1
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin SS, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics. Circ Res 2024; 135:110-134. [PMID: 38808504 PMCID: PMC11189745 DOI: 10.1161/circresaha.123.323939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Center for Vascular Biology Research and the Division of Nephrology (C.F.), Harvard Medical School, Boston, MA
| | - Swati S. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| |
Collapse
|
2
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin S, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Integrated single-nuclei and spatial transcriptomic analysis reveals propagation of early acute vein harvest and distension injury signaling pathways following arterial implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564995. [PMID: 37961724 PMCID: PMC10635041 DOI: 10.1101/2023.10.31.564995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Vascular Biology Research and the Division of Nephrology Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Demirkol Canli S. CSRP1 expression is associated with a mesenchymal, stroma-rich tumor profile and poor prognosis in colon cancer. Turk J Med Sci 2023; 53:1678-1689. [PMID: 38813484 PMCID: PMC10760585 DOI: 10.55730/1300-0144.5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/12/2023] [Accepted: 10/31/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Cysteine and glycine-rich protein 1 (CSRP1) is involved in the cysteine-rich protein family and is a marker of smooth muscle lineages. In colon cancer, the expression of this gene is associated with poor prognosis. In this study, the aim was to reevaluate its prognostic relationship in independent cohorts and explore potential underlying biological processes that are linked to aggressive behavior in tumors with high CSRP1 expression, such as epithelial-to-mesenchymal transition (EMT), stromal fractions in the tumor microenvironment, and consensus molecular subtypes (CMSs). Materials and methods RNA sequencing (RNAseq)-, microarray-, and single-cell RNAseq (scRNAseq)-based transcriptomic data were obtained from public databases. The EMT score was calculated based on the expression of E-cadherin and vimentin genes using a previously published method. The stromal score generated by the ESTIMATE method was utilized for the analysis of correlation with the CSRP1 expression. The scRNAseq data were analyzed via the Seurat R package. The immunohistochemistry-based protein level expression of CSRP1 was evaluated using the Human Protein Atlas database. Results Lower CSRP1 expression was noted in colon tumors compared to normal colon tissue. Patients with a high CSRP1 expression had shorter recurrence-free, overall, and disease-specific survivals in the GSE39582 and GSE17536 datasets (p < 0.05). The methylation level of the CSRP1 gene was negatively correlated (r = -0.57, p < 0.0001) with CSRP1 expression in The Cancer Genome Atlas colon adenocarcinoma dataset. CSRP1 expression was positively correlated with the expression of mesenchymal markers, EMT score, and stromal score obtained via the ESTIMATE method. CMS4 colon tumors had a significantly higher CSRP1 expression compared to other CMSs. Analysis of the scRNAseq data revealed that CSRP1 was expressed by epithelial cells and cancer-associated fibroblasts in the colorectal tumor microenvironment, which was also confirmed by the protein expression data from the Human Protein Atlas database. Conclusion CSRP1 expression is associated with CMS4, a more mesenchymal stroma-rich molecular profile, and poor prognosis in colon cancer.
Collapse
Affiliation(s)
- Seçil Demirkol Canli
- Division of Tumor Pathology, Department of Clinical Oncology, Cancer Institute, Hacettepe University, Ankara, Turkiye
| |
Collapse
|
4
|
Gomila Pelegri N, Stanczak AM, Bottomley AL, Milthorpe BK, Gorrie CA, Padula MP, Santos J. Adipose-Derived Stem Cells Spontaneously Express Neural Markers When Grown in a PEG-Based 3D Matrix. Int J Mol Sci 2023; 24:12139. [PMID: 37569515 PMCID: PMC10418654 DOI: 10.3390/ijms241512139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Neurological diseases are among the leading causes of disability and death worldwide and remain difficult to treat. Tissue engineering offers avenues to test potential treatments; however, the development of biologically accurate models of brain tissues remains challenging. Given their neurogenic potential and availability, adipose-derived stem cells (ADSCs) are of interest for creating neural models. While progress has been made in differentiating ADSCs into neural cells, their differentiation in 3D environments, which are more representative of the in vivo physiological conditions of the nervous system, is crucial. This can be achieved by modulating the 3D matrix composition and stiffness. Human ADSCs were cultured for 14 days in a 1.1 kPa polyethylene glycol-based 3D hydrogel matrix to assess effects on cell morphology, cell viability, proteome changes and spontaneous neural differentiation. Results showed that cells continued to proliferate over the 14-day period and presented a different morphology to 2D cultures, with the cells elongating and aligning with one another. The proteome analysis revealed 439 proteins changed in abundance by >1.5 fold. Cyclic nucleotide 3'-phosphodiesterase (CNPase) markers were identified using immunocytochemistry and confirmed with proteomics. Findings indicate that ADSCs spontaneously increase neural marker expression when grown in an environment with similar mechanical properties to the central nervous system.
Collapse
Affiliation(s)
- Neus Gomila Pelegri
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Aleksandra M. Stanczak
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Amy L. Bottomley
- Microbial Imaging Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| | - Catherine A. Gorrie
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| |
Collapse
|
5
|
Lei S, Du X, Tan K, He X, Zhu Y, Zhao S, Yang Z, Dou G. CRP‑1 promotes the malignant behavior of hepatocellular carcinoma cells via activating epithelial‑mesenchymal transition and Wnt/β‑catenin signaling. Exp Ther Med 2023; 26:314. [PMID: 37273753 PMCID: PMC10236095 DOI: 10.3892/etm.2023.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/18/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that cysteine rich protein 1 (CRP-1) is dysregulated in several types of human cancer; however, its role in HCC is poorly understood. Therefore, the current study aimed to investigate the role of CRP-1 in HCC. Western blotting and reverse transcription-quantitative PCR results showed that CRP-1 was upregulated in HCC cell lines. Furthermore, for in vitro experiments, CRP-1 was knocked down and overexpressed in the HCC cell lines Hep 3B2.1-7 and BEL-7405, respectively. c-Myc and proliferating cell nuclear antigen upregulation, and cleaved caspase 3 and poly(ADP-ribose) polymerase downregulation suggested that CRP-1 silencing could inhibit the proliferation and colony-forming ability of HCC cells, and induce apoptosis. In addition, CRP-1 overexpression promoted the malignant behavior of HCC cells and induced epithelial-mesenchymal transition (EMT), as verified by E-cadherin downregulation, and N-cadherin and vimentin upregulation. Additionally, CRP-1 overexpression promoted the nuclear translocation of β-catenin, and activated the expression of cyclin D1 and matrix metalloproteinase-7. Furthermore, inhibition of Wnt/β-catenin signaling, following cell treatment with XAV-939, an inhibitor of the Wnt/β-catenin signaling pathway, abrogated the effects of CRP-1 on enhancing the proliferation and migration of HCC cells. These findings indicated that the regulatory effect of CRP-1 on HCC cells could be mediated by the Wnt/β-catenin signaling pathway. Overall, CRP-1 could promote the proliferation and migration of HCC cell lines, partially via promoting EMT and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shixiong Lei
- Department of Interventional Medicine, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xilin Du
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Kai Tan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaojun He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yejing Zhu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shoujie Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Gang Dou
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
6
|
Ang MJ, Kang S, Moon C. Melatonin alters neuronal architecture and increases cysteine-rich protein 1 signaling in the male mouse hippocampus. J Neurosci Res 2020; 98:2333-2348. [PMID: 32754943 DOI: 10.1002/jnr.24708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
Abstract
Neuronal plasticity describes changes in structure, function, and connections of neurons. The hippocampus, in particular, has been shown to exhibit considerable plasticity regarding both physiological and morphological functions. Melatonin, a hormone released by the pineal gland, promotes cell survival and dendrite maturation of neurons in the newborn brain and protects against neurological disorders. In this study, we investigated the effect of exogenous melatonin on neuronal architecture and its possible mechanism in the hippocampus of adult male C57BL/6 mice. Melatonin treatment significantly increased the total length and complexity of dendrites in the apical and basal cornu ammonis (CA) 1 and in the dentate gyrus in mouse hippocampi. Spine density in CA1 apical dendrites was increased, but no significant differences in other subregions were observed. In primary cultured hippocampal neurons, the length and arborization of neurites were significantly augmented by melatonin treatment. Additionally, western blot and immunohistochemical analyses in both in vivo and in vitro systems revealed significant increases in the level of cysteine-rich protein 1 (crp-1) protein, which is known to be involved in dendritic branching in mouse hippocampal neurons after melatonin treatment. Our results suggest that exogenous melatonin leads to significant alterations of neuronal micromorphometry in the adult hippocampus, possibly via crp-1 signaling.
Collapse
Affiliation(s)
- Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
7
|
Haines RR, Scharer CD, Lobby JL, Boss JM. LSD1 Cooperates with Noncanonical NF-κB Signaling to Regulate Marginal Zone B Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:1867-1881. [PMID: 31492745 DOI: 10.4049/jimmunol.1900654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
Marginal zone B cells (MZB) are a mature B cell subset that rapidly respond to blood-borne pathogens. Although the transcriptional changes that occur throughout MZB development are known, the corresponding epigenetic changes and epigenetic modifying proteins that facilitate these changes are poorly understood. The histone demethylase LSD1 is an epigenetic modifier that promotes plasmablast formation, but its role in B cell development has not been explored. In this study, a role for LSD1 in the development of B cell subsets was examined. B cell-conditional deletion of LSD1 in mice resulted in a decrease in MZB whereas follicular B cells and bone marrow B cell populations were minimally affected. LSD1 repressed genes in MZB that were normally upregulated in the myeloid and follicular B cell lineages. Correspondingly, LSD1 regulated chromatin accessibility at the motifs of transcription factors known to regulate splenic B cell development, including NF-κB motifs. The importance of NF-κB signaling was examined through an ex vivo MZB development assay, which showed that both LSD1-deficient and NF-κB-inhibited transitional B cells failed to undergo full MZB development. Gene expression and chromatin accessibility analyses of in vivo- and ex vivo-generated LSD1-deficient MZB indicated that LSD1 regulated the downstream target genes of noncanonical NF-κB signaling. Additionally LSD1 was found to interact with the noncanonical NF-κB transcription factor p52. Together, these data reveal that the epigenetic modulation of the noncanonical NF-κB signaling pathway by LSD1 is an essential process during the development of MZB.
Collapse
Affiliation(s)
- Robert R Haines
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
8
|
Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 2014; 103:452-60. [PMID: 25053639 DOI: 10.1093/cvr/cvu171] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After a period of relative senescence in the field of vascular smooth muscle cell (VSMC) research with particular regards to atherosclerosis, the last few years has witnessed a resurgence, with extensive research re-assessing potential molecular mechanisms and pathways that modulate VSMC behaviour within the atherosclerotic-prone vessel wall and the atherosclerotic plaque itself. Attention has focussed on the pathological contribution of VSMC in plaque calcification; systemic and local mediators such as inflammatory molecules and lipoproteins; autocrine and paracrine regulators which affect cell-cell and cell to matrix contacts alongside cytoskeletal changes. In this brief focused review, recent insights that have been gained into how a myriad of recently identified factors can influence the pathological behaviour of VSMC and their subsequent contribution to atherosclerotic plaque development and progression has been discussed. An overriding theme is the mechanisms involved in the alterations of VSMC function during atherosclerosis.
Collapse
Affiliation(s)
- Jason Lee Johnson
- Laboratory of Cardiovascular Pathology, School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
9
|
Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol Cell Biol 2014; 34:3053-65. [PMID: 24934443 DOI: 10.1128/mcb.00651-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking.
Collapse
|
10
|
Aan GJ, Hairi HA, Makpol S, Rahman MA, Karsani SA. Differences in protein changes between stress-induced premature senescence and replicative senescence states. Electrophoresis 2013; 34:2209-17. [DOI: 10.1002/elps.201300086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Goon Jo Aan
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Suzana Makpol
- Department of Biochemistry; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Mariati Abdul Rahman
- Department of Clinical Oral Biology; Faculty of Dentistry; Universiti Kebangsaan Malaysia; Kuala Lumpur; Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science and University of Malaya Centre for Proteomics Research (UMCPR); University of Malaya; Kuala Lumpur; Malaysia
| |
Collapse
|
11
|
Ludyga N, Englert S, Pflieger K, Rauser S, Braselmann H, Walch A, Auer G, Höfler H, Aubele M. The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer. Mol Cancer 2013; 12:28. [PMID: 23570421 PMCID: PMC3666946 DOI: 10.1186/1476-4598-12-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/01/2013] [Indexed: 01/19/2023] Open
Abstract
Background CRIP1 (cysteine-rich intestinal protein 1) has been found in several tumor types, its prognostic impact and its role in cellular processes, particularly in breast cancer, are still unclear. Methods To elucidate the prognostic impact of CRIP1, we analyzed tissues from 113 primary invasive ductal breast carcinomas using immunohistochemistry. For the functional characterization of CRIP1, its endogenous expression was transiently downregulated in T47D and BT474 breast cancer cells and the effects analyzed by immunoblotting, WST-1 proliferation assay and invasion assay. Results We found a significant correlation between CRIP1 and HER2 (human epidermal growth factor receptor 2) expression levels (p = 0.016) in tumor tissues. In Kaplan Meier analyses, CRIP1 expression was significantly associated with the distant metastases-free survival of patients, revealing a better prognosis for high CRIP1 expression (p = 0.039). Moreover, in multivariate survival analyses, the expression of CRIP1 was an independent negative prognostic factor, along with the positive prognosticators nodal status and tumor size (p = 0.029). CRIP1 knockdown in the T47D and BT474 breast cancer cell lines led to the increased phosphorylation of MAPK and Akt, to the reduced phosphorylation of cdc2, and to a significantly elevated cell proliferation in vitro (p < 0.001). These results indicate that reduced CRIP1 levels may increase cell proliferation and activate cell growth. In addition, CRIP1 knockdown increased cell invasion in vitro. Conclusions Because the lack of CRIP1 expression in breast cancer tissue is significantly associated with a worse prognosis for patients and low endogenous CRIP1 levels in vitro increased the malignant potential of breast cancer cells, we hypothesize that CRIP1 may act as a tumor suppressor in proliferation and invasion processes. Therefore, CRIP1 may be an independent prognostic marker with significant predictive power for use in breast cancer therapy.
Collapse
Affiliation(s)
- Natalie Ludyga
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg 85764, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stefanowicz D, Hackett TL, Garmaroudi FS, Günther OP, Neumann S, Sutanto EN, Ling KM, Kobor MS, Kicic A, Stick SM, Paré PD, Knight DA. DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One 2012; 7:e44213. [PMID: 22970180 PMCID: PMC3435400 DOI: 10.1371/journal.pone.0044213] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/30/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Allergic inflammation is commonly observed in a number of conditions that are associated with atopy including asthma, eczema and rhinitis. However, the genetic, environmental or epigenetic factors involved in these conditions are likely to be different. Epigenetic modifications, such as DNA methylation, can be influenced by the environment and result in changes to gene expression. OBJECTIVES To characterize the DNA methylation pattern of airway epithelial cells (AECs) compared to peripheral blood mononuclear cells (PBMCs) and to discern differences in methylation within each cell type amongst healthy, atopic and asthmatic subjects. METHODS PBMCs and AECs from bronchial brushings were obtained from children undergoing elective surgery for non-respiratory conditions. The children were categorized as atopic, atopic asthmatic, non-atopic asthmatic or healthy controls. Extracted DNA was bisulfite treated and 1505 CpG loci across 807 genes were analyzed using the Illumina GoldenGate Methylation Cancer Panel I. Gene expression for a subset of genes was performed using RT-PCR. RESULTS We demonstrate a signature set of CpG sites that are differentially methylated in AECs as compared to PBMCs regardless of disease phenotype. Of these, 13 CpG sites were specific to healthy controls, 8 sites were only found in atopics, and 6 CpGs were unique to asthmatics. We found no differences in the methylation status of PBMCs between disease phenotypes. In AECs derived from asthmatics compared to atopics, 8 differentially methylated sites were identified including CpGs in STAT5A and CRIP1. We demonstrate STAT5A gene expression is decreased whereas CRIP1 gene expression is elevated in the AECs from asthmatic compared to both healthy and atopic subjects. DISCUSSION We characterized a cell specific DNA methylation signature for AECs compared to PBMCs regardless of asthmatic or atopic status. Our data highlight the importance of understanding DNA methylation in the epithelium when studying the epithelial contribution to asthma.
Collapse
Affiliation(s)
- Dorota Stefanowicz
- James Hogg Research Centre at the Heart and Lung Institute, Department of Medicine, University of British Columbia and St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- James Hogg Research Centre at the Heart and Lung Institute, Department of Medicine, University of British Columbia and St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Farshid S. Garmaroudi
- James Hogg Research Centre at the Heart and Lung Institute, Department of Medicine, University of British Columbia and St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Oliver P. Günther
- Prevention of Organ Failure Centre of Excellence, Vancouver, British Columbia, Canada
| | - Sarah Neumann
- Department of Medical Genetics Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N. Sutanto
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Michael S. Kobor
- Department of Medical Genetics Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Kicic
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Stephen M. Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter D. Paré
- James Hogg Research Centre at the Heart and Lung Institute, Department of Medicine, University of British Columbia and St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darryl A. Knight
- James Hogg Research Centre at the Heart and Lung Institute, Department of Medicine, University of British Columbia and St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
Ma L, Yu YM, Guo Y, Hart RP, Schachner M. Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci 2012; 35:353-65. [PMID: 22288476 DOI: 10.1111/j.1460-9568.2011.07958.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In contrast to mammals, adult zebrafish have the ability to regrow descending axons and gain locomotor recovery after spinal cord injury (SCI). In zebrafish, a decisive factor for successful spinal cord regeneration is the inherent ability of some neurons to regrow their axons via (re)expressing growth-associated genes during the regeneration period. The nucleus of the medial longitudinal fascicle (NMLF) is one of the nuclei capable of regenerative response after SCI. Using microarray analysis with laser capture microdissected NMLF, we show that cysteine- and glycine-rich protein (CRP)1a (encoded by the csrp1a gene in zebrafish), the function of which is largely unknown in the nervous system, was upregulated after SCI. In situ hybridization confirmed the upregulation of csrp1a expression in neurons during the axon growth phase after SCI, not only in the NMLF, but also in other nuclei capable of regeneration, such as the intermediate reticular formation and superior reticular formation. The upregulation of csrp1a expression in regenerating nuclei started at 3 days after SCI and continued to 21 days post-injury, the longest time point studied. In vivo knockdown of CRP1a expression using two different antisense morpholino oligonucleotides impaired axon regeneration and locomotor recovery when compared with a control morpholino, demonstrating that CRP1a upregulation is an important part of the innate regeneration capability in injured neurons of adult zebrafish. This study is the first to demonstrate the requirement of CRP1a for zebrafish spinal cord regeneration.
Collapse
Affiliation(s)
- Liping Ma
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
14
|
Järvinen PM, Myllärniemi M, Liu H, Moore HM, Leppäranta O, Salmenkivi K, Koli K, Latonen L, Band AM, Laiho M. Cysteine-rich protein 1 is regulated by transforming growth factor-β1 and expressed in lung fibrosis. J Cell Physiol 2012; 227:2605-12. [PMID: 21882188 DOI: 10.1002/jcp.23000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-β (TGF-β) is a diverse cytokine regulating growth, apoptosis, differentiation, adhesion, invasion, and extracellular matrix production. Dysregulation of TGF-β is associated with fibrotic disorders and epithelial-mesenchymal transition, and has been linked with idiopathic pulmonary fibrosis (IPF). Cysteine-rich protein 1 (CRP1) is a small LIM-domain containing protein involved in smooth muscle differentiation. Here, we show that TGF-β1 increases the expression of CRP1 protein and that CRP1 levels increase in a biphasic fashion. A rapid transient (15-45 min) increase in CRP1 is followed by a subsequent, sustained increase in CRP1 a few hours afterwards that lasts several days. We find that TGF-β1 regulates the expression of CRP1 through Smad and non-conventional p38 MAPK signaling pathways in a transcription-independent manner and that the induction occurs concomitant with an increase in myofibroblast differentiation. Using CRP1 silencing by shRNA, we identify CRP1 as a novel factor mediating cell contractility. Furthermore, we localize CRP1 to fibroblastic foci in IPF lungs and find that CRP1 is significantly more expressed in IPF as compared to control lung tissue. The results show that CRP1 is a novel TGF-β1 regulated protein that is expressed in fibrotic lesions and may be relevant in the IPF disease.
Collapse
Affiliation(s)
- Päivi M Järvinen
- Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
CRP1, a protein localized in filopodia of growth cones, is involved in dendritic growth. J Neurosci 2012; 31:16781-91. [PMID: 22090504 DOI: 10.1523/jneurosci.2595-11.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cysteine-rich protein (CRP) family is a subgroup of LIM domain proteins. CRP1, which cross-links actin filaments to make actin bundles, is the only CRP family member expressed in the CNS with little known about its function in nerve cells. Here, we report that CRP1 colocalizes with actin in the filopodia of growth cones in cultured rat hippocampal neurons. Knockdown of CRP1 expression by short hairpin RNA interference results in inhibition of filopodia formation and dendritic growth in neurons. Overexpression of CRP1 increases filopodia formation and neurite branching, which require its actin-bundling activity. Expression of CRP1 with a constitutively active form of Cdc42, a GTPase involved in filopodia formation, increases filopodia formation in COS-7 cells, suggesting cooperation between the two proteins. Moreover, we demonstrate that neuronal activity upregulates CRP1 expression in hippocampal neurons via Ca²⁺ influx after depolarization. Ca²⁺/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein mediate the Ca²⁺-induced upregulation of CRP1 expression. Furthermore, CRP1 is required for the dendritic growth induced by Ca²⁺ influx or CaMKIV. Together, these data are the first to demonstrate a role for CRP1 in dendritic growth.
Collapse
|
16
|
Acquati F, Monti L, Lualdi M, Fabbri M, Sacco MG, Gribaldo L, Taramelli R. Molecular signature induced by RNASET2, a tumor antagonizing gene, in ovarian cancer cells. Oncotarget 2011; 2:477-84. [PMID: 21646684 PMCID: PMC3248199 DOI: 10.18632/oncotarget.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using the Hey3Met2 human ovarian cancer cell line, we previously found the RNASET2 gene to possess a remarkable in vivo tumor suppressor activity, although no in vitro features such as inhibition of cell proliferation, clonogenic potential, impaired growth in soft agar and increase in apoptotic rate could be detected. This is reminiscent of the behavior of genes belonging to the class of tumor antagonizing genes (TAG) which act mainly within the context of the microenvironment. Here we present transcriptional profiles analysis which indicates that investigations of the mechanisms of TAG biological functions require a comparison between the in vitro and in vivo expression patterns. Indeed several genes displaying a biological function potentially related to tumor suppression could not be validated by subsequent in vivo expression analysis. On the other hand the fact that we could find congruency for three genes both in vivo and in vitro adds a warning to a too much stringent categorization of this class of genes which relies on the sensitivity of the methodological approaches.
Collapse
Affiliation(s)
- Francesco Acquati
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Brunskill EW, Sequeira-Lopez MLS, Pentz ES, Lin E, Yu J, Aronow BJ, Potter SS, Gomez RA. Genes that confer the identity of the renin cell. J Am Soc Nephrol 2011; 22:2213-25. [PMID: 22034642 DOI: 10.1681/asn.2011040401] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Renin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney. For example, cells programmed to exhibit the renin phenotype expressed Akr1b7, and maturing cells expressed angiogenic factors necessary for the development of the kidney vasculature and RGS (regulator of G-protein signaling) genes, suggesting a potential relationship between renin cells and pericytes. Contrary to the plasticity of arteriolar smooth muscle cells upstream from the glomerulus, which can transiently acquire the embryonic phenotype in the adult under physiologic stress, the adult juxtaglomerular cell always possessed characteristics of both smooth muscle and renin cells. Taken together, these results identify the gene expression profile of renin-expressing cells at various stages of maturity, and suggest that juxtaglomerular cells maintain properties of both smooth muscle and renin-expressing cells, likely to allow the rapid control of body fluids and BP through both contractile and endocrine functions.
Collapse
Affiliation(s)
- Eric W Brunskill
- Harrison Distinguished Professor of Pediatrics and Biology, University of Virginia, 409 Lane Road, MR4 Building, Room 2001, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors. Eur Neuropsychopharmacol 2011; 21:45-62. [PMID: 20961740 DOI: 10.1016/j.euroneuro.2010.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses.
Collapse
Affiliation(s)
- Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Latonen L, Järvinen PM, Suomela S, Moore HM, Saarialho-Kere U, Laiho M. Ultraviolet B radiation regulates cysteine-rich protein 1 in human keratinocytes. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2010; 26:70-7. [PMID: 20415737 DOI: 10.1111/j.1600-0781.2010.00488.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cysteine-rich protein 1 (CRP1) is a growth-inhibitory cytoskeletal protein that is induced by ultraviolet (UV) C radiation radiation in fibroblasts. Our aim was to investigate the effects of UV radiation on CRP1 in keratinocytes, the main cell type subjected to UV radiation in the human body. METHODS The effects of physiologically relevant doses of UVB radiation on CRP1 protein levels were studied in cultured primary keratinocytes and transformed cell lines (HaCaT, A-431) by immunoblotting. UVB-induced keratinocyte apoptosis was assessed by flow cytometry and monitoring caspase activity. Expression of CRP1 in human skin in vivo was studied by immunohistochemistry in samples of normal skin, actinic keratosis (AK) representing UV-damaged skin and squamous cell carcinoma (SCC), a UV-induced skin cancer. RESULTS CRP1 expression increased by UVB radiation in primary but not in immortalized keratinocytes. Upon high, apoptosis-inducing doses of UV radiation, CRP1 was cleaved in a caspase-dependent manner. In normal skin, CRP1 was expressed in smooth muscle cells, vasculature, sweat glands, sebaceous glands and hair root sheath, but very little CRP1 was present in keratinocytes. CRP1 expression was elevated in basal cells in AK but not in SCC. CONCLUSION CRP1 expression is regulated by UVB in human keratinocytes, suggesting a role for CRP1 in the phototoxic responses of human skin.
Collapse
Affiliation(s)
- Leena Latonen
- Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
20
|
Lilly B, Clark KA, Yoshigi M, Pronovost S, Wu ML, Periasamy M, Chi M, Paul RJ, Yet SF, Beckerle MC. Loss of the serum response factor cofactor, cysteine-rich protein 1, attenuates neointima formation in the mouse. Arterioscler Thromb Vasc Biol 2010; 30:694-701. [PMID: 20056913 DOI: 10.1161/atvbaha.109.200741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cysteine-rich protein (CRP) 1 and 2 are cytoskeletal lin-11 isl-1 mec-3 (LIM)-domain proteins thought to be critical for smooth muscle differentiation. Loss of murine CRP2 does not overtly affect smooth muscle differentiation or vascular function but does exacerbate neointima formation in response to vascular injury. Because CRPs 1 and 2 are coexpressed in the vasculature, we hypothesize that CRPs 1 and 2 act redundantly in smooth muscle differentiation. METHODS AND RESULTS We generated Csrp1 (gene name for CRP1) null mice by genetic ablation of the Csrp1 gene and found that mice lacking CRP1 are viable and fertile. Smooth muscle-containing tissues from Csrp1-null mice are morphologically indistinguishable from wild-type mice and have normal contractile properties. Mice lacking CRPs 1 and 2 are viable and fertile, ruling out functional redundancy between these 2 highly related proteins as a cause for the lack of an overt phenotype in the Csrp1-null mice. Csrp1-null mice challenged by wire-induced arterial injury display reduced neointima formation, opposite to that seen in Csrp2-null mice, whereas Csrp1/Csrp2 double-null mice produce a wild-type response. CONCLUSIONS Smooth muscle CRPs are not essential for normal smooth muscle differentiation during development, but may act antagonistically to modulate the smooth muscle response to pathophysiological stress.
Collapse
Affiliation(s)
- Brenda Lilly
- Huntsman Cancer Institute, Department of Biology, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|