] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The receptor-type protein tyrosine phosphatase epsilon (RPTPepsilon) activates c-Src in mammary tumor cells induced in vivo by Neu. Tumor cells lacking RPTPepsilon exhibit reduced c-Src activity, appear less transformed morphologically and proliferate slower in vitro and in vivo. Expression of Src rescues most of these phenotypes, indicating that c-Src activity is important for maintaining the transformed phenotype. However, the molecular mechanisms that control activation of c-Src by RPTPepsilon are unknown. We show that Neu induces phosphorylation of RPTPepsilon exclusively at its C-terminal Y695, and that this phosphorylation is required for activation of c-Src by RPTPepsilon. Phosphorylation of RPTPepsilon does not affect its activity toward another substrate, the voltage-gated potassium channel Kv2.1, suggesting that phosphorylation directs RPTPepsilon activity toward c-Src. Phosphorylation of RPTPepsilon reduces its dimerization at the cell membrane, although this does not affect its activity significantly. RPTPepsilon is subject to strong auto- and trans-dephosphorylation, suggesting that dephosphorylation limits the activation of c-Src downstream of Neu. We conclude that an Neu-RPTPepsilon-Src signaling pathway exists in mammary tumor cells, in which phosphorylation of RPTPepsilon by Neu directs RPTPepsilon to activate c-Src. Reversible phosphorylation of RPTPepsilon at Y695 may thus function as a 'molecular switch', which affects the substrate specificity of the phosphatase.
Collapse
Affiliation(s)
- D Berman-Golan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
19
|
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI, Edenberg HJ, McBride WJ, Niculescu AB. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. THE PHARMACOGENOMICS JOURNAL 2006; 7:222-56. [PMID: 17033615 DOI: 10.1038/sj.tpj.6500420] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
Collapse
Affiliation(s)
- Z A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tiran Z, Peretz A, Sines T, Shinder V, Sap J, Attali B, Elson A. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells. Mol Biol Cell 2006; 17:4330-42. [PMID: 16870705 PMCID: PMC1635364 DOI: 10.1091/mbc.e06-02-0151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPepsilon and PTPalpha differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo.
Collapse
Affiliation(s)
| | - Asher Peretz
- Department of Physiology and Pharmacology, Tel Aviv University Medical School, Tel Aviv 69978, Israel; and
| | - Tal Sines
- Departments of *Molecular Genetics and
| | - Vera Shinder
- Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jan Sap
- Department of Pharmacology, New York University Medical School, New York, NY 10016
| | - Bernard Attali
- Department of Physiology and Pharmacology, Tel Aviv University Medical School, Tel Aviv 69978, Israel; and
| | - Ari Elson
- Departments of *Molecular Genetics and
| |
Collapse
|
22
|
Abstract
Transmembrane receptors link the extracellular environment to the internal control elements of the cell. This signaling influences cell division, differentiation, survival, motility, adhesion, spreading and vesicular transport. Central to this signaling is the Src family of nonreceptor tyrosine kinases. The most studied kinase of this nine member family, c-Src, shares a similar structure, as well as a similar expression pattern to that of another Src family protein, c-Yes. Despite high conservation in sequence, molecular studies demonstrate that the functional domains of these kinases can contribute to specificity in signaling. At the cellular level, analysis of tight junction formation also serves as a model to differentiate c-Yes and c-Src signaling. Results suggest that c-Yes promotes formation of the tight junction by phosphorylating occludin, while c-Src signaling downregulates occludin formation in a Raf-1 dependent manner. In addition, pp62c-Yes knockout mice exhibit a specific physiological function phenotype that is distinct from c-src-/- mice. In these studies, c-yes-/- mice exhibit decreased transcytosis of pIgA from the blood to the bile, while c-src-/- mice exhibit deficits in osteoclasts function and bone resorption. Of particular interest in this review are receptor signals that specifically influence the actions of c-Yes. Growth factors that influence many Src family proteins include the PDGF-R, CSF-1 receptor and others. Since these receptors interact with various Src-family kinases, it is predicted that specific signaling is generated by differential recruitment to the cell membrane and/or differentiated interactions with substrates and binding partners. This review provides an overview of c-Yes interactions with specific receptor signaling pathways and how this interaction potentially influences the known physiological roles of c-Yes.
Collapse
Affiliation(s)
- David A Clump
- Department of Microbiology, Immunology, and Cell Biology, The Mary Babb Randolph Cancer Center and the West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | |
Collapse
|
23
|
Wang SE, Wu FY, Shin I, Qu S, Arteaga CL. Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function. Mol Cell Biol 2005; 25:4703-15. [PMID: 15899872 PMCID: PMC1140650 DOI: 10.1128/mcb.25.11.4703-4715.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) inhibits proliferation and promotes cell migration. In TGF-beta-treated MCF10A mammary epithelial cells overexpressing HER2 and by chromatin immunoprecipitation, we identified novel Smad targets including protein tyrosine phosphatase receptor type kappa (PTPRK). TGF-beta up-regulated PTPRK mRNA and RPTPkappa (receptor type protein tyrosine phosphatase kappa, the protein product encoded by the PTPRK gene) protein in tumor and nontumor mammary cells; HER2 overexpression down-regulated its expression. RNA interference (RNAi) of PTPRK accelerated cell cycle progression, enhanced response to epidermal growth factor (EGF), and abrogated TGF-beta-mediated antimitogenesis. Endogenous RPTPkappa associated with EGF receptor and HER2, resulting in suppression of basal and ErbB ligand-induced proliferation and receptor phosphorylation. In MCF10A/HER2 cells, TGF-beta enhanced cell motility, FAK phosphorylation, F-actin assembly, and focal adhesion formation and inhibited RhoA activity. These responses were abolished when RPTPkappa was eliminated by RNA interference (RNAi). In cells expressing RPTPkappa RNAi, phosphorylation of Src at Tyr527 was increased and (activating) phosphorylation of Src at Tyr416 was reduced. These data suggest that (i) RPTPkappa positively regulates Src; (ii) HER2 signaling and TGF-beta-induced RPTPkappa converge at Src, providing an adequate input for activation of FAK and increased cell motility and adhesion; and (iii) RPTPkappa is required for both the antiproliferative and the promigratory effects of TGF-beta.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Division of Oncology, Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Ave., 777 PRB, Nashville, TN 37232-6307, USA
| | | | | | | | | |
Collapse
|
24
|
Pariser H, Ezquerra L, Herradon G, Perez-Pinera P, Deuel TF. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase β/ζ-signaling pathway: Regulation of tyrosine phosphorylation of Fyn by pleiotrophin. Biochem Biophys Res Commun 2005; 332:664-9. [PMID: 15925565 DOI: 10.1016/j.bbrc.2005.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 05/02/2005] [Indexed: 12/21/2022]
Abstract
Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.
Collapse
Affiliation(s)
- Harold Pariser
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Roskoski R. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2005; 331:1-14. [DOI: 10.1016/j.bbrc.2005.03.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 02/07/2023]
|
26
|
Ensslen-Craig SE, Brady-Kalnay SM. Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev Biol 2004; 275:12-22. [PMID: 15464569 DOI: 10.1016/j.ydbio.2004.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/05/2004] [Accepted: 08/08/2004] [Indexed: 01/06/2023]
Abstract
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|