1
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
2
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
3
|
Chen H, Han T, Gao L, Zhang D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J Interferon Cytokine Res 2021; 42:1-7. [PMID: 34846920 DOI: 10.1089/jir.2021.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases characterized by dysregulation of the intestinal epithelial barrier (IEB) and intermittent relapses. Recent data show that the glial cell line-derived neurotrophic factor (GDNF) promotes IEB function and wound healing. Apart from protective effects of GDNF on enteric nervous system and IEB, an immunomodulatory role has been assumed. However, it is inconsistent whether GDNF levels are increased or decreased in the inflamed colon of patients with IBD. Furthermore, GDNF is 1 of 3 protein markers associated with relapse in a prospective cohort study in IBD patients with clinically and endoscopically quiescent disease. Additionally, not only enteric glial cells (EGCs), but also intestinal smooth muscle cells and enterocytes synthesize GDNF in significant amounts; in addition, its receptors are expressed in intestinal neurons, EGCs, immune cells and epithelial cells, which points to a potential auto- or paracrine signaling loop between some of these cells. Whether GDNF is involved in IBD-associated fibrosis and colitis-associated colorectal cancer remains to be confirmed. In this review we aim to summarize and discuss the current knowledge on the effects of GDNF and its potential role in the contribution to the pathogenesis of IBD.
Collapse
Affiliation(s)
- HuiLing Chen
- Department of Hematology and Lanzhou University Second Hospital, Gansu, P.R. China
| | - TiYun Han
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - LiPing Gao
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - DeKui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| |
Collapse
|
4
|
Seist R, Tong M, Landegger LD, Vasilijic S, Hyakusoku H, Katsumi S, McKenna CE, Edge ASB, Stankovic KM. Regeneration of Cochlear Synapses by Systemic Administration of a Bisphosphonate. Front Mol Neurosci 2020; 13:87. [PMID: 32765216 PMCID: PMC7381223 DOI: 10.3389/fnmol.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Mingjie Tong
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Hyakusoku
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sachiyo Katsumi
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S. B. Edge
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Hu Y, Xu Y, Huang Z, Deng Z, Fan J, Yang R, Ma H, Song J, Zhang Y. Transcriptome sequencing analysis of SH-SY5Y cells infected with EV71 reveals the potential neuropathic mechanisms. Virus Res 2020; 282:197945. [PMID: 32220619 DOI: 10.1016/j.virusres.2020.197945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/18/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Enterovirus A71 (EV71) remains the most common causative agent of hand, foot, and mouth disease (HFMD), and the neurological complications induced by EV71 are usually the leading cause of death in children with HFMD. However, the mechanism of nervous system changes caused by EV71 infection is still unclear. Therefore, in the current study, EV71 was inoculated into the human neuroblastoma cell line SH-SY5Y and subsequent transcriptome sequencing was used to examine the alterations of the transcriptome in infected SH-SY5Y cells. It is expected to determine the underlying mechanism of neurological diseases in response to EV71 infection. As a result, a total of 82,406,974, 112,410,808 and 87,780,371 clean reads were found in the control, EV71-12 h and EV71-24 h groups, respectively. Moreover, 160 and 745 differentially expressed genes were identified in the EV71-12 h and EV71-24 h groups, respectively, as compared to the control group. Next, to further explore the pathogenic mechanism triggered by EV71 infection, we mainly focused on the common differentially expressed genes at different time points of EV71 infection. And it was discovered that there were 95 common differentially expressed genes, which were used to conduct GO and pathway analysis. GO enrichment analysis demarcated related biological processes, molecular functions and cellular components, and KEGG pathway analysis enabled annotations of metabolic pathways and revealed interactions among the significantly enriched pathways. The results showed that the enriched GO term "Nervous system development" and enriched pathway "CCKR signaling map" might be important contributors to EV71-induced neuropathological mechanisms. In addition, we also screened 10 up- and down-regulated non-protein coding genes with significantly different expression in our transcriptome profiling, which suggested that these abnormally regulated non-protein-encoding genes might also play important roles in the pathogenesis of EV71 infection. Eventually, RT-qPCR technology was adopted to validate the transcriptome sequencing data and the experiment demonstrated that the RT-qPCR and transcriptome sequencing results were basically consistent. In summary, this is the first transcriptome analysis of SH-SY5Y cells in response to EV71 infection and provides valuable cues for further exploring the mechanism of nervous system changes caused by EV71 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Yanyan Xu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Zhenming Huang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Zheng Deng
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Jingyuan Fan
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Ruian Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Hongyu Ma
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China.
| |
Collapse
|
6
|
Xiao N, Yu WY, Liu D. Glial cell‐derived neurotrophic factor promotes dental pulp stem cell migration. J Tissue Eng Regen Med 2017; 12:705-714. [DOI: 10.1002/term.2490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of DentistryUniversity of the Pacific San Francisco CA USA
| | - Wei Ye Yu
- Department of Biomedical Sciences, Arthur A. Dugoni School of DentistryUniversity of the Pacific San Francisco CA USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, School of Dental MedicineUniversity of the Pennsylvania Philadelphia PA USA
| |
Collapse
|
7
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
8
|
Wang F, Xiang H, Fischer G, Liu Z, Dupont MJ, Hogan QH, Yu H. HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Res 2016; 1652:62-70. [PMID: 27671501 DOI: 10.1016/j.brainres.2016.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Orthopedic Surgery, Affiliated Hospitals of Qingdao University, Qingdao 266000, PR China
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Dupont
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
9
|
Li F, Wei G, Bai Y, Li Y, Huang F, Lin J, Hou Q, Deng R, Zhou JH, Zhang SX, Chen DF. MicroRNA-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin. Brain Res 2015; 1627:177-88. [PMID: 26423933 DOI: 10.1016/j.brainres.2015.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. The recent evidence in AD research suggests that alterations in the microRNA (miRNA) could contribute to risk for the disease. However, little is understood about the roles of miRNAs in cognitive impairment of early Alzheimer's disease (AD). Here, we used 5-month-old APP/PS1 mice, which mimic many of the salient features of the early stage of AD pathological process, to further investigate the roles of miRNAs in synaptic loss involved in learning and memory. We used miRNA expression microarrays on RNA extracted from the hippocampus of 5-month-old APP/PS1 mice and wild type mice. Real-time reverse transcription PCR was conducted to verify the candidate miRNAs discovered by microarray analysis. The data showed that miR-574 was increased significantly in the hippocampus of 5-month-old APP/PS1 mice, which were concomitant with that APP/PS1 mice at the same age displayed a significant synaptic loss and cognitive deficits. Bioinformatic analysis predicted that neuritin (Nrn1) mRNA is targeted by miR-574. Overexpression of miR-574 lowers the levels of neuritin and synaptic proteins expression in primary hippocampal neurons damage induced by Aβ25-35. And the expression of miR-574 was also up-regulated in the hippocampal neurons from APP/PS1 mice compared with WT littermates. In contrast, suppression of miR-574 by miR-574 inhibitor significantly results in higher levels of neuritin and synaptic proteins expression. Taken together, miR-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin.
Collapse
Affiliation(s)
- Fei Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Gang Wei
- Research & Development of New Drugs, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ye Bai
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunjun Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fengyuan Huang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Lin
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qiuke Hou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Hong Zhou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Sai Xia Zhang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dong Feng Chen
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Bonacini M, Coletta M, Ramazzina I, Naponelli V, Modernelli A, Davalli P, Bettuzzi S, Rizzi F. Distinct promoters, subjected to epigenetic regulation, drive the expression of two clusterin mRNAs in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:44-54. [PMID: 25464035 DOI: 10.1016/j.bbagrm.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/24/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant. b) CLU 2 is expressed at a low level in normal fibroblasts and virtually absent in prostate cancer cells. c) CLU 1, and to a greater extent CLU 2 expression, increased by AZDC-TSA treatment in prostate cancer cells. d) Both CLU 1 and CLU 2 encode for secreted CLU. e) P2, a novel promoter that overlaps the CLU 2 Transcription Start Site (TSS), drives CLU 2 expression. f) A CpG island, methylated in prostate cancer cells and not in normal fibroblasts, is responsible for long-term heritable regulation of CLU 1 expression. g) ChIP assay of histone tail modifications at CLU promoters (P1 and P2) shows that treatment of prostate cancer cells with AZDC-TSA causes enrichment of Histone3(Lys9)acetylated (H3K9ac) and reduction of Histone3(Lys27)trimethylated (H3K27me3), inducing active transcription of both CLU variants. In conclusion, we show for the first time that the expression of CLU 2 mRNA is driven by a novel promoter, P2, whose activity responds to epigenetic drugs treatment through changes in histone modifications.
Collapse
Affiliation(s)
- Martina Bonacini
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Mariangela Coletta
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Ileana Ramazzina
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Valeria Naponelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Alice Modernelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy
| | - Pierpaola Davalli
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Saverio Bettuzzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| | - Federica Rizzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
11
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
12
|
Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012; 123:477-90. [PMID: 22906125 PMCID: PMC3472040 DOI: 10.1111/j.1471-4159.2012.07925.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022]
Abstract
Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington's disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a, and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment, and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yong Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William Wood
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emmette Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kevin G. Becker
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
13
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
14
|
Yoo YM, Lee CJ, Kim YJ. Exogenous GDNF increases the migration of the neural stem cells with no protection against kainic acid-induced excitotoxic cell death in rats. Brain Res 2012; 1486:27-38. [PMID: 22985671 DOI: 10.1016/j.brainres.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/20/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
Glia cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuron types. In this study, we have evaluated the utility of adenovirus-based vectors (Ad) and hippocampal neural stem cells (NSCs) as genetic tools for the delivery of a therapeutic protein, GDNF, in hippocampus tissues damaged by kainic acid (KA)-induced excitotoxicity. The experimental animals were treated with KA 3 days prior to exposure to Ad-GDNF, NSCs, and NSCs infected with Ad-GDNF (Ad-GDNF-NSCs). Seven days after the treatments with Ad-GDNF, NSCs and Ad-GDNF-NSCs, the effects of the treatments were evaluated. GAD-67 labeled cells originating from the transplanted NSCs were observed at increased levels in the Ad-GDNF-NSCs-treated rats as compared to the NSCs-only rats. In situ apoptosis assays showed that the levels of TUNEL-positive cells were slightly, but not significantly, reduced in the Ad-GDNF and Ad-GDNF-NSCs groups, as compared to the saline and NSCs only groups. GDNF expression by NSCs and Ad-GDNF was upregulated as the consequence of adenoviral gene delivery in the NSCs and Ad-GDNF-treated rats, and the transplanted NSCs were shown to have migrated to the hippocampal regions in Ad-GDNF-NSCs rats to a greater degree than in the NSCs-only rats. Furthermore, in the region in which the NSCs were detected, GDNF and GAD-67 expression were increased. These results indicate that the migration and differentiation of NSCs may be associated with the expression of GDNF. However, cell death consequent to KA administration was not prevented by upregulated GDNF and NSCs transplantation. Collectively, our results indicate that GDNF may exert effects on the migration and differentiation of NSCs, but there are no protective properties with regard to excitotoxically damaged hippocampal tissue.
Collapse
Affiliation(s)
- Young-Mi Yoo
- Department of Neurosurgery, Gachon Medical College, Gil Medical Center, Incheon, South Korea
| | | | | |
Collapse
|
15
|
Scheffler K, Stenzel J, Krohn M, Lange C, Hofrichter J, Schumacher T, Brüning T, Plath AS, Walker L, Pahnke J. Determination of spatial and temporal distribution of microglia by 230nm-high-resolution, high-throughput automated analysis reveals different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer's disease. Curr Alzheimer Res 2012; 8:781-8. [PMID: 21244350 DOI: 10.2174/156720511797633179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/24/2010] [Accepted: 11/10/2010] [Indexed: 12/17/2022]
Abstract
One early and prominent pathologic feature of Alzheimer's disease (AD) is the appearance of activated microglia in the vicinity of developing β-amyloid deposits. However, the precise role of microglia during the course of AD is still under discussion. Microglia have been reported to degrade and clear β-amyloid, but they also can exert deleterious effects due to overwhelming inflammatory reactions. Here, we demonstrate the occurrence of developing plaque populations with distinct amounts of associated microglia using time-dependent analyses of plaque morphology and the spatial distribution of microglia in an APP/PS1 mouse model. In addition to a population of larger plaques (>700µm(2)) that are occupied by a moderate contingent of microglial cells across the course of aging, a second type of small β-amyloid deposits develops (≤400µm(2)) in which the plaque core is enveloped by a relatively large number of microglia. Our analyses indicate that microglia are strongly activated early in the emergence of senile plaques, but that activation is diminished in the later stages of plaque evolution (>150 days). These findings support the view that microglia serve to restrict the growth of senile plaques, and do so in a way that minimizes local inflammatory damage to other components of the brain.
Collapse
Affiliation(s)
- Katja Scheffler
- University of Rostock, Department of Neurology, Neurodegeneration Research Laboratory, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Liu RR, Wang L, Zeng L, Long ZY, Wu YM. The effects of different phenotype astrocytes on neural stem cells differentiation in co-culture. Neurosci Lett 2011; 508:61-6. [PMID: 22206833 DOI: 10.1016/j.neulet.2011.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/01/2011] [Accepted: 12/13/2011] [Indexed: 01/09/2023]
Abstract
Astrocytes were reported to show neuroprotective effects on neurons, but there was no direct evidence for a functional relationship between astrocytes and neural stem cells (NSCs). In this experiments, we examined neuronal differentiation of NSCs induced by protoplasmic and fibrous astrocytes in a co-culture model respectively. Two types of astrocytes and NSCs were isolated from E13 to 15 cortex of rats. The neuronal differentiation of NSCs was examined after co-culture with two kinds of astrocytes. There were more neuronal marker β-tublin III positive cells from NSCs co-cultured with protoplasmic astrocytes. However the differentiated neurons, whether co-cultured with protoplasmic astrocytes or fibrous astrocytes, both expressed glutamate AMPA receptor subunit GluR2 protein and exhibited biological electrical reactivity after stimulated by glutamine. Therefore, these findings indicated that two types of astrocytes could induce the differentiation of NSCs and also possibly induce functional maturation of differentiated neurons, among which protoplasmic astrocytes have the ability to promote neuronal differentiation of NSCs compared with fibrous astrocytes.
Collapse
Affiliation(s)
- Yuan Liu
- 3rd Department of Research Institute of Surgery, Daping Hospital, The Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | | | | | | | | | | |
Collapse
|
17
|
Electrophysiological characterization of NSCs after differentiation induced by OEC conditioned medium. Acta Neurochir (Wien) 2011; 153:2085-90. [PMID: 21301894 DOI: 10.1007/s00701-011-0955-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE We induced neural stem cells (NSCs) to neurons by olfactory ensheathing cell (OEC) conditioned medium and characterized their electrophysiological properties after neuronal differentiation. METHODS Fetal NSCs and OECs were cultured from embryonic day 14 SD rats and the conditioned medium was collected and stored at -20°C when the cell number was up to 80% of the culture flasks. The experiment groups were divided into a control group (cultured with DMEM/F12 without FBS) and an OECs induction group (cultured with OEC conditioned medium and DMEM/F12 without FBS). Immunocytochemistry staining was carried out to identify the neurons derived from NSCs and their electrophysiological properties were characterized after neuronal differentiation using a patch-clamp technique. RESULTS The NSCs divided rapidly in the expansion medium, forming small proliferating spheres after 7 days. The OECs induction group presented an evident neuron-like type 7 days after adding OEC conditioned medium, and the nestin immunochemistry staining was positive. The electrophysiological characterization showed that the derived neurons presented a transient inward sodium current and slow outward potassium current under proper electric stimulus, which were blocked by tetrodotoxin (TTX) and tetraethylammonium (TEA). CONCLUSION OEC conditioned medium can induce NSCs to form neurons, and electrophysiological characterization demonstrated that the derived neurons presented active electrophysiological properties which are essential for nervous excitation.
Collapse
|
18
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Lange C, Mix E, Frahm J, Glass A, Müller J, Schmitt O, Schmöle AC, Klemm K, Ortinau S, Hübner R, Frech MJ, Wree A, Rolfs A. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 2010; 488:36-40. [PMID: 21056624 DOI: 10.1016/j.neulet.2010.10.076] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/22/2010] [Accepted: 10/31/2010] [Indexed: 12/26/2022]
Abstract
Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications.
Collapse
Affiliation(s)
- Christian Lange
- Neurobiological Laboratory, Department of Neurology, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shen LH, Li Y, Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 2010; 58:1074-81. [PMID: 20468049 DOI: 10.1002/glia.20988] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone marrow stromal cells (BMSCs) facilitate functional recovery in rats after focal ischemic attack. Growing evidence suggests that the secretion of various bioactive factors underlies BMSCs' beneficial effects. This study investigates the expression of glial cell derived neurotrophic factor (GDNF) in the ischemic hemisphere with or without BMSC administration. Adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 x 10(6) BMSCs (n = 11) or phosphate-buffered saline (n = 10) into the tail vein 24 h later. Animals were sacrificed seven days later. Single and double immunohistochemical staining was performed to measure GDNF, Ki67, doublecortin, and glial fibrillary acidic protein expression as well as the number of apoptotic cells along the ischemic boundary zone (IBZ) and/or in the subventricular zone (SVZ). BMSC treatment significantly increased GDNF expression and decreased the number of apoptotic cells in the IBZ (P < 0.05). GDNF expression was colocalized with GFAP. Meanwhile, BMSCs increased the number of Ki-67 positive cells and the density of DCX positive migrating neuroblasts (P < 0.05). GDNF expression was significantly increased in single astrocytes collected from animals treated with BMSCs, and in astrocytes cocultured with BMSCs after OGD (P < 0.05). Our data suggest that BMSCs increase GDNF levels in the ischemic hemisphere; the major source of GDNF protein is reactive astrocytes. We propose that the increase of GDNF in response to BMSC administration creates a hospitable environment for local cellular repair as well as for migrating neuroblasts from the SVZ, and thus contributes to the functional improvement.
Collapse
Affiliation(s)
- L H Shen
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
21
|
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning. Neuroscience 2009; 159:468-82. [DOI: 10.1016/j.neuroscience.2008.12.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/11/2008] [Accepted: 12/31/2008] [Indexed: 11/18/2022]
|
22
|
Hovakimyan M, Weinreich K, Haas SJP, Cattaneo E, Rolfs A, Wree A. In vitro characterization of embryionic ST14A-cells. Int J Neurosci 2009; 118:1489-501. [PMID: 18853328 DOI: 10.1080/00207450701769257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The embryonic striatal temperature sensitive immortalized ST14A-cell line was characterized in vitro by immunocytochemistry when cultured at 33 degrees C and at nonpermissive temperature of 39 degrees C for up to 14 days. At 33 degrees C in DMEM/10% FCS, cells proliferated, were extensively expressing the neural progenitor cell markers nestin and vimentin contrary to neuronal markers. However, when cultured at 39 degrees C the proliferation was delayed and cells began to increase the expression of neuronal markers, followed by a decrease of nestin and vimentin. In serum-free medium the process of neuronal differentiation became more obvious, indicating the potential to use these cells for experimental restorative therapies.
Collapse
|
23
|
Skalnikova H, Vodicka P, Gadher SJ, Kovarova H. Proteomics of neural stem cells. Expert Rev Proteomics 2008; 5:175-86. [PMID: 18466050 DOI: 10.1586/14789450.5.2.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology & Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic.
| | | | | | | |
Collapse
|
24
|
Sakai A, Asada M, Seno N, Suzuki H. Involvement of neural cell adhesion molecule signaling in glial cell line-derived neurotrophic factor-induced analgesia in a rat model of neuropathic pain. Pain 2008; 137:378-388. [PMID: 17967506 DOI: 10.1016/j.pain.2007.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 08/20/2007] [Accepted: 09/24/2007] [Indexed: 11/16/2022]
Abstract
Since neuropathic pain is resistant to conventional analgesics such as opiates and non-steroidal anti-inflammatory drugs, the development of new types of drugs for its treatment has been awaited. Several key molecules associated with nociception have been suggested as potential targets for new analgesics. Glial cell line-derived neurotrophic factor (GDNF) has a variety of functions affecting the survival and development of specified neural cell populations, mediated via transmission of intracellular signals through binding to its high-affinity receptor, GFR*1, and subsequent activation of a tyrosine receptor kinase, RET, neural cell adhesion molecule (NCAM), or other signaling molecules. GDNF also exhibits analgesic effects in rodent models of neuropathic pain, although the underlying mechanisms are still largely unknown, including the intracellular signal transduction involved. We report here that NCAM signaling plays a role in mediating the analgesic effect of GDNF in rats with chronic constrictive injury (CCI). We found that NCAM was expressed in intrinsic neurons in the spinal dorsal horn and in dorsal root ganglion neurons with small cell bodies. Reduction of NCAM expression by NCAM antisense oligodeoxynucleotide administration to CCI rats abolished the analgesic effect of GDNF without affecting RET signaling activation. An NCAM mimetic peptide, C3d, partially reduced the chronic pain induced by CCI. These findings suggest that NCAM signaling plays a critical role in the analgesic effect of GDNF and that development of new drugs activating GDNF-NCAM signaling may represent a new strategy for the relief of intractable pain.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Shizuoka 411-8731, Japan
| | | | | | | |
Collapse
|
25
|
FARGO KEITHN, ALEXANDER THOMASD, TANZER LISA, POLETTI ANGELO, JONES KATHRYNJ. Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 2008; 25:561-6. [PMID: 18419250 PMCID: PMC9848905 DOI: 10.1089/neu.2007.0466] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Following crush injury to the facial nerve in Syrian hamsters, treatment with androgens enhances axonal regeneration rates and decreases time to recovery. It has been demonstrated in vitro that the ability of androgen to enhance neurite outgrowth in motoneurons is dependent on neuritin-a protein that is involved in the re-establisment of neuronal connectivity following traumatic damage to the central nervous system and that is under the control of several neurotrophic and neuroregenerative factors--and we have hypothesized that neuritin is a mediator of the ability of androgen to increase peripheral nerve regeneration rates in vivo. Testosterone treatment of facial nerve-axotomized hamsters resulted in an approximately 300% increase in neuritin mRNA levels 2 days post-injury. Simultaneous treatment with flutamide, an androgen receptor blocker that is known to prevent androgen enhancement of nerve regeneration, abolished the ability of testosterone to upregulate neuritin mRNA levels. In a corroborative in vitro experiment, the androgen dihydrotestosterone induced an approximately 100% increase in neuritin mRNA levels in motoneuron-neuroblastoma cells transfected with androgen receptors, but not in cells without androgen receptors. These data confirm that neuritin is under the control of androgens, and suggest that neuritin is an important effector of androgen in enhancing peripheral nerve regeneration following injury. Given that neuritin has now been shown to be involved in responses to both central and peripheral injuries, and appears to be a common effector molecule for several neurotrophic and neurotherapeutic agents, understanding the neuritin pathway is an important goal for the clinical management of traumatic nervous system injuries.
Collapse
Affiliation(s)
- KEITH N. FARGO
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.,Research and Development Service, Hines VA Medical Center, Hines, Illinois
| | | | - LISA TANZER
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - ANGELO POLETTI
- Institute of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - KATHRYN J. JONES
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.,Research and Development Service, Hines VA Medical Center, Hines, Illinois
| |
Collapse
|
26
|
Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008; 55:1265-73. [PMID: 18402986 DOI: 10.1016/j.neuropharm.2008.02.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/15/2008] [Accepted: 02/26/2008] [Indexed: 01/11/2023]
Abstract
Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate different cellular processes such as neurotransmission and receptor trafficking. In this article, we provide an overview of current methods for studying lipid rafts and models for how lipid rafts might form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington's, Alzheimer's, and Niemann-Pick Type C diseases.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
27
|
Cantallops I, Cline HT. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intactXenopus tadpoles. Dev Neurobiol 2008; 68:744-59. [DOI: 10.1002/dneu.20529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Kameda M, Shingo T, Takahashi K, Muraoka K, Kurozumi K, Yasuhara T, Maruo T, Tsuboi T, Uozumi T, Matsui T, Miyoshi Y, Hamada H, Date I. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci 2007; 26:1462-78. [PMID: 17880388 DOI: 10.1111/j.1460-9568.2007.05776.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) are important autologous transplantation tools in regenerative medicine, as they can secrete factors that protect the ischemic brain. We investigated whether adult NSPCs genetically modified to secrete more glial cell line-derived neurotrophic factor (GDNF) could protect against transient ischemia in rats. NSPCs were harvested from the subventricular zone of adult Wistar rats and cultured for 3 weeks in the presence of epidermal growth factor. The NSPCs were treated with fibre-mutant Arg-Gly-Asp adenovirus containing the GDNF gene (NSPC-GDNF) or enhanced green fluorescent protein (EGFP) gene (NSPC-EGFP; control group). In one experiment, cultured cells were transplanted into the right ischemic boundary zone of Wistar rat brains. One week later, animals underwent 90 min of intraluminal right middle cerebral artery occlusion followed by magnetic resonance imaging and behavioural tests. The NSPC-GDNF group had higher behavioural scores and lesser infarct volume than did controls at 1, 7 and 28 days postocclusion. In the second experiment, we transplanted NSPCs 3 h after ischemic insult. Compared to controls, rats receiving NSPC-GDNF had decreased infarct volume and better behavioural assessments at 7 days post-transplant. Animals were killed on day 7 and brains were collected for GDNF ELISA and morphological assessment. Compared to controls, more GDNF was secreted, more NSPC-GDNF cells migrated toward the ischemic core and more NSPC-GDNF cells expressed immature neuronal marker. Moreover, the NSPC-GDNF group showed more effective inhibition of microglial invasion and apoptosis. These findings suggest that NSPC-GDNF may be useful in treatment of cerebral ischemia.
Collapse
Affiliation(s)
- M Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho Okayama, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Christou YA, Moore HD, Shaw PJ, Monk PN. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease. Neuropathol Appl Neurobiol 2007; 33:485-98. [PMID: 17854436 DOI: 10.1111/j.1365-2990.2007.00883.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.
Collapse
Affiliation(s)
- Y A Christou
- Academic Unit of Neurology, Section of Neuroscience, University of Sheffield, UK
| | | | | | | |
Collapse
|
30
|
Beyer S, Mix E, Hoffrogge R, Lünser K, Völker U, Rolfs A. Neuroproteomics in stem cell differentiation. Proteomics Clin Appl 2007; 1:1513-23. [PMID: 21136647 DOI: 10.1002/prca.200700324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 12/31/2022]
Abstract
The term "proteome" is used to describe the entire complement of proteins in a given organism or in a system at a given time. Proteome analysis in neuroscience, also called "neuroproteomics" or "neuromics" is in its initial stage, and shows a deficit of studies in the context of brain development. It is the main objective of this review to illustrate the potential of neuroproteomics as a tool to unravel the differentiation of neural stem or progenitor cells to terminally differentiated neurons. Experimental results regarding the rat striatal progenitor model cell line ST14A are presented to illustrate the large rearrangements of the proteome during the differentiation process of neural progenitor cells and their modification by neurotrophic factors like the glial cell line-derived neurotrophic factor (GDNF). Thereby native stem cells and cells transfected with GDNF gene were investigated at the proliferative state and at seven time points up to 72 h after induction of differentiation. In addition, the immortalized human fetal midbrain stem cell line ReNcell VM was analyzed in order to detect stem cell differentiation associated changes of the protein profile. This review gives also an outlook on technical improvements and perspectives of application of neural stem cell proteomics.
Collapse
Affiliation(s)
- Susanne Beyer
- Neurobiological Laboratory, Department of Neurology, Medical Faculty, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Lin X, Zhang Y, Dong J, Zhu X, Ye M, Shi J, Lu J, Di Q, Shi J, Liu W. GM-CSF enhances neural differentiation of bone marrow stromal cells. Neuroreport 2007; 18:1113-7. [PMID: 17589309 DOI: 10.1097/wnr.0b013e3282010aff] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent reports suggest that bone marrow stromal cells may be induced into neural cells both in vivo and in vitro. The factors that regulate the neural differentiation and the mechanism involved, however, remains unclear. Here we demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF), a potent hematopoietic factor, was able to enhance the neural differentiation of bone marrow stromal cells. Moreover, we found that GM-CSF receptors are abundantly distributed in the bone marrow stromal cells and GM-CSF significantly upregulated the phosphorylation of cAMP-responsive element binding protein in bone marrow stromal cells. These findings suggest that GM-CSF may activate its receptor and then enhance neural differentiation of bone marrow stromal cells by upregulating phosphorylation of cAMP-responsive element binding protein.
Collapse
Affiliation(s)
- Xingjian Lin
- Department of Neurology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Trougakos IP, Pawelec G, Tzavelas C, Ntouroupi T, Gonos ES. Clusterin/Apolipoprotein J up-regulation after zinc exposure, replicative senescence or differentiation of human haematopoietic cells. Biogerontology 2007; 7:375-82. [PMID: 16955214 DOI: 10.1007/s10522-006-9052-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) is a cellular senescence biomarker implicated in several physiological processes. In this work we have investigated CLU expression and function in human haematopoietic cells. We found that early passage human T cell clones (TCC) express minimal endogenous amounts of CLU, which are significantly elevated in late passage cells. Moreover, exposure of TCC to increased levels of the essential micronutrient zinc in culture resulted in intense induction of CLU. Because haematopoietic cells cease proliferation following induction of terminal differentiation, we also studied the expression profile of CLU in the leukemic progenitor cell lines K562 and HL-60. We found that, like TCC, both cell lines express minimal endogenous levels of CLU in their actively proliferating state. However, when induced to differentiate into their distinct cell types, CLU was found to be up-regulated specifically in those cells expressing the main differentiation markers. Enforced stable over-expression of CLU in K562 cells inhibited the expression of the CD14 differentiation marker and blocked differentiation to either monocytes/megacaryoblasts or to erythrocytes. Overall, our results suggest that CLU is actively involved in both replicative senescence and terminal differentiation in different types of human haematopoietic cells.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Ageing, Institute of Biological Research & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., Athens, 11635, Greece
| | | | | | | | | |
Collapse
|
33
|
Boleken M, Demirbilek S, Kirimiloglu H, Kanmaz T, Yucesan S, Celbis O, Uzun I. Reduced neuronal innervation in the distal end of the proximal esophageal atretic segment in cases of esophageal atresia with distal tracheoesophageal fistula. World J Surg 2007; 31:1512-7. [PMID: 17534555 DOI: 10.1007/s00268-007-9070-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 02/28/2007] [Accepted: 03/04/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND Esophageal dysmotility is a common occurence after surgical repair of proximal esophageal atresia (EA) and distal tracheoesophageal fistula (TEF). The etiology of this motility disorder, however, remains controversial. Esophageal dysmotility also is present in isolated TEF or EA before surgery, suggesting a congenital cause. However, there is no information available in the literature with regard to the intramural nervous system of the human esophagus in EA-TEF. PATIENTS AND METHODS We examined the distal end of proximal esophageal atretic segment of neonates undergoing EA-TEF repair for intrinsic neuronal innervation. Using specific antibodies, we studied neuronal markers of specimens from nine cases of EA-TEF and 9 cases of normal esophagus by immunohistochemistry using neurofilament (NF), synaptophysin (SY), S100, and glial cell line-derived neurotrophic factor (GDNF). RESULTS In the atretic segment, specimens staining with hematoxylin and eosin showed that there were marked hypoganglionosis and immature ganglion cells in the myenteric plexus. GDNF immunoreactivity in the atretic esophagus were markedly reduced in both the muscular layer and myenteric plexus. SY and NF-immunorective nerve fibers were distributed throughout the myenteric plexus of the normal esophagus, but the scarcity of these immunoreactive nerve fibers in the atretic esophagus was apparent. In contrast, the density of immunorective nerve fibers for S100 in the myenteric plexus and muscular layer was increased in the distal end of the atretic esophagus. CONCLUSION We concluded that the distribution of ganglion cells and some nerve fibers in the distal end of the atretic esophageal segment is deficient. Inadequate and abnormal neuronal innervation of the esophagus could be related to the esophageal dysmotility seen in EA. Because GDNF is a survival factor for central and peripheral neurons, defective expression of GDNF could have an important role in the defective and/or abnormal neuronal innervation of atretic esophageal segment.
Collapse
Affiliation(s)
- Mehmet Boleken
- Department of Pediatric Surgery, Harran University, Sanliurfa 3300, Turkey
| | | | | | | | | | | | | |
Collapse
|
34
|
Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 2007; 8:36. [PMID: 17531091 PMCID: PMC1888696 DOI: 10.1186/1471-2202-8-36] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/25/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to neurodegenerative disease. Overexpression of the myc family transcription factors in human primary cells from developing cortex and mesencephalon has produced two stable multipotential NSC lines (ReNcell VM and CX) that can be continuously expanded in monolayer culture. RESULTS In the undifferentiated state, both ReNcell VM and CX are nestin positive and have resting membrane potentials of around -60 mV but do not display any voltage-activated conductances. As initially hypothesized, using standard methods (stdD) for differentiation, both cell lines can form neurons, astrocytes and oligodendrocytes according to immunohistological characteristics. However it became clear that this was not true for electrophysiological features which designate neurons, such as the firing of action potentials. We have thus developed a new differentiation protocol, designated 'pre-aggregation differentiation' (preD) which appears to favor development of electrophysiologically functional neurons and to lead to an increase in dopaminergic neurons in the ReNcell VM line. In contrast, the protocol used had little effect on the differentiation of ReNcell CX in which dopaminergic differentiation was not observed. Moreover, after a week of differentiation with the preD protocol, 100% of ReNcell VM featured TTX-sensitive Na+-channels and fired action potentials, compared to 25% after stdD. Currents via other voltage-gated channels did not appear to depend on the differentiation protocol. ReNcell CX did not display the same electrophysiological properties as the VM line, generating voltage-dependant K+ currents but no Na+ currents or action potentials under either stdD or preD differentiation. CONCLUSION These data demonstrate that overexpression of myc in NSCs can be used to generate electrophysiologically active neurons in culture. Development of a functional neuronal phenotype may be dependent on parameters of isolation and differentiation of the cell lines, indicating that not all human NSCs are functionally equivalent.
Collapse
|
35
|
Christophersen NS, Grønborg M, Petersen TN, Fjord-Larsen L, Jørgensen JR, Juliusson B, Blom N, Rosenblad C, Brundin P. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp Neurol 2007; 204:791-801. [PMID: 17320866 DOI: 10.1016/j.expneurol.2007.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Affymetrix GeneChip technology and quantitative real-time PCR (Q-PCR) were used to examine changes in gene expression in the adult murine substantia nigra pars compacta (SNc) following lentiviral glial cell line-derived neurotrophic factor (GDNF) delivery in adult striatum. We identified several genes that were upregulated after GDNF treatment. Among these, the gene encoding the transmembrane protein Delta-like 1 homologue (Dlk1) was upregulated with a greater than 4-fold increase in mRNA encoding this protein. Immunohistochemistry with a Dlk1-specific antibody confirmed the observed upregulation with increased positive staining of cell bodies in the SNc and fibers in the striatum. Analysis of the developmental regulation of Dlk1 in the murine ventral midbrain showed that the upregulation of Dlk1 mRNA correlated with the generation of tyrosine hydroxylase (TH)-positive neurons. Furthermore, Dlk1 expression was analyzed in MesC2.10 cells, which are derived from embryonic human mesencephalon and capable of undergoing differentiation into dopaminergic neurons. We detected upregulation of Dlk1 mRNA and protein under conditions where MesC2.10 cells differentiate into a dopaminergic phenotype (41.7+/-7.1% Dlk1+ cells). In contrast, control cultures subjected to default differentiation into non-dopaminergic neurons only expressed very few (3.7+/-1.3%) Dlk1-immunopositive cells. The expression of Dlk1 in MesC2.10 cells was specifically upregulated by the addition of GDNF. Thus, our data suggest that Dlk1 expression precedes the appearance of TH in mesencephalic cells and that levels of Dlk1 are regulated by GDNF.
Collapse
Affiliation(s)
- Nicolaj S Christophersen
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22184 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81:29-44. [PMID: 17258379 DOI: 10.1016/j.pneurobio.2006.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/14/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) affects one in every 100 persons above the age of 65 years, making it the second most common neurodegenerative disease after Alzheimer's disease. PD is a disease of the central nervous system that leads to severe difficulties with body motions. The currently available therapies aim to improve the functional capacity of the patient for as long as possible; however they do not modify the progression of the neurodegenerative process. The need for newer and more effective agents is consequently receiving a great deal of attention and consequently being subjected to extensive research. This review concisely compiles the limitations of currently available therapies and the most recent research regarding neuroprotective agents, antioxidants, stem cell research, vaccines and various surgical techniques available and being developed for the management of PD.
Collapse
Affiliation(s)
- Neha Singh
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | | | | |
Collapse
|
37
|
Henning J, Koczan D, Glass A, Karopka T, Pahnke J, Rolfs A, Benecke R, Gimsa U. Deep brain stimulation in a rat model modulates TH, CaMKIIa and Homer1 gene expression. Eur J Neurosci 2007; 25:239-50. [PMID: 17241285 DOI: 10.1111/j.1460-9568.2006.05264.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-frequency stimulation (HFS) of subthalamic nucleus (STN) is a therapy for late-stage Parkinson's disease. Its mechanisms of action are not yet fully understood. In the present study, gene expression analyses were performed in a rat model of Parkinson's disease, i.e. striatal 6-hydroxydopamine (6-OHDA) lesion. Using microarrays, gene expression was analysed in 1-mm-thick sagittal brain slices, including basal ganglia of five groups of male Wistar rats. These were unmanipulated rats (group A), unlesioned rats with implanted electrode but without stimulation (group B), unlesioned, stimulated rats (group C), 6-OHDA-lesioned rats with implanted electrode but without stimulation (group D), and finally 6-OHDA-lesioned and stimulated rats (group E). A statistically significant downregulation of tyrosine hydroxylase (TH) mRNA expression induced by 6-OHDA lesion and an HFS-induced TH upregulation in 6-OHDA-lesioned rats could be detected. It could be hypothesized that the HFS-induced upregulation of TH is the result of neuronal STN modulation and mediated via projections from STN to substantia nigra pars compacta. Furthermore, a downregulation of calcium/calmodulin-dependent protein kinase type IIA and Homer1 was observed. This downregulation could result in a reduced sensitivity towards glutamate in basal ganglia downstream of STN.
Collapse
Affiliation(s)
- Jeannette Henning
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoffrogge R, Beyer S, Hübner R, Mikkat S, Mix E, Scharf C, Schmitz U, Pauleweit S, Berth M, Zubrzycki IZ, Christoph H, Pahnke J, Wolkenhauer O, Uhrmacher A, Völker U, Rolfs A. 2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells. Proteomics 2007; 7:33-46. [PMID: 17146836 DOI: 10.1002/pmic.200600614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted differentiation of neural progenitor cells (NPCs) is a challenge for treatment of neurodegenerative diseases by cell replacement therapy and cell signalling manipulation. Here, we applied a proteome profiling approach to the rat striatal progenitor model cell line ST14A in order to elucidate cellular differentiation processes. Native cells and cells transfected with the glial cell line-derived neurotrophic factor (GDNF) gene were investigated at the proliferative state and at seven time points up to 72 h after induction of differentiation. 2-DE combined with MALDI-MS was used to create a reference 2-DE-map of 652 spots of which 164 were identified and assigned to 155 unique proteins. For identification of protein expression changes during cell differentiation, spot patterns of triplicate gels were matched to the 2-DE-map. Besides proteins that display expression changes in native cells, we also noted 43 protein-spots that were differentially regulated by GDNF overexpression in more than four time points of the experiment. The expression patterns of putative differentiation markers such as annexin 5 (ANXA5), glucosidase II beta subunit (GLU2B), phosphatidylethanolamine-binding protein 1 (PEBP1), myosin regulatory light chain 2-A (MLRA), NASCENT polypeptide-associated complex alpha (NACA), elongation factor 2 (EF2), peroxiredoxin-1 (PRDX1) and proliferating cell nuclear antigen (PCNA) were verified by Western blotting. The results reflect the large rearrangements of the proteome during the differentiation process of NPCs and their strong modification by neurotrophic factors like GDNF.
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Department of Neurology, Medical Faculty, Neurobiological Laboratory, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mix E, Ibrahim SM, Pahnke J, Glass A, Mazón-Peláez I, Lemcke S, Koczan D, Gimsa U, Bansemer S, Scheel T, Karopka T, Böttcher T, Müller J, Dazert E, Antipova V, Hoffrogge R, Wree A, Zschiesche M, Strauss U, Kundt G, Warzok R, Gierl L, Rolfs A. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor Atorvastatin mediated effects depend on the activation status of target cells in PLP-EAE. J Autoimmun 2006; 27:251-65. [PMID: 17085013 DOI: 10.1016/j.jaut.2006.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/15/2006] [Accepted: 09/16/2006] [Indexed: 11/23/2022]
Abstract
The effect of Atorvastatin on transcriptional activity in murine experimental autoimmune encephalomyelitis (EAE) induced by PLP peptide 139-151 was analyzed by DNA microarray technique in lymph nodes and spinal cord at onset (10 days), height (20 days) and first remission (30 days) of disease. Fourteen genes were selectively influenced by Atorvastatin in EAE mice. They are mainly related to immune cell functions and regulation of cell-to-cell interaction. Interestingly, seven genes were also differentially regulated in CFA-injected control mice. But qualitative and quantitative differences to EAE mice argue for a dependency of statin effects on the activation status of target cells. Differential regulation of the newly detected candidate genes of statin effects COX-1 and HSP-105 and the previously known statin-responsive genes ICAM-1 and CD86 was confirmed by Western blot and immunohistochemistry. Flow cytometric analysis of lymph node cells revealed that the effect of Atorvastatin treatment in non-immunized healthy animals resembled the effect of immunization with PLP peptide regarding changes of T helper cells, activated B cells and macrophages. In EAE mice, these effects were partially reversed by Atorvastatin treatment. Monitoring of expression of the newly identified candidate genes and patterns of lymphocyte subpopulations might predict the responsiveness of multiple sclerosis patients to statin treatment.
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, D-18147 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lange C, Mix E, Rateitschak K, Rolfs A. Wnt signal pathways and neural stem cell differentiation. NEURODEGENER DIS 2006; 3:76-86. [PMID: 16909041 DOI: 10.1159/000092097] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Self-renewal, migration and differentiation of neural progenitor cells are controlled by a variety of pleiotropic signal molecules. Members of the morphogen family of Wnt molecules play a crucial role for developmental and repair mechanisms in the embryonic and adult nervous system. A strategy of disclosure of the role of different canonical (glycogen synthase kinase-3beta/beta-catenin-dependent) and noncanonical (Ca2+- and JNK-dependent) signal pathways for progenitor cell expansion and differentiations is illustrated at the example of the rat striatal progenitor cell line ST14A that is immortalized by stable retroviral transfection with a temperature-sensitive mutant of the SV40 large T antigen. A shift from permissive 33 degrees C to nonpermissive 39 degrees C leads to proliferation stop and start of differentiation into glial and neuronal cells. Investigation of expression of Wnts, Wnt receptors and Wnt-dependent signal pathway assay point to a stage-dependent involvement of canonical and noncanonical signaling in proliferation and differentiation of ST14A cells, whereby a mutual suppression of pathway activities is likely. Canonical Wnt molecules are not detected in proliferating and differentiating ST14A cells except Wnt2. The noncanonical Wnt molecules Wnt4, Wnt5a and Wnt11 are expressed in proliferating cells and increase during differentiation, whereas cellular beta-catenin decreases in the early phase and is restored in the late phase of differentiation. Accumulation of beta-catenin at the membrane in undifferentiated proliferating cells and its nuclear localization in nondividing undifferentiated cells under differentiation conditions argues for a distinct spatially regulated role of the molecule in the proliferation and early differentiation phase. Ca2+-dependent and JNK-dependent noncanonical Wnt signaling is not detected during differentiation of ST14A cells. Complete exploration of the role of Wnt pathways, for differentiation of the neural progenitor cells ST14A will require Wnt overexpression and exposure of ST14A cells to exogenous Wnts either with purified Wnts or by co-cultures with Wnt producers.
Collapse
Affiliation(s)
- Christian Lange
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
41
|
Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 2006; 37:2361-7. [PMID: 16873711 DOI: 10.1161/01.str.0000236025.44089.e1] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Stroke triggers increased progenitor proliferation in the subventricular zone (SVZ) and the generation of medium spiny neurons in the damaged striatum of rodents. We explored whether intrastriatal infusion of glial cell line-derived neurotrophic factor (GDNF) promotes neurogenesis after stroke. METHODS Adult rats were subjected to 2-hour middle cerebral artery occlusion (MCAO). GDNF was infused into the ischemic striatum either during the first week after MCAO, with the animals being killed directly thereafter, or during the third and fourth weeks, with the rats being killed 1 week later. New cells were labeled with 5'-bromo-2'deoxyuridine (BrdU) on day 7 or during the second week, respectively. Neurogenesis was assessed immunocytochemically with antibodies against BrdU and neuronal, glial, or progenitor markers. GDNF receptor expression was analyzed in SVZ tissue and neurospheres by reverse transcription-polymerase chain reaction and immunocytochemistry. RESULTS GDNF infusion increased cell proliferation in the ipsilateral SVZ and the recruitment of new neuroblasts into the striatum after MCAO and improved survival of new mature neurons. The GDNF receptor GFRalpha1 was upregulated in the SVZ 1 week after MCAO and was coexpressed with markers of dividing progenitor cells. CONCLUSIONS Intrastriatal infusion of GDNF in the postischemic period promotes several steps of striatal neurogenesis after stroke, partly through direct action on SVZ progenitors. Because delivery of GDNF has biological effects in the human brain, our data suggest that administration of this factor may promote neuroregenerative responses in stroke patients.
Collapse
Affiliation(s)
- Tohru Kobayashi
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Hoffrogge R, Beyer S, Völker U, Uhrmacher AM, Rolfs A. 2-DE Proteomic Profiling of Neuronal Stem Cells. NEURODEGENER DIS 2006; 3:112-21. [PMID: 16909046 DOI: 10.1159/000092102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proteomics has become a powerful tool in neuroscience studies. Although numerous human neural stem cells are available for research purposes since many years, there exists only limited information on proteomic data from stable neural stem cell lines. Profiling and functional proteome studies of neuronal stem cells will help to describe the protein inventory as well as protein activity and interactions, subcellular localization and posttranslational modifications. The proteomic analysis of neuronal differentiation processes will elucidate the complex events leading to the generation of different phenotypes via distinctive developmental programs that control self-renewal, differentiation, and plasticity. Using the ReNcell VM197 model, a cell line derived from human fetal ventral mesencephalon stem cells, we studied the protein inventory of the stem cells by 2-DE gel electrophoresis and mass spectrometric protein identification and constructed a 2-DE protein map consisting of more than 400 identified protein spots. This proteome reference database constitutes the basis for further investigations of differential protein expression during differentiation. A profiling of the neuronal differentiation-associated changes displayed the large rearrangement of the proteome during this process, and the proteomic techniques proved to be a valuable tool for the elucidation of neuronal differentiation process and for target protein screening.
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Neurobiological Laboratory, Department of Neurology, Medical Faculty, Rostock, Germany
| | | | | | | | | |
Collapse
|
43
|
Hoffrogge R, Mikkat S, Scharf C, Beyer S, Christoph H, Pahnke J, Mix E, Berth M, Uhrmacher A, Zubrzycki IZ, Miljan E, Völker U, Rolfs A. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics 2006; 6:1833-47. [PMID: 16475233 DOI: 10.1002/pmic.200500556] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The proteome of a proliferating human stem cell line was analyzed and then utilized to detect stem cell differentiation-associated changes in the protein profile. The analysis was conducted with a stable human fetal midbrain stem cell line (ReNcell VM) that displays the properties of a neural stem cell. Therefore, acquisition of proteomic data should be representative of cultured human neural stem cells (hNSCs) in general. Here we present a 2-DE protein-map of this cell line with annotations of 402 spots representing 318 unique proteins identified by MS. The subsequent proteome profiling of differentiating cells of this stem cell line at days 0, 4 and 7 of differentiation revealed changes in the expression of 49 identified spots that could be annotated to 45 distinct proteins. This differentiation-associated expression pattern was validated by Western blot analysis for transgelin-2, proliferating cell nuclear antigen, as well as peroxiredoxin 1 and 4. The group of regulated proteins also included NudC, ubiquilin-1, STRAP, stress-70 protein, creatine kinase B, glial fibrillary acidic protein and vimentin. Our results reflect the large rearrangement of the proteome during the differentiation process of the stem cells to terminally differentiated neurons and offer the possibility for further characterization of specific targets driving the stem cell differentiation.
Collapse
MESH Headings
- Blotting, Western
- Cell Differentiation
- Cell Line
- Cell Line, Transformed
- Cell Proliferation
- Cell Transformation, Viral
- Computational Biology
- Culture Media/chemistry
- Culture Media/pharmacology
- Databases, Protein
- Electrophoresis, Gel, Two-Dimensional
- Epidermal Growth Factor/pharmacology
- Fibroblast Growth Factor 2/pharmacology
- Genetic Markers
- Humans
- Mass Spectrometry
- Mesencephalon/cytology
- Mesencephalon/embryology
- Microfilament Proteins/analysis
- Microfilament Proteins/isolation & purification
- Microfilament Proteins/metabolism
- Muscle Proteins/analysis
- Muscle Proteins/isolation & purification
- Muscle Proteins/metabolism
- Neoplasm Proteins/analysis
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/metabolism
- Neurons/cytology
- Peptide Mapping
- Peroxidases/analysis
- Peroxidases/isolation & purification
- Peroxidases/metabolism
- Peroxiredoxins
- Proliferating Cell Nuclear Antigen/analysis
- Proliferating Cell Nuclear Antigen/isolation & purification
- Proliferating Cell Nuclear Antigen/metabolism
- Proteome/analysis
- Retroviridae/genetics
- Selection, Genetic
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Stem Cells/cytology
- Stem Cells/physiology
- Transduction, Genetic
- Transgenes
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Neurobiological Laboratory, Department of Neurology, Medical Faculty, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tabarés-Seisdedos R, Escámez T, Martínez-Giménez JA, Balanzá V, Salazar J, Selva G, Rubio C, Vieta E, Geijó-Barrientos E, Martínez-Arán A, Reiner O, Martínez S. Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: A preliminary study. Neuroscience 2006; 139:1289-300. [PMID: 16549273 DOI: 10.1016/j.neuroscience.2006.01.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 01/21/2006] [Accepted: 01/26/2006] [Indexed: 01/15/2023]
Abstract
Both neural development and prefrontal cortex function are known to be abnormal in schizophrenia and bipolar disorder. In order to test the hypothesis that these features may be related with genes that regulate neuronal migration, we analyzed two genomic regions: the lissencephaly critical region (chromosome 17p) encompassing the LIS1 gene and which is involved in human lissencephaly; and the genes related to the platelet-activating-factor, functionally related to LIS1, in 52 schizophrenic patients, 36 bipolar I patients and 65 normal control subjects. In addition, all patients and the 25 control subjects completed a neuropsychological battery. Thirteen (14.8%) patients showed genetic variations in either two markers related with lissencephaly or in the platelet-activating-factor receptor gene. These patients performed significantly worse in the Wisconsin Card Sorting Test-Perseverative Errors in comparison with patients with no lissencephaly critical region/platelet-activating-factor receptor variations. The presence of lissencephaly critical region/platelet-activating-factor receptor variations was parametrically related to perseverative errors, and this accounted for 17% of the variance (P = 0.0001). Finally, logistic regression showed that poor Wisconsin Card Sorting Test-Perseverative Errors performance was the only predictor of belonging to the positive lissencephaly critical region/platelet-activating-factor receptor group. These preliminary findings suggest that the variations in genes involved in neuronal migration predict the severity of the prefrontal cognitive deficits in both disorders.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mix E, Ibrahim S, Pahnke J, Koczan D, Sina C, Böttcher T, Thiesen HJ, Rolfs A. Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process. J Neuroimmunol 2004; 151:158-70. [PMID: 15145614 DOI: 10.1016/j.jneuroim.2004.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 03/10/2004] [Accepted: 03/10/2004] [Indexed: 01/09/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) is a well-established animal model of multiple sclerosis (MS) in rodents. It reflects the wide spectrum of disease pathology and serves as a valuable tool for studying the pathogenesis and for testing new therapies of MS. In order to identify genes responsible for resistance to and modulation of the disease, we compared the mRNA expression profile of more than 12,000 genes by DNA microarray technique in lymph nodes of the highly EAE-susceptible mouse strain C57Bl/6 (B6) and the resistant strain C57Bl/10.S (B10). The disease onset in B6 mice was day 15. We identified 84 genes that were up-regulated more than two-fold in B10 mice compared to vehicle-treated controls, whereas only two genes were up-regulated in B6 mice after 7 and 15 days post-immunization (p.i.), respectively. We were able to match five up-regulated genes in B10 mice to known quantitative trait loci (QTLs), which control for EAE susceptibility. Only 17, respectively 5, genes were down-regulated at both time points in B10 and B6 mice. Tests for immunoreactivity to MOG (T cell proliferation and interferon-gamma (IFN-gamma) secretion) revealed no stronger immune response in B6 compared to B10 mice supporting the hypothesis of an immunosuppressive effect as a target to prevent EAE in the B10 mice. We conclude that resistance to EAE (and possibly to MS) is an active process mediated by multiple genes up-regulated in peripheral lymphatic organs of resistant animals. Thus, monitoring of the expression of these new candidate genes may serve as a tool for the disease progression and the pharmaceutical treatment.
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock D-18055, Germany.
| | | | | | | | | | | | | | | |
Collapse
|