1
|
O'Neale CV, Tran MH, Schey KL. Aquaporin-0-protein interactions elucidated by crosslinking mass spectrometry. Biochem Biophys Res Commun 2024; 727:150320. [PMID: 38963984 PMCID: PMC11563185 DOI: 10.1016/j.bbrc.2024.150320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Aquaporin-0 (AQP0) constitutes 50 % of the lens membrane proteome and plays important roles in lens fiber cell adhesion, water permeability, and lens transparency. Previous work has shown that specific proteins, such as calmodulin (CaM), interact with AQP0 to modulate its water permeability; however, these studies often used AQP0 peptides, rather than full-length protein, to probe these interactions. Furthermore, the specific regions of interaction of several known AQP0 interacting partners, i.e. αA and αB-crystallins, and phakinin (CP49) remain unknown. The purpose of this study was to use crosslinking mass spectrometry (XL-MS) to identify interacting proteins with full-length AQP0 in crude lens cortical membrane fractions and to determine the specific protein regions of interaction. Our results demonstrate, for the first time, that the AQP0 N-terminus can engage in protein interactions. Specific regions of interaction are elucidated for several AQP0 interacting partners including phakinin, α-crystallin, connexin-46, and connexin-50. In addition, two new interacting partners, vimentin and connexin-46, were identified.
Collapse
Affiliation(s)
- Carla Vt O'Neale
- Department of Biochemistry, Vanderbilt University, 465 21(ST), Ave, So. MRB III, Suite 9160, Nashville, TN, 37240, USA
| | - Minh H Tran
- Chemical and Physical Biology Program, 465 21(ST), Ave, So. MRB III, Suite 9160, Vanderbilt University, Nashville, TN, 37240, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, 465 21(ST), Ave, So. MRB III, Suite 9160, Nashville, TN, 37240, USA.
| |
Collapse
|
2
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Brennan L, Disatham J, Menko AS, Kantorow M. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation. Dev Biol 2023; 504:25-37. [PMID: 37722500 PMCID: PMC10843493 DOI: 10.1016/j.ydbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
4
|
Springer MS, Emerling CA, Gatesy J. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden Moles). Genes (Basel) 2023; 14:2018. [PMID: 38002961 PMCID: PMC10671557 DOI: 10.3390/genes14112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| |
Collapse
|
5
|
Liu Y, Liu T, Wang Y, Liu J, Liu B, Gong L, Lü Z, Liu L. Genome Sequencing Provides Novel Insights into Mudflat Burrowing Adaptations in Eel Goby Taenioides sp. (Teleost: Amblyopinae). Int J Mol Sci 2023; 24:12892. [PMID: 37629073 PMCID: PMC10454203 DOI: 10.3390/ijms241612892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Amblyopinae is one of the lineage of bony fish that preserves amphibious traits living in tidal mudflat habitats. In contrast to other active amphibious fish, Amblyopinae species adopt a seemly more passive lifestyle by living in deep burrows of mudflat to circumvent the typical negative effects associated with terrestriality. However, little is known about the genetic origin of these mudflat deep-burrowing adaptations in Amblyopinae. Here we sequenced the first genome of Amblyopinae species, Taenioides sp., to elucidate their mudflat deep-burrowing adaptations. Our results revealed an assembled genome size of 774.06 Mb with 23 pseudochromosomes anchored, which predicted 22,399 protein-coding genes. Phylogenetic analyses indicated that Taenioides sp. diverged from the active amphibious fish of mudskipper approximately 28.3 Ma ago. In addition, 185 and 977 putative gene families were identified to be under expansion, contraction and 172 genes were undergone positive selection in Taenioides sp., respectively. Enrichment categories of top candidate genes under significant expansion and selection were mainly associated with hematopoiesis or angiogenesis, DNA repairs and the immune response, possibly suggesting their involvement in the adaptation to the hypoxia and diverse pathogens typically observed in mudflat burrowing environments. Some carbohydrate/lipid metabolism, and insulin signaling genes were also remarkably alterated, illustrating physiological remolding associated with nutrient-limited subterranean environments. Interestingly, several genes related to visual perception (e.g., crystallins) have undergone apparent gene losses, pointing to their role in the small vestigial eyes development in Taenioides sp. Our work provide valuable resources for understanding the molecular mechanisms underlying mudflat deep-burrowing adaptations in Amblyopinae, as well as in other tidal burrowing teleosts.
Collapse
Affiliation(s)
- Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Jarrin M, Kalligeraki AA, Uwineza A, Cawood CS, Brown AP, Ward EN, Le K, Freitag-Pohl S, Pohl E, Kiss B, Tapodi A, Quinlan RA. Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix. Cells 2023; 12:1580. [PMID: 37371051 PMCID: PMC10297038 DOI: 10.3390/cells12121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.
Collapse
Affiliation(s)
- Miguel Jarrin
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Alexia A. Kalligeraki
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Alice Uwineza
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Chris S. Cawood
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
| | - Edward N. Ward
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Khoa Le
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Ehmke Pohl
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Bence Kiss
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Antal Tapodi
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Roy A. Quinlan
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Disatham J, Brennan L, Cvekl A, Kantorow M. Multiomics Analysis Reveals Novel Genetic Determinants for Lens Differentiation, Structure, and Transparency. Biomolecules 2023; 13:693. [PMID: 37189439 PMCID: PMC10136076 DOI: 10.3390/biom13040693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in next-generation sequencing and data analysis have provided new gateways for identification of novel genome-wide genetic determinants governing tissue development and disease. These advances have revolutionized our understanding of cellular differentiation, homeostasis, and specialized function in multiple tissues. Bioinformatic and functional analysis of these genetic determinants and the pathways they regulate have provided a novel basis for the design of functional experiments to answer a wide range of long-sought biological questions. A well-characterized model for the application of these emerging technologies is the development and differentiation of the ocular lens and how individual pathways regulate lens morphogenesis, gene expression, transparency, and refraction. Recent applications of next-generation sequencing analysis on well-characterized chicken and mouse lens differentiation models using a variety of omics techniques including RNA-seq, ATAC-seq, whole-genome bisulfite sequencing (WGBS), chip-seq, and CUT&RUN have revealed a wide range of essential biological pathways and chromatin features governing lens structure and function. Multiomics integration of these data has established new gene functions and cellular processes essential for lens formation, homeostasis, and transparency including the identification of novel transcription control pathways, autophagy remodeling pathways, and signal transduction pathways, among others. This review summarizes recent omics technologies applied to the lens, methods for integrating multiomics data, and how these recent technologies have advanced our understanding ocular biology and function. The approach and analysis are relevant to identifying the features and functional requirements of more complex tissues and disease states.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| |
Collapse
|
8
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Roy Quinlan
- Biomedical Sciences, Department of Biosciences, The University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK.
| | - Frank Giblin
- Biomedical Sciences Emeritus, Eye Research Institute, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
10
|
Ho M, Thompson B, Fisk JN, Nebert DW, Bruford EA, Vasiliou V, Bunick CG. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022; 16:1. [PMID: 34991727 PMCID: PMC8733776 DOI: 10.1186/s40246-021-00374-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Intermediate filament (IntFil) genes arose during early metazoan evolution, to provide mechanical support for plasma membranes contacting/interacting with other cells and the extracellular matrix. Keratin genes comprise the largest subset of IntFil genes. Whereas the first keratin gene appeared in sponge, and three genes in arthropods, more rapid increases in keratin genes occurred in lungfish and amphibian genomes, concomitant with land animal-sea animal divergence (~ 440 to 410 million years ago). Human, mouse and zebrafish genomes contain 18, 17 and 24 non-keratin IntFil genes, respectively. Human has 27 of 28 type I "acidic" keratin genes clustered at chromosome (Chr) 17q21.2, and all 26 type II "basic" keratin genes clustered at Chr 12q13.13. Mouse has 27 of 28 type I keratin genes clustered on Chr 11, and all 26 type II clustered on Chr 15. Zebrafish has 18 type I keratin genes scattered on five chromosomes, and 3 type II keratin genes on two chromosomes. Types I and II keratin clusters-reflecting evolutionary blooms of keratin genes along one chromosomal segment-are found in all land animal genomes examined, but not fishes; such rapid gene expansions likely reflect sudden requirements for many novel paralogous proteins having divergent functions to enhance species survival following sea-to-land transition. Using data from the Genotype-Tissue Expression (GTEx) project, tissue-specific keratin expression throughout the human body was reconstructed. Clustering of gene expression patterns revealed similarities in tissue-specific expression patterns for previously described "keratin pairs" (i.e., KRT1/KRT10, KRT8/KRT18, KRT5/KRT14, KRT6/KRT16 and KRT6/KRT17 proteins). The ClinVar database currently lists 26 human disease-causing variants within the various domains of keratin proteins.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Jeffrey Nicholas Fisk
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Daniel W Nebert
- Departments of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, Cincinnati, OH, 45229, USA
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Varadaraj K, FitzGerald PG, Kumari SS. Deletion of beaded filament proteins or the C-terminal end of Aquaporin 0 causes analogous abnormal distortion aberrations in mouse lens. Exp Eye Res 2021; 209:108645. [PMID: 34087204 DOI: 10.1016/j.exer.2021.108645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Lens-specific beaded filament (BF) proteins CP49 and filensin interact with the C-terminus of the water channel protein Aquaporin 0 (AQP0). Previously we have reported that a C-terminally end-deleted AQP0-expressing transgenic mouse model AQP0ΔC/ΔC developed abnormal optical aberrations in the lens. This investigation was undertaken to find out whether the total loss of the BF structural proteins alter the optical properties of the lens and cause optical aberrations similar to those in AQP0ΔC/ΔC lenses; also, to map the changes in the optical quality as a function of age in the single or double BF protein knockouts as well as to assess whether there is any significant change in the water channel function of AQP0 in these knockouts. A double knockout mouse (2xKO) model for CP49 and filensin was developed by crossing CP49-KO and filensin-KO mice. Wild type, CP49-KO, filensin-KO, and 2xKO lenses at different ages, and AQP0ΔC/ΔC lenses at postnatal day-17 were imaged through the optical axis and compared for optical quality and focusing property. All three knockout models showed loss of transparency, and development of abnormal optical distortion aberration similar to that in AQP0ΔC/ΔC. Copper grid focusing by the lenses at 6, 9 and 12 months of age showed an increase in aberrations as age advanced. With progression in age, the grid images produced by the lenses of all KO models showed a transition from a positive barrel distortion aberration to a pincushion distortion aberration with the formation of three distinct aberration zones similar to those produced by AQP0ΔC/ΔC lenses. Water permeability of fiber cell membrane vesicles prepared from CP49-KO, filensin-KO and 2xKO models, measured using the osmotic shrinking method, remained similar to that of the wild type without any statistically significant alteration (P > 0.05). Western blotting and quantification revealed the expression of comparable quantities of AQP0 in all three BF protein KOs. Our study reveals that loss of single or both beaded filament proteins significantly affect lens refractive index gradient, transparency and focusing ability in an age-dependent manner and the interaction of BF proteins with AQP0 is critical for the proper functioning of the lens. The presence of BF proteins is necessary to prevent abnormal optical aberrations and maintain homeostasis in the aging lens.
Collapse
Affiliation(s)
| | - Paul G FitzGerald
- Cell Biology and Human Anatomy, School of Medicine, University of California-Davis, Davis, CA, USA
| | - S Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY, USA.
| |
Collapse
|
12
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
13
|
Three-dimensional data capture and analysis of intact eye lenses evidences emmetropia-associated changes in epithelial cell organization. Sci Rep 2020; 10:16898. [PMID: 33037268 PMCID: PMC7547080 DOI: 10.1038/s41598-020-73625-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/17/2020] [Indexed: 01/16/2023] Open
Abstract
Organ and tissue development are highly coordinated processes; lens growth and functional integration into the eye (emmetropia) is a robust example. An epithelial monolayer covers the anterior hemisphere of the lens, and its organization is the key to lens formation and its optical properties throughout all life stages. To better understand how the epithelium supports lens function, we have developed a novel whole tissue imaging system using conventional confocal light microscopy and a specialized analysis software to produce three-dimensional maps for the epithelium of intact mouse lenses. The open source software package geometrically determines the anterior pole position, the equatorial diameter, and three-dimensional coordinates for each detected cell in the epithelium. The user-friendly cell maps, which retain global lens geometry, allow us to document age-dependent changes in the C57/BL6J mouse lens cell distribution characteristics. We evidence changes in epithelial cell density and distribution in C57/BL6J mice during the establishment of emmetropia between postnatal weeks 4-6. These epithelial changes accompany a previously unknown spheroid to lentoid shape transition of the lens as detected by our analyses. When combined with key findings from previous mouse genetic and cell biological studies, we suggest a cytoskeleton-based mechanism likely underpins these observations.
Collapse
|
14
|
Zhou HY, Yan H, Yan WJ, Wang XC, Li QY. Noninvasive stiffness assessment of the human lens nucleus in patients with anisometropia using an ultrasound elastography system. Int J Ophthalmol 2020; 13:399-405. [PMID: 32309175 DOI: 10.18240/ijo.2020.03.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIM To investigate the significance of ultrasound elastography for evaluating stiffness of the human lens nucleus in patients with anisometropia. METHODS A total of 14 patients (28 eyes) with anisometropia were enrolled. The difference in refractive status between two eyes ≥-4.0 diopters (D) and the difference in axial length (AL) of the eyes was ≥3 mm. There were 5 males and 9 females with an average age of 62±3.3y. The test data of the long AL eye of each patient was included in group A (14 eyes), and test data of the eye with relative short AL was included in group B. Lens nuclear stiffness was measured with free-hand qualitative elastography by independent operators. Strain gray scale and color-coded elastography maps were recorded. In each case, three consecutive measurements were performed and strain ratio was used for statistical analysis. Photograph and sectional view of the lens were analyzed and archived by anterior segment image. RESULTS In the long AL group, the strain rate in the nucleus of the lens was 0.16%±0.08%; in the short AL group, the strain rate in the nucleus of the lens was 0.54%±0.16%. Independent sample t-test analyses showed that the long AL group lens had a significantly smaller nuclear strain rate than the relatively short AL group, P<0.05. CONCLUSION The relationship between human lens stiffness and different AL is demonstrated by ultrasound elastography. The long AL is associated with lower strain ratio and less resilience of the lens.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of the School of Medicine, Xi'an Jiaotong University, Xi'an 710038, Shaanxi Province, China
| | - Hong Yan
- Xi'an Fourth Hospital, Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an 710004, Shaanxi Province, China
| | - Wei-Jia Yan
- Medical School, the University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Xin-Chuan Wang
- Basic Medical School, Air Force Medical University, Xi'an 710068, Shaanxi Province, China
| | - Qiao-Ying Li
- Department of UItrasonic Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
15
|
Bell SJ, Oluonye N, Harding P, Moosajee M. Congenital cataract: a guide to genetic and clinical management. THERAPEUTIC ADVANCES IN RARE DISEASE 2020; 1:2633004020938061. [PMID: 37180497 PMCID: PMC10032449 DOI: 10.1177/2633004020938061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Worldwide 20,000-40,000 children with congenital or childhood cataract are born every year with varying degrees and patterns of lens opacification with a broad aetiology. In most cases of bilateral cataract, a causative genetic mutation can be identified, with autosomal dominant inheritance being most common in 44% of cases. Variants in genes involve lens-specific proteins or those that regulate eye development, thus giving rise to other associated ocular abnormalities. Approximately 15% of cases have systemic features, hence paediatric input is essential to minimise comorbidities and support overall development of children at high risk of visual impairment. In some metabolic conditions, congenital cataract may be the presenting sign, and therefore prompt diagnosis is important where there is an available treatment. Multidisciplinary management of children is essential, including ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local paediatric visual support services. Early surgery and close follow up in ophthalmology is important to optimise visual potential and prevent amblyopia. Routine genetic testing is essential for the complete clinical management of patients, with next-generation sequencing of 115 genes shown to expedite molecular diagnosis, streamline care pathways and inform genetic counselling and reproductive options for the future. Lay abstract Childhood cataract: how to manage patients Cataract is a clouding of the lens in the eye. Cataract occurring in children has many different causes, which may include infections passed from mother to child during pregnancy, trauma, medications and exposure to radiation. In most cases of cataract occurring in both eyes, a genetic cause can be found which may be inherited from parents or occur sporadically in the developing baby itself while in the womb. Cataracts may occur on their own, with other eye conditions or be present with other disorders in the body as part of a syndrome. Genetic testing is important for all children with cataract as it can provide valuable information about cause, inheritance and risk to further children and signpost any other features of the disease in the rest of the body, permitting the assembly of the correct multidisciplinary care team. Genetic testing currently involves screening for mutations in 115 genes already known to cause cataract and has been shown to expedite diagnosis and help better manage children. Genetic counselling services can support families in understanding their diagnosis and inform future family planning. In order to optimise vision, early surgery for cataract in children is important. This is because the brain is still developing and an unobstructed pathway for light to reach the back of the eye is required for normal visual development. Any obstruction (such as cataract) if left untreated may lead to permanent sight impairment or blindness, even if it is removed later. A multidisciplinary team involved in the care of a child with cataract should include ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local child visual support services. They will help to diagnose and manage systemic conditions, optimise vision potential and help patients and their families access best supportive care.
Collapse
Affiliation(s)
| | - Ngozi Oluonye
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology 11-43 Bath Street
London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| |
Collapse
|
16
|
Disatham J, Chauss D, Gheyas R, Brennan L, Blanco D, Daley L, Menko AS, Kantorow M. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression. Dev Biol 2019; 453:86-104. [PMID: 31136738 PMCID: PMC6667291 DOI: 10.1016/j.ydbio.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/24/2022]
Abstract
Changes in chromatin accessibility regulate the expression of multiple genes by controlling transcription factor access to key gene regulatory sequences. Here, we sought to establish a potential function for altered chromatin accessibility in control of key gene expression events during lens cell differentiation by establishing genome-wide chromatin accessibility maps specific for four distinct stages of lens cell differentiation and correlating specific changes in chromatin accessibility with genome-wide changes in gene expression. ATAC sequencing was employed to generate chromatin accessibility profiles that were correlated with the expression profiles of over 10,000 lens genes obtained by high-throughput RNA sequencing at the same stages of lens cell differentiation. Approximately 90,000 regions of the lens genome exhibited distinct changes in chromatin accessibility at one or more stages of lens differentiation. Over 1000 genes exhibited high Pearson correlation coefficients (r > 0.7) between altered expression levels at specific stages of lens cell differentiation and changes in chromatin accessibility in potential promoter (-7.5kbp/+2.5kbp of the transcriptional start site) and/or other potential cis-regulatory regions ( ±10 kb of the gene body). Analysis of these regions identified consensus binding sequences for multiple transcription factors including members of the TEAD, FOX, and NFAT families of transcription factors as well as HIF1a, RBPJ and IRF1. Functional mapping of genes with high correlations between altered chromatin accessibility and differentiation state-specific gene expression changes identified multiple families of proteins whose expression could be regulated through changes in chromatin accessibility including those governing lens structure (BFSP1,BFSP2), gene expression (Pax-6, Sox 2), translation (TDRD7), cell-cell communication (GJA1), autophagy (FYCO1), signal transduction (SMAD3, EPHA2), and lens transparency (CRYBB1, CRYBA4). These data provide a novel relationship between altered chromatin accessibility and lens differentiation and they identify a wide-variety of lens genes and functions that could be regulated through altered chromatin accessibility. The data also point to a large number of potential DNA regulatory sequences and transcription factors whose functional analysis is likely to provide insight into novel regulatory mechanisms governing the lens differentiation program.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Daniel Chauss
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rifah Gheyas
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - David Blanco
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lauren Daley
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
17
|
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 2019; 179:32-46. [PMID: 30359574 PMCID: PMC6360118 DOI: 10.1016/j.exer.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
Collapse
Affiliation(s)
- Yilin Zhao
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Phillip A Wilmarth
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saima Limi
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Larry L David
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Human alpha A-crystallin missing N-terminal domain poorly complexes with filensin and phakinin. Biochem Biophys Res Commun 2017; 494:402-408. [PMID: 28935373 DOI: 10.1016/j.bbrc.2017.09.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine relative importance of N-terminal domain and C-terminal extension of αA-crystallin during their in vitro complex formation with phakinin and filensin (the two lens-specific intermediate filament [IF] proteins). Cloned phakinin, filensin and vimentin were purified under a denaturing conditions by consecutive DEAE-cellulose-, hydroxyapatite- and Sephadex G-75-column chromatographic methods. WTαA-crystallin, αA-NT (N-terminal domain [residue number 1-63])-deleted and αA-CT (C-terminal terminal extension [residue number 140-173]-deleted), were cloned in pET 100 TOPO vector, expressed in BL-21 (DE3) cells using 1% IPTG, and purified using a Ni2+-affinity column. The following two in vitro methods were used to determine complex formation of WT-αA, αA-NT, or αA-CT with phakinin, filensin or both phakinin plus filensin together: an ultracentrifugation sedimentation (centrifugation at 80,000 × g for 30 min at 20 °C) followed by SDS-PAGE analysis, and an electron microscopic analysis. In the first method, the individual control proteins (WT-αA, αA-NT and αA-CT crystallin species) remained in the supernatant fractions whereas phakinin, filensin, and vimentin were recovered in the pellet fractions. On complex formation by individual WT-αA-, αA-NT or αA-CT-species with filensin, phakinin or both phakinin and filensin, WT-αA and αA-CT were recovered in the pellet fraction with phakinin, filensin or both filensin and phakinin, whereas αA-NT remained mostly in the supernatant, suggesting its poor complex formation property. EM-studies showed filamentous structure formation between WT-αA and αA-CT with phakinin or filensin, or with both filensin and phakinin together but relatively poor filamentous structures with αA-NT. Together, the results suggest that the N-terminal domain of αA-crystallin is required during in vitro complex formation with filensin and phakinin.
Collapse
|
19
|
Cavalheiro GR, Matos-Rodrigues GE, Zhao Y, Gomes AL, Anand D, Predes D, de Lima S, Abreu JG, Zheng D, Lachke SA, Cvekl A, Martins RAP. N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 2017; 429:105-117. [PMID: 28716713 DOI: 10.1016/j.ydbio.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIβ. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Danilo Predes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silmara de Lima
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose G Abreu
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res 2017; 56:e1-e24. [DOI: 10.1016/j.preteyeres.2016.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
21
|
Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, Mowat D, Smith J, Christodoulou J, Flaherty M, Bennetts B, Jamieson RV. Sporadic and Familial Congenital Cataracts: Mutational Spectrum and New Diagnoses Using Next-Generation Sequencing. Hum Mutat 2016; 37:371-84. [PMID: 26694549 PMCID: PMC4787201 DOI: 10.1002/humu.22948] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Congenital cataracts are a significant cause of lifelong visual loss. They may be isolated or associated with microcornea, microphthalmia, anterior segment dysgenesis (ASD) and glaucoma, and there can be syndromic associations. Genetic diagnosis is challenging due to marked genetic heterogeneity. In this study, next-generation sequencing (NGS) of 32 cataract-associated genes was undertaken in 46 apparently nonsyndromic congenital cataract probands, around half sporadic and half familial cases. We identified pathogenic variants in 70% of cases, and over 68% of these were novel. In almost two-thirds (20/33) of these cases, this resulted in new information about the diagnosis and/or inheritance pattern. This included identification of: new syndromic diagnoses due to NHS or BCOR mutations; complex ocular phenotypes due to PAX6 mutations; de novo autosomal-dominant or X-linked mutations in sporadic cases; and mutations in two separate cataract genes in one family. Variants were found in the crystallin and gap junction genes, including the first report of severe microphthalmia and sclerocornea associated with a novel GJA8 mutation. Mutations were also found in rarely reported genes including MAF, VIM, MIP, and BFSP1. Targeted NGS in presumed nonsyndromic congenital cataract patients provided significant diagnostic information in both familial and sporadic cases.
Collapse
Affiliation(s)
- Alan S. Ma
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of Clinical GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - John R. Grigg
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Gladys Ho
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Ivan Prokudin
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Elizabeth Farnsworth
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Katherine Holman
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Anson Cheng
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Frank A. Billson
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Frank Martin
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Clare Fraser
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - David Mowat
- Department of Medical GeneticsSydney Children's HospitalSydneyNew South WalesAustralia
| | - James Smith
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - John Christodoulou
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Maree Flaherty
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Bruce Bennetts
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Robyn V. Jamieson
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of Clinical GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| |
Collapse
|
22
|
Jarrin M, Young L, Wu W, Girkin JM, Quinlan RA. In vivo, Ex Vivo, and In Vitro Approaches to Study Intermediate Filaments in the Eye Lens. Methods Enzymol 2016; 568:581-611. [DOI: 10.1016/bs.mie.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Biophysical chemistry of the ageing eye lens. Biophys Rev 2015; 7:353-368. [PMID: 28510099 DOI: 10.1007/s12551-015-0176-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
This review examines both recent and historical literature related to the biophysical chemistry of the proteins in the ageing eye, with a particular focus on cataract development. The lens is a vital component of the eye, acting as an optical focusing device to form clear images on the retina. The lens maintains the necessary high transparency and refractive index by expressing crystallin proteins in high concentration and eliminating all large cellular structures that may cause light scattering. This has the consequence of eliminating lens fibre cell metabolism and results in mature lens fibre cells having no mechanism for protein expression and a complete absence of protein recycling or turnover. As a result, the crystallins are some of the oldest proteins in the human body. Lack of protein repair or recycling means the lens tends to accumulate damage with age in the form of protein post-translational modifications. The crystallins can be subject to a wide range of age-related changes, including isomerisation, deamidation and racemisation. Many of these modification are highly correlated with cataract formation and represent a biochemical mechanism for age-related blindness.
Collapse
|
24
|
Nakazawa Y, Oka M, Bando M, Takehana M. Hesperetin prevents selenite-induced cataract in rats. Mol Vis 2015; 21:804-10. [PMID: 26283862 PMCID: PMC4522242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/29/2015] [Indexed: 12/02/2022] Open
Abstract
PURPOSE This study investigated the ability of hesperetin, a natural flavonoid, to prevent selenite-induced cataracts in a rat model. METHODS Animals were divided into four treatment groups: G1 (control group), G2 (hesperetin-treated group), G3 (selenite-induced cataract group), and G4 (hesperetin-treated selenite cataract group). Animals in the G1 and G3 groups were injected with vehicle alone, while those in the G2 and G4 groups received a subcutaneous injection of hesperetin (0.4 μg/g bodyweight on days 0, 1, and 2, corresponding to P13, P14, and P15). Sodium selenite (20 μmol/g bodyweight given 4 h after the hesperetin injection on day 0) was administered to rats in the G3 and G4 groups to induce cataract formation. Lenses were observed with slit-lamp microscopy, and filensin degradation and the decreased glutathione (GSH) and ascorbic acid levels in the lens were measured on day 6. RESULTS Lenses in the G3 group showed mature central opacity, while some lenses in the G4 group lacked central opacity and had lower-grade cataracts. All lenses in the G1 and G2 groups were transparent. Expression of the 94 kDa and 50 kDa forms of filensin was significantly decreased in the lenses in the G3 group compared with those in the G1 and G2 groups. Interestingly, these forms of filensin rescued the rat lenses in the G4 group. In the G3 group lenses, the GSH and ascorbic acid levels were lower than in the control group but were normalized in the G4 group lenses. CONCLUSIONS The results suggest that hesperetin can prevent selenite-induced cataract formation.
Collapse
Affiliation(s)
- Yosuke Nakazawa
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University
| | - Mikako Oka
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University
- Center for Pharmaceutical Education, Yokohama University of Pharmacy
| | - Masayasu Bando
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University
| | - Makoto Takehana
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University
| |
Collapse
|
25
|
Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3-GENES GENOMES GENETICS 2014; 4:1515-27. [PMID: 24928582 PMCID: PMC4132181 DOI: 10.1534/g3.114.012120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that requires a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected more than 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, more than 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic (DUT, PDK1, SNPH), autophagy (ATG3, ATG4B, BECN1, FYCO1, WIPI1), and mitophagy (BNIP3L/NIX, BNIP3, PARK2, p62/SQSTM1) transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells.
Collapse
|
26
|
Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell Oncol (Dordr) 2014; 37:179-91. [PMID: 24916915 DOI: 10.1007/s13402-014-0171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previously, we found that the Graffi murine leukemia virus (MuLV) is able to induce a wide spectrum of hematologic malignancies in vivo. Using high-density oligonucleotide microarrays, we established the gene expression profiles of several of these malignancies, thereby specifically focusing on genes deregulated in the lymphoid sub-types. We observed over-expression of a variety of genes, including Arntl2, Bfsp2, Gfra2, Gpm6a, Gpm6b, Nln, Fbln1, Bmp7, Etv5 and Celsr1 and, in addition, provided evidence that Fmn2 and Parm-1 may act as novel oncogenes. In the present study, we assessed the expression patterns of eight selected human homologs of these genes in primary human B-cell malignancies, and explored the putative oncogenic potential of GPM6A and GPM6B. METHODS The gene expression levels of the selected human homologs were tested in human B-cell malignancies by semi-quantitative RT-PCR. The protein expression profiles of human GPM6A and GPM6B were analyzed by Western blotting. The localization and the effect of GPM6A and GPM6B on the cytoskeleton were determined using confocal and indirect immunofluorescence microscopy. To confirm the oncogenic potential of GPM6A and GPM6B, classical colony formation assays in soft agar and focus forming assays were used. The effects of these proteins on the cell cycle were assessed by flow cytometry analysis. RESULTS Using semi-quantitative RT-PCR, we found that most of the primary B-cell malignancies assessed showed altered expression patterns of the genes tested, including GPM6A and GPM6B. Using confocal microscopy, we found that the GPM6A protein (isoform 3) exhibits a punctate cytoplasmic localization and that the GPM6B protein (isoform 4) exhibits a peri-nuclear and punctate cytoplasmic localization. Interestingly, we found that exogenous over-expression of both proteins in NIH/3T3 cells alters the actin and microtubule networks and induces the formation of long filopodia-like protrusions. Additionally, we found that these over-expressing NIH/3T3 cells exhibit anchorage-independent growth and enhanced proliferation rates. Cellular transformation (i.e., loss of contact inhibition) was, however, only observed after exogenous over-expression of GPM6B. CONCLUSIONS Our results indicate that several human homologs of the genes found to be deregulated in Graffi MuLV experimental mouse models may serve as candidate biomarkers for human B-cell malignancies. In addition, we found that GPM6A and GPM6B may act as novel oncogenes in the development of these malignancies.
Collapse
|
27
|
Liu Q, Wang KJ, Zhu SQ. A novel p.G112E mutation in BFSP2 associated with autosomal dominant pulverulent cataract with sutural opacities. Curr Eye Res 2014; 39:1013-9. [PMID: 24654948 DOI: 10.3109/02713683.2014.891749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify the genetic defect in a Chinese family with bilateral pulverulent sutural cataract. MATERIALS AND METHODS A three-generation family with congenital cataract was recruited in the study. The study protocol followed the principles of the Declaration of Helsinki. Detailed family history and clinical data were recorded. Genomic DNA was extracted from peripheral blood leukocytes. Candidate gene sequencing was performed to identify the disease-causing mutation. The effects of amino acid changes on the structure and function of proteins were predicted by bioinformatics analysis. RESULTS All affected individuals presented pulverulent opacities in the embryonal nucleus and sutures. Direct candidate gene sequencing revealed a heterozygous c. 335 G>A variation in the beaded filament structural protein 2(BFSP2) gene, which resulted in the replacement of a highly conserved glycine by glutamic at codon 112 (p. G112E). Haplotype analysis indicated that the affected members shared a common haplotype with markers near BFSP2. This mutation co-segregated with all affected individuals and was not observed in unaffected members or in 120 ethnically matched controls. Bioinformatic analyses confirmed that the mutation altered the hydrophobic and secondary structure of the protein around the substitution site. CONCLUSIONS We report a novel mutation (p.G112E) in the BFSP2 gene, underscoring the physiological importance of the beaded filament protein and supporting its role in human cataract formation.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab , Beijing , China
| | | | | |
Collapse
|
28
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
29
|
Qu B, Landsbury A, Schönthaler HB, Dahm R, Liu Y, Clark JI, Prescott AR, Quinlan RA. Evolution of the vertebrate beaded filament protein, Bfsp2; comparing the in vitro assembly properties of a "tailed" zebrafish Bfsp2 to its "tailless" human orthologue. Exp Eye Res 2011; 94:192-202. [PMID: 22182672 DOI: 10.1016/j.exer.2011.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022]
Abstract
In bony fishes, Bfsp2 orthologues are predicted to possess a C-terminal tail domain, which is absent from avian, amphibian and mammalian Bfsp2 sequences. These sequences, are however, not conserved between fish species and therefore questions whether they have a functional role. For other intermediate filament proteins, the C-terminal tail domain is important for both filament assembly and regulating interactions between filaments. We confirm that zebrafish has a single Bfsp2 gene by radiation mapping. Two transcripts (bfsp2α and bfsp2β) are produced by alternative splicing of the last exon. Using a polyclonal antibody specific to a tridecameric peptide in the C-terminal tail domain common to both zebrafish Bfsp2 splice variants, we have confirmed its expression in zebrafish lens fibre cells. We have also determined the in vitro assembly properties of zebrafish Bfsp2α and conclude that the C-terminal sequences are required to regulate not only the diameter and uniformity of the in vitro assembly filaments, but also their filament-filament associations in vitro. Therefore we conclude zebrafish Bfsp2α is a functional orthologue conforming more closely to the conventional domain structure of intermediate filament proteins. Data mining of the genome databases suggest that the loss of this tail domain could occur in several stages leading eventually to completely tailless orthologues, such as human BFSP2.
Collapse
|
30
|
Novel recessive BFSP2 and PITX3 mutations: Insights into mutational mechanisms from consanguineous populations. Genet Med 2011; 13:978-81. [DOI: 10.1097/gim.0b013e31822623d5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Su SP, McArthur JD, Truscott RJW, Aquilina JA. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:647-56. [PMID: 21447408 DOI: 10.1016/j.bbapap.2011.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.
Collapse
Affiliation(s)
- Shih-Ping Su
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
32
|
Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 2010; 53:347-57. [PMID: 20624502 DOI: 10.1016/j.ejmg.2010.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023]
Abstract
Congenital cataracts are a major cause of induced blindness in children, and inherited cataracts are the major cause of congenital cataracts. Inherited congenital cataracts have been associated with mutations in specific genes, including those of crystallins, gap junction proteins, membrane transport and channel proteins, the cytoskeleton, and growth and transcription factors. Locating and identifying the genes and mutations involved in cataractogenesis are essential to gaining an understanding of the molecular defects and pathophysiologic characteristics of inherited congenital cataracts. In this review, we summarize the current research in this field.
Collapse
Affiliation(s)
- Bingyu Huang
- Medical Genetics Laboratory, Department of Obstetrics and Gynecology, Second Teaching Hospital, Jilin University, 218 Zhiqiang, Changchun, 130041, China.
| | | |
Collapse
|
33
|
Liu G, Li Y, Ruan Y, Cao W, Xin L, Qian J, Gu J. A new locus for autosomal dominant congenital coronary cataract in a Chinese family maps to chromosome 3q. Mol Vis 2010; 16:874-9. [PMID: 20508730 PMCID: PMC2874577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/12/2010] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To identify the genetic defect in an autosomal dominant congenital coronary cataract family (ADCCC). METHODS A Chinese family with ADCC was identified and characterized. All the members were genotyped with microsatellite markers at genes and loci that were considered to be associated with hereditary cataracts. Linkage analysis was performed after genotyping. Two-point Logarithm of odds (LOD) scores were calculated using MLINK software, from the LINKAGE program package. Multipoint parametric and non-parametric linkage were performed via the program MERLIN. RESULTS Linkage analysis provided evidence for a genetic locus for the ADCC on chromosome 3q. The maximum Two-point LOD score was 3.01 (theta=0) for two close markers. CONCLUSIONS The mapping of the congenital cataracts in a Chinese family locus to chromosome 3q.
Collapse
Affiliation(s)
- Guishun Liu
- Department of Ophthalmology, the Port Hospital of Tianjin, Tianjin, China
| | - Yunbo Li
- The First Hospital of Jilin University, Changchun, China
| | - Yanfei Ruan
- Department of Ophthalmology, the Port Hospital of Tianjin, Tianjin, China
| | - Wenping Cao
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medicine University, Harbin, China
| | - Li Xin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiangyuan Qian
- Department of Ophthalmology, the Port Hospital of Tianjin, Tianjin, China
| | - Jingzhi Gu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medicine University, Harbin, China
| |
Collapse
|
34
|
Philipp U, Steinmetz A, Distl O. Development of Feline Microsatellites and SNPs for Evaluating Primary Cataract Candidate Genes as Cause for Cataract in Angolan Lions (Panthera leo bleyenberghi). J Hered 2010; 101:633-8. [DOI: 10.1093/jhered/esq040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Conformational diseases: looking into the eyes. Brain Res Bull 2010; 81:12-24. [PMID: 19808079 DOI: 10.1016/j.brainresbull.2009.09.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/11/2009] [Accepted: 09/29/2009] [Indexed: 01/09/2023]
Abstract
Conformational diseases, a general term comprising more than 40 disorders are caused by the accumulation of unfolded or misfolded proteins. Improper protein folding (misfolding) as well as accrual of unfolded proteins can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The gradual accumulation of protein aggregates and the acceleration of their formation by stress explain the characteristic late or episodic onset of the diseases. The best studied in this group are neurodegenerative diseases and amyloidosis accompanied by the deposition of a specific aggregation-prone proteins or protein fragments and formation of insoluble fibrils. Amyloidogenic protein accumulation often occurs in the brain tissues, e.g. in Alzheimer's disease with the deposition of amyloid-beta and Tau, in scrapie and bovine spongiform encephalopathy with the accumulation of prion protein, in Parkinson's disease with the deposition of alpha-synuclein. Other examples of amyloid proteins are transthyretin, immunoglobulin light chain, gelsolin, etc. In addition to the brain, the accumulation of unfolded or misfolded proteins leading to pathology takes place in a wide variety of organs and tissues, including different parts of the eye. The best studied ocular conformational diseases are cataract in the lens and retinitis pigmentosa in the retina, but accumulation of misfolded proteins also occurs in other parts of the eye causing various disorders. Furthermore, ocular manifestation of systemic amyloidosis often causes the deposition of amyloidogenic proteins in different ocular tissues. Here we present the data regarding naturally unfolded and misfolded proteins in eye tissues, their structure-function relationships, and molecular mechanisms underlying their involvement in diseases. We also summarize the etiology of ocular conformational diseases and discuss approaches to their treatment.
Collapse
|
36
|
Fardin P, Ognibene M, Vanni C, De Santanna A, Varesio L, Eva A. Induction of epithelial mesenchimal transition and vasculogenesis in the lenses of Dbl oncogene transgenic mice. PLoS One 2009; 4:e7058. [PMID: 19759912 PMCID: PMC2739440 DOI: 10.1371/journal.pone.0007058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 08/17/2009] [Indexed: 01/06/2023] Open
Abstract
Background The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. Results We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. Conclusion Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue.
Collapse
Affiliation(s)
- Paolo Fardin
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
| | - Marzia Ognibene
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
| | - Cristina Vanni
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
| | - Amleto De Santanna
- Sezione di Istologia, Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
- * E-mail:
| |
Collapse
|
37
|
Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 2009; 119:1837-48. [PMID: 19587458 DOI: 10.1172/jci38277] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous polymers in establishing the optical properties of the eye lens and in maintaining its transparency. For instance, mutations in both BFSP1 and BFSP2 cause cataract in humans. We also explore the potential role of BFSP1 and BFSP2 in aging processes in the lens.
Collapse
Affiliation(s)
- Shuhua Song
- Center for Ophthalmic Research/Surgery, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
38
|
Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. BIOCHEMISTRY (MOSCOW) 2009; 73:1453-66. [PMID: 19216711 DOI: 10.1134/s0006297908130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central alpha-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.
Collapse
Affiliation(s)
- A A Minin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
39
|
Abstract
Debate regarding the mechanisms of how the eye changes focus (accommodation) and why this ability is lost with age (presbyopia) has recently been rejoined due to the advent of surgical procedures for the correction of presbyopia. Due to inherent confounding factors in both in vivo and in vitro measurement techniques, mechanical modeling of the behavior of the ocular lens in accommodation has been attempted to settle the debate. However, a paucity of reliable mechanical property measurements has proven problematic in the development of a successful mechanical model of accommodation. Instrumented microindentation was utilized to directly measure the local elastic modulus and dynamic response at various locations in the lens. The young porcine lens exhibits a large modulus gradient with the highest modulus appearing at the center of the nucleus and exponentially decreasing with distance. The loss tangent was significantly higher in the decapsulated lens and the force waveform amplitude decreased significantly upon removal of the lens capsule. The findings indicate that localized measurements of the lens’ mechanical properties are necessary to achieve accurate quantitative parameters suitable for mechanical modeling efforts. The results also indicate that the lens behaves as a crosslinked gel rather than as a collection of individual arched fiber cells.
Collapse
Affiliation(s)
- Matthew Reilly
- Department of Veterans Affairs, 915 North Grand Boulevard, St. Louis, MO 63106; Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Nathan Ravi
- Department of Veterans Affairs, 915 North Grand Boulevard, St. Louis, MO 63106; Department of Energy, Environmental, and Chemical Engineering, and Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
40
|
Chepelinsky AB. Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb Exp Pharmacol 2008:265-97. [PMID: 19096783 DOI: 10.1007/978-3-540-79885-9_14] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aquaporin 0 (AQP0) was originally characterized as a membrane intrinsic protein, specifically expressed in the lens fibers of the ocular lens and designated MIP, for major intrinsic protein of the lens. Once the gene was cloned, an internal repeat was identified, encoding for the amino acids Asp-Pro-Ala, the NPA repeat. Shortly, the MIP gene family was emerging, with members being characterized in mammals, insects, and plants. Once Peter Agre's laboratory developed a functional assay for water channels, the MIP family became the aquaporin family and MIP became known as aquaporin 0. Besides functioning as a water channel, aquaporin 0 also plays a structural role, being required for maintaining the transparency and optical accommodation of the ocular lens. Mutations in the AQP0 gene in human and mice result in genetic cataracts; deletion of the MIP/AQP0 gene in mice results in lack of suture formation required for maintenance of the lens fiber architecture, resulting in perturbed accommodation and focus properties of the ocular lens. Crystallography studies support the notion of the double function of aquaporin 0 as a water channel (open configuration) or adhesion molecule (closed configuration) in the ocular lens fibers. The functions of MIP/AQP0, both as a water channel and an adhesive molecule in the lens fibers, contribute to the narrow intercellular space of the lens fibers that is required for lens transparency and accommodation.
Collapse
Affiliation(s)
- Ana B Chepelinsky
- National Institutes of Health, National Eye Institute, Bldg. 31, Room 6A-32, Bethesda, MD, 20892-2510, USA.
| |
Collapse
|
41
|
Bornheim R, Müller M, Reuter U, Herrmann H, Büssow H, Magin TM. A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. J Cell Sci 2008; 121:3737-46. [PMID: 18940912 DOI: 10.1242/jcs.030312] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vimentin is the main intermediate filament (IF) protein of mesenchymal cells and tissues. Unlike other IF-/- mice, vimentin-/- mice provided no evidence of an involvement of vimentin in the development of a specific disease. Therefore, we generated two transgenic mouse lines, one with a (R113C) point mutation in the IF-consensus motif in coil1A and one with the complete deletion of coil 2B of the rod domain. In epidermal keratins and desmin, point mutations in these parts of the alpha-helical rod domain cause keratinopathies and desminopathies, respectively. Here, we demonstrate that substoichiometric amounts of vimentin carrying the R113C point mutation disrupted the endogenous vimentin network in all tissues examined but caused a disease phenotype only in the eye lens, leading to a posterior cataract that was paralleled by the formation of extensive protein aggregates in lens fibre cells. Unexpectedly, central, postmitotic fibres became depleted of aggregates, indicating that they were actively removed. In line with an increase in misfolded proteins, the amounts of Hsp70 and ubiquitylated vimentin were increased, and proteasome activity was raised. We demonstrate here for the first time that the expression of mutated vimentin induces a protein-stress response that contributes to disease pathology in mice, and hypothesise that vimentin mutations cause cataracts in humans.
Collapse
Affiliation(s)
- Roland Bornheim
- Institut für Biochemie and Molekularbiologie, Abteilung für Zellbiochemie und LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Liška F, Chylíková B, Martínek J, Křen V. Microphthalmia and cataract in rats with a novel point mutation in connexin 50 - L7Q. Mol Vis 2008; 14:823-8. [PMID: 18470322 PMCID: PMC2373795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/09/2008] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We isolated an autosomal semi-dominant cataract from our inbred SHR/OlaIpcv rat colony. Heterozygotes express pulverulent cataract with smaller eyes; homozygotes express marked microphthalmia with hypoplastic lens. We call this mutation Dca (for dominant cataract). In this study, we focus on the identification of the responsible gene. METHODS We performed linkage mapping using 93 F2(SHR-Dca x PD) hybrids and a panel of microsatellite markers. In a separate group of animals with a SHR genetic background, we examined the lenses histologically using Epon semi-thin sections and toluidine blue staining. We also assessed the weight of the eyes as an immediate measure for microphthalmia. RESULTS We mapped the Dca gene to chromosome 2, spanning 8.6 Mbp between markers D2Rat134 and D2Rat186. By sequencing the most plausible candidate gene, Gja8 (coding for connexin 50), we found a T to A transversion at codon 7, leading to a substitution of glutamine for leucin (L7Q). L7Q lies within the NH(2)-terminal cytosolic domain, presumably involved in voltage gating. Histology revealed disturbances in cell to cell contacts in the lens. CONCLUSIONS L7Q is a novel mutation in connexin 50 (Gja8), causing semi-dominant pulverulent cataracts. Dca rats can serve as a model for cataract development. A study on the properties of the mutant protein may offer an insight into the connexin channel function.
Collapse
Affiliation(s)
- František Liška
- Institute of Biology and Medical Genetics of the 1st Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics of the 1st Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Jindřich Martínek
- Institute of Histology and Embryology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Křen
- Institute of Biology and Medical Genetics of the 1st Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic,Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
43
|
Harding RL, Howley S, Baker LJ, Murphy TR, Archer WE, Wistow G, Hyde DR, Vihtelic TS. Lengsin expression and function during zebrafish lens formation. Exp Eye Res 2008; 86:807-18. [PMID: 18406404 DOI: 10.1016/j.exer.2008.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/13/2008] [Accepted: 02/22/2008] [Indexed: 11/15/2022]
Abstract
A zebrafish ortholog of human lengsin was identified by EST analysis of an adult lens cDNA library. During zebrafish development, lengsin transcription is first detected at 24 h post-fertilization (hpf). Immunolocalization, using polyclonal antiserum generated against a Lengsin bacterial fusion protein, detects lens-specific protein in whole-mount embryos at 30 hpf. Lengsin expression in zebrafish follows the temporal expression of the alphaA- alphaB1- and betaB1-crystallin proteins in the lens. At 72 hpf, Lengsin is localized to a subpopulation of differentiating secondary fiber cells, while no expression is detected in the lens epithelial cells or central lens fibers. In the adult lens, Lengsin is restricted to a narrow band of cortical fibers and co-localizes with actin at the lateral faces of these interdigitating cells. Stable transgenic lines, using a 3 kb lengsin genomic fragment to regulate EGFP expression, recapitulate the Lengsin temporal and spatial expression patterns. Lengsin function in zebrafish lens formation was examined by antisense morpholino-mediated translation and mRNA splice inhibition. At 72 hpf, the lengsin morphant lenses are reduced in size and exhibit separations within the cortex due to defects in secondary fiber morphogenesis. The location of the morphant lens defects correlates with the Lengsin protein localization at this age. These results demonstrate Lengsin is required for proper fiber cell differentiation by playing roles in either cell elongation or the establishment of cell interactions.
Collapse
Affiliation(s)
- Rachel L Harding
- University of Notre Dame, Department of Biological Sciences and Center for Zebrafish Research, Galvin Life Science Center, Notre Dame, IN 46556-0369, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vihtelic TS. Teleost lens development and degeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:341-73. [PMID: 18779061 DOI: 10.1016/s1937-6448(08)01006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transparent properties of the lens and its ability to focus light onto the retina are critical for normal vision. Optical clarity of the lens is achieved and maintained by a unique, highly regulated integration of lens cell proliferation and differentiation that persists throughout life. Zebrafish is a powerful genetic model for studying vertebrate lens differentiation and growth because the structural organization of the lens and gene functions are largely conserved with mammals, including humans. However, some features of zebrafish lens developmental morphology and gene expression are different from those of mammals and other terrestrial vertebrates. For example, the presumptive zebrafish lens delaminates from the surface ectoderm to form a solid mass of cells, in which the primary fibers differentiate by elongating in circular fashion. Both mutational and candidate gene analyses have identified and characterized developmental gene functions of the lens in zebrafish. This chapter presents the recent morphological analysis of zebrafish lens formation. In addition, the roles of Pitx3, Foxe3, and the lens-specific protein Lengsin (LENS Glutamine SYNthetase-like) in lens development are analyzed. Selected zebrafish lens mutants defective in early developmental processes and the maintenance of lens transparency are also discussed.
Collapse
Affiliation(s)
- Thomas S Vihtelic
- Department of Biological Sciences and Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|