1
|
Wang L, Wu Y, Hu L, Wang G. Concurrent SMARCA4-deficient and poorly differentiated adenocarcinomas in separate lung lobes: a case report and literature review. World J Surg Oncol 2025; 23:198. [PMID: 40405273 PMCID: PMC12096594 DOI: 10.1186/s12957-025-03839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND SMARCA4 and SMARCA2, mutually exclusive catalytic ATPase subunits of human mammalian Switch/Sucrose-Nonfermentable chromatin remodeling enzymes, function as tumor suppressor genes. SMARCA4-deficient adenocarcinoma (SMARCA4-dADC) is a relatively rare subtype of TTF1/P40-negative non-small cell lung cancer. The concurrent presentation of SMARCA4-dADC and poorly differentiated adenocarcinoma with SMARCA2 (also known as BRM) loss in separate lobes of the same patient is even less common. This report describes such a case involving the simultaneous occurrence of these two tumor types in distinct locations within the lungs. CASE PRESENTATION A 68-year-old male presented with a three-week history of vague pain in the right side of the chest, with no obvious trigger. Imaging revealed solid masses in the upper and lower lobes of the right lung with bilateral enlarged cervical lymph nodes. So, both of these masses underwent wedge resection. Histopathological examination confirmed that the lower lobe tumor was SMARCA4-dADC, while the upper lobe tumor was diagnosed as poorly differentiated adenocarcinoma. Although histologically similar, both exhibiting predominantly solid sheets and complex glandular structures, the two tumors displayed distinct immunohistochemical and molecular profiles. The lower lobe mass showed complete loss of BRG1 protein expression and partial loss of BRM. Immunohistochemical analysis revealed negative expression of TTF1, Napsin A, SALL4, CD34, and SOX2, and positive expression of CK7, pan-Cytokeratin (CK-pan), and HepPar-1. Molecular analysis identified mutations in SMARCA4, KRAS, and STK11. Conversely, the upper lobe mass retained BRG1 expression but showed complete loss of BRM protein expression, and negative expression of SALL4, CD34, and HepPar-1, positive expression of CK7, CK-pan, TTF1, Napsin A, and SOX2. A KRAS mutation was also detected in this tumor. CONCLUSION The simultaneous occurrence of SMARCA4-dADC and conventional adenocarcinoma in different locations within the same patient is exceedingly rare. However, the distinct immunophenotypic and molecular characteristics of SMARCA4-dADC differentiate it as a unique entity from conventional adenocarcinoma. We recommend including SMARCA4 in the marker panel used to evaluate TTF1-negative adenocarcinomas of potential or uncertain pulmonary origin. This report underscores the diagnostic challenge of concurrent SMARCA4-dADC and poorly differentiated adenocarcinoma, proposing a standardized immunohistochemical workflow to guide therapeutic decisions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathology, the Fourth Affiliated Hospital of School of Medicine, & International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang Province, 322000, China
| | - Yeqin Wu
- Department of Pathology, the Fourth Affiliated Hospital of School of Medicine, & International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang Province, 322000, China
| | - Liqian Hu
- Department of Pathology, the Fourth Affiliated Hospital of School of Medicine, & International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang Province, 322000, China
| | - Gangping Wang
- Department of Pathology, the Fourth Affiliated Hospital of School of Medicine, & International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang Province, 322000, China.
| |
Collapse
|
2
|
Baldassarre G, L de la Serna I, Vallette FM. Death-ision: the link between cellular resilience and cancer resistance to treatments. Mol Cancer 2025; 24:144. [PMID: 40375296 PMCID: PMC12080166 DOI: 10.1186/s12943-025-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
One of the key challenges in defeating advanced tumors is the ability of cancer cells to evade the selective pressure imposed by chemotherapy, targeted therapies, immunotherapy and cellular therapies. Both genetic and epigenetic alterations contribute to the development of resistance, allowing cancer cells to survive initially effective treatments. In this narration, we explore how genetic and epigenetic regulatory mechanisms influence the state of tumor cells and their responsiveness to different therapeutic strategies. We further propose that an altered balance between cell growth and cell death is a fundamental driver of drug resistance. Cell death programs exist in various forms, shaped by cell type, triggering factors, and microenvironmental conditions. These processes are governed by temporal and spatial constraints and appear to be more heterogeneous than previously understood. To capture the intricate interplay between death-inducing signals and survival mechanisms, we introduce the concept of Death-ision. This framework highlights the dynamic nature of cell death regulation, determining whether specific cancer cell clones evade or succumb to therapy. Building on this understanding offers promising strategies to counteract resistant clones and enhance therapeutic efficacy. For instance, combining DNMT inhibitors with immune checkpoint blockade may counteract YAP1-driven resistance or the use of transcriptional CDK inhibitors could prevent or overcome chemotherapy resistance. Death-ision aims to provide a deeper understanding of the diversity and evolution of cell death programs, not only at diagnosis but also throughout disease progression and treatment adaptation.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, 33081, Italy.
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - François M Vallette
- Centre de Recherche en Cancérologie et Immunologie Intégrées Nantes Angers (CRCI2 NA), INSERM UMR1307/CNRS UMR 6075/Nantes Université/Univ. Angers. Nantes, 44007, Nantes, France.
- Institut de Cancérologie de L'Ouest (ICO), 44085, Saint-Herblain, France.
| |
Collapse
|
3
|
Zou X, Zhou X, Guo X, Pan L, Li W. SMARCA4 deficiency: implications for non-small cell lung cancer and management strategies, with relevance to and distinctions from thoracic undifferentiated tumor. Transl Lung Cancer Res 2025; 14:1456-1470. [PMID: 40386720 PMCID: PMC12082232 DOI: 10.21037/tlcr-24-927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 05/20/2025]
Abstract
In 2021, the fifth edition of the World Health Organization (WHO) classification of thoracic tumors introduced a new category, "Thoracic SMARCA4-deficient undifferentiated tumor", highlighting SMARCA4 deficiency as a key molecular marker for classifying as "other pulmonary epithelial tumors". SMARCA4 is a gene encoding a protein involved in chromatin remodeling, and approximately 8% of non-small cell lung cancer (NSCLC) patients exhibit SMARCA4 deletions. These patients are more prone to drug resistance, early recurrence, and unfavorable clinical outcomes. Moreover, NSCLC patients with concomitant SMARCA4 mutations may not benefit from currently available treatments, underscoring the distinctiveness of this subgroup. Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) represent distinct entities from SMARCA4-deficient non-small cell lung cancer (SMARCA4-dNSCLC). This distinction is supported by their divergent pathological characteristics, demographic profiles, and survival outcomes. NSCLC cases deficient in SMARCA4 exhibit high malignancy, yet the precise biological mechanisms underlying this phenomenon remain under intensive investigation. Pathological examination and immunohistochemistry can effectively differentiate SMARCA4-UT from SMARCA4-dNSCLC. SMARCA4-UT typically manifests as adenocarcinoma or, more rarely, as squamous cell carcinoma with undifferentiated rhabdomyoblastic morphology. Therefore, elucidating the mechanisms underlying SMARCA4 alterations in NSCLC and their regulatory roles in tumorigenesis and the microenvironment is crucial. This article aims to discuss the structure, biological functions, significance in NSCLC development, and emerging potential therapeutic strategies related to SMARCA4 while providing clinical practice guidance for NSCLC patients with SMARCA4 deletions.
Collapse
Affiliation(s)
- Xin Zou
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Institute for Lung Disease, Air Force Medical University, Xi’an, China
| | - Xiaoqing Zhou
- Department of Disease Control and Prevention, Xi’an Eighth Hospital, Xi’an, China
| | - Xian Guo
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Institute for Lung Disease, Air Force Medical University, Xi’an, China
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Institute for Lung Disease, Air Force Medical University, Xi’an, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Institute for Lung Disease, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Xu L, Xu X, Wu P, Ye W, Zhao J, Yang J, Yao Y, Chen M, Wang X, Wang A, Fan Y. Clinical characteristics and prognostic analysis of patients with SMARCA4-deficient lung cancer. Technol Health Care 2025; 33:1014-1020. [PMID: 40105165 DOI: 10.1177/09287329241296242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundSMARCA4-deficient NSCLC is a rare type of tumor, accounting for approximately 10% of all NSCLC. It exhibits a weak response to conventional chemotherapy and has a poor prognosis, and lacks alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), and ROS1 (ROS proto-oncogene 1) genes Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype.ObjectiveThe aim of this study was to understand the clinical characteristics of this special type of tumor and its response to different treatments.MethodsWe collected clinical data from 42 patients with SMARCA4-deficient NSCLC from July 2022 to January 2024, and analyzed their clinical features and survival state.ResultsThe study included a total of 42 patients diagnosed with NSCLC and harboring SMARCA4 mutation. The majority of these patients were male with a median age of 67 years. Most patients presented at stage IV upon diagnosis with highly aggressive tumors characterized by high Ki-67 proliferation index values resulting in poor overall prognosis. Genetic testing revealed TP53 gene mutations to be most prevalent (21%), followed by KRAS mutations (13%). Patients receiving immunotherapy exhibited significantly longer median overall survival compared to those treated solely with chemotherapy. Targeted drug therapy demonstrated favorable effects in some patients.ConclusionNSCLC patients harboring SMARCA4 deficiency exhibit poor overall survival rates with a median overall survival time of 5.4 months. Immunotherapy may provide benefits for NSCLC patients with SMARCA4 deficiency.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Xianquan Xu
- Thoracic Surgery, Anhui Chest Hospital, Hefei, China
| | - Pengfei Wu
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Wei Ye
- Pathology Department, Anhui Chest Hospital, Hefei, China
| | - Jieting Zhao
- Pathology Department, Anhui Chest Hospital, Hefei, China
| | - Jingwen Yang
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Yuanyuan Yao
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Maoxi Chen
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Xiaoyan Wang
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Anbang Wang
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| | - Yanbo Fan
- Department of Oncology, Anhui Chest Hospital, Hefei, China
| |
Collapse
|
5
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Dreier MR, Walia J, de la Serna IL. Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. EPIGENOMES 2024; 8:7. [PMID: 38390898 PMCID: PMC10885108 DOI: 10.3390/epigenomes8010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions.
Collapse
Affiliation(s)
- Megan R Dreier
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Jasmine Walia
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| |
Collapse
|
7
|
Davó-Martínez C, Helfricht A, Ribeiro-Silva C, Raams A, Tresini M, Uruci S, van Cappellen W, Taneja N, Demmers JA, Pines A, Theil A, Vermeulen W, Lans H. Different SWI/SNF complexes coordinately promote R-loop- and RAD52-dependent transcription-coupled homologous recombination. Nucleic Acids Res 2023; 51:9055-9074. [PMID: 37470997 PMCID: PMC10516656 DOI: 10.1093/nar/gkad609] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The SWI/SNF family of ATP-dependent chromatin remodeling complexes is implicated in multiple DNA damage response mechanisms and frequently mutated in cancer. The BAF, PBAF and ncBAF complexes are three major types of SWI/SNF complexes that are functionally distinguished by their exclusive subunits. Accumulating evidence suggests that double-strand breaks (DSBs) in transcriptionally active DNA are preferentially repaired by a dedicated homologous recombination pathway. We show that different BAF, PBAF and ncBAF subunits promote homologous recombination and are rapidly recruited to DSBs in a transcription-dependent manner. The PBAF and ncBAF complexes promote RNA polymerase II eviction near DNA damage to rapidly initiate transcriptional silencing, while the BAF complex helps to maintain this transcriptional silencing. Furthermore, ARID1A-containing BAF complexes promote RNaseH1 and RAD52 recruitment to facilitate R-loop resolution and DNA repair. Our results highlight how multiple SWI/SNF complexes perform different functions to enable DNA repair in the context of actively transcribed genes.
Collapse
Affiliation(s)
- Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Sidrit Uruci
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
8
|
WANG X, TU M, JIA H, LIU H, WANG Y, WANG Y, JIANG N, LU C, ZHANG G. [Evaluation of Efficacy and Prognosis Analysis of Stage III-IV SMARCA4-deficient
Non-small Cell Lung Cancer Treated by PD-1 Immune Checkpoint Inhibitors plus
Chemotherapy and Chemotherapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:659-668. [PMID: 37985152 PMCID: PMC10600746 DOI: 10.3779/j.issn.1009-3419.2023.101.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The SMARCA4 mutation has been shown to account for at least 10% of non-small cell lung cancer (NSCLC). In the present, conventional radiotherapy and targeted therapy are difficult to improve outcomes due to the highly aggressive and refractory nature of SMARCA4-deficient NSCLC (SMARCA4-DNSCLC) and the absence of sensitive site mutations for targeted drug therapy, and chemotherapy combined with or without immunotherapy is the main treatment. Effective SMARCA4-DNSCLC therapeutic options, however, are still debatable. Our study aimed to investigate the efficacy and prognosis of programmed cell death 1 (PD-1) immune checkpoint inhibitors (ICIs) in combination with chemotherapy and chemotherapy in patients with stage III-IV SMARCA4-DNSCLC. METHODS 46 patients with stage III-IV SMARCA4-DNSCLC were divided into two groups based on their treatment regimen: the chemotherapy group and the PD-1 ICIs plus chemotherapy group, and their clinical data were retrospectively analyzed. Efficacy assessment and survival analysis were performed in both groups, and the influencing factors for prognosis were explored for patients with SMARCA4-DNSCLC. RESULTS Male smokers are more likely to develop SMARCA4-DNSCLC. There was no significant difference in the objective response rate (76.5% vs 69.0%, P=0.836) between chemotherapy and the PD-1 ICIs plus chemotherapy or the disease control rate (100.0% vs 89.7%, P=0.286). The one-year overall survival rate in the group with PD-1 ICIs plus chemotherapy was 62.7%, and that of the chemotherapy group was 46.0%. The difference in median progression-free survival (PFS) between the PD-1 ICIs plus chemotherapy group and the chemotherapy group was statistically significant (9.3 mon vs 6.1 mon, P=0.048). The results of Cox regression analysis showed that treatment regimen and smoking history were independent influencing factors of PFS in patients with stage III-IV SMARCA4-DNSCLC, and family history was an individual influencing factor of overall survival in patients with stage III-IV SMARCA4-DNSCLC. CONCLUSIONS Treatment regimen may be a prognostic factor for patients with SMARCA4-DNSCLC, and patients with PD-1 ICIs plus chemotherapy may have a better prognosis.
Collapse
|
9
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
10
|
Abedini A, Landry DA, Macaulay AD, Vaishnav H, Parbhakar A, Ibrahim D, Salehi R, Maranda V, Macdonald E, Vanderhyden BC. SWI/SNF chromatin remodeling subunit Smarca4/BRG1 is essential for female fertility†. Biol Reprod 2023; 108:279-291. [PMID: 36440965 PMCID: PMC9930400 DOI: 10.1093/biolre/ioac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Mammalian folliculogenesis is a complex process that involves the regulation of chromatin structure for gene expression and oocyte meiotic resumption. The SWI/SNF complex is a chromatin remodeler using either Brahma-regulated gene 1 (BRG1) or BRM (encoded by Smarca4 and Smarca2, respectively) as its catalytic subunit. SMARCA4 loss of expression is associated with a rare type of ovarian cancer; however, its function during folliculogenesis remains poorly understood. In this study, we describe the phenotype of BRG1 mutant mice to better understand its role in female fertility. Although no tumor emerged from BRG1 mutant mice, conditional depletion of Brg1 in the granulosa cells (GCs) of Brg1fl/fl;Amhr2-Cre mice caused sterility, whereas conditional depletion of Brg1 in the oocytes of Brg1fl/fl;Gdf9-Cre mice resulted in subfertility. Recovery of cumulus-oocyte complexes after natural mating or superovulation showed no significant difference in the Brg1fl/fl;Amhr2-Cre mutant mice and significantly fewer oocytes in the Brg1fl/fl;Gdf9-Cre mutant mice compared with controls, which may account for the subfertility. Interestingly, the evaluation of oocyte developmental competence by in vitro culture of retrieved two-cell embryos indicated that oocytes originating from the Brg1fl/fl;Amhr2-Cre mice did not reach the blastocyst stage and had higher rates of mitotic defects, including micronuclei. Together, these results indicate that BRG1 plays an important role in female fertility by regulating granulosa and oocyte functions during follicle growth and is needed for the acquisition of oocyte developmental competence.
Collapse
Affiliation(s)
- Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David A Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Angus D Macaulay
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Het Vaishnav
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashna Parbhakar
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dalia Ibrahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reza Salehi
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
12
|
Xue Y, Morris JL, Yang K, Fu Z, Zhu X, Johnson F, Meehan B, Witkowski L, Yasmeen A, Golenar T, Coatham M, Morin G, Monast A, Pilon V, Fiset PO, Jung S, Gonzalez AV, Camilleri-Broet S, Fu L, Postovit LM, Spicer J, Gotlieb WH, Guiot MC, Rak J, Park M, Lockwood W, Foulkes WD, Prudent J, Huang S. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca 2+ flux to mitochondria. Nat Commun 2021; 12:5404. [PMID: 34518526 PMCID: PMC8438089 DOI: 10.1038/s41467-021-25260-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Inactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.
Collapse
Affiliation(s)
- Yibo Xue
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, McGill University Health Centre, and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Kangning Yang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Fraser Johnson
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian Meehan
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Tunde Golenar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Mackenzie Coatham
- Department of Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Anie Monast
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Virginie Pilon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Anne V Gonzalez
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Centre, Montreal Chest Institute, Montreal, QC, Canada
| | | | - Lili Fu
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jonathan Spicer
- Department of Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Janusz Rak
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - William Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, McGill University Health Centre, and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
ACTL6A promotes repair of cisplatin-induced DNA damage, a new mechanism of platinum resistance in cancer. Proc Natl Acad Sci U S A 2021; 118:2015808118. [PMID: 33408251 DOI: 10.1073/pnas.2015808118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a mainstay of systemic therapy for a variety of cancers, such as lung cancer, head and neck cancer, and ovarian cancer. However, resistance to cisplatin represents one of the most significant barriers for patient outcome improvement. Actin-like 6A (ACTL6A) is a component of several chromatin remodeling complexes, including SWI/SNF, NuA4/TIP60 histone acetylase, and INO80. Amplification of ACTL6A gene is often seen in lung squamous cell carcinoma, ovarian cancer, and esophageal cancer, but its significance remains to be fully determined. Here we identify ACTL6A overexpression as a novel cause for platinum resistance. High levels of ACTL6A are associated with chemoresistance in several types of human cancer. We show that overexpression of ACTL6A leads to increased repair of cisplatin-DNA adducts and resistance to cisplatin treatment. In contrast, depletion of ACTL6A inhibits the repair of cisplatin-induced DNA lesions, and increases cisplatin sensitivity in cisplatin-resistant ovarian cancer cells. The regulation of repair by ACTL6A is mediated through the SWI/SNF chromatin remodeling complex. Treatment with a histone deacetylase inhibitor can reverse the effect of ACTL6A overexpression on the repair of cisplatin-induced DNA damage and render cancer cells more sensitive to cisplatin treatment in a xenograft mouse model. Taken together, our study uncovers a novel role for ACTL6A in platinum resistance, and provides evidence supporting the feasibility of using HDAC inhibitors for platinum resistant tumors.
Collapse
|
14
|
de Klerk LK, Goedegebuure RSA, van Grieken NCT, van Sandick JW, Cats A, Stiekema J, van der Kaaij RT, Farina Sarasqueta A, van Engeland M, Jacobs MAJM, van Wanrooij RLJ, van der Peet DL, Thorner AR, Verheul HMW, Thijssen VLJL, Bass AJ, Derks S. Molecular profiles of response to neoadjuvant chemoradiotherapy in oesophageal cancers to develop personalized treatment strategies. Mol Oncol 2021; 15:901-914. [PMID: 33506581 PMCID: PMC8024738 DOI: 10.1002/1878-0261.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
Identification of molecular predictive markers of response to neoadjuvant chemoradiation could aid clinical decision‐making in patients with localized oesophageal cancer. Therefore, we subjected pretreatment biopsies of 75 adenocarcinoma (OAC) and 16 squamous cell carcinoma (OSCC) patients to targeted next‐generation DNA sequencing, as well as biopsies of 85 OAC and 20 OSCC patients to promoter methylation analysis of eight GI‐specific genes, and subsequently searched for associations with histopathological response and disease‐free (DFS) and overall survival (OS). Thereby, we found that in OAC, CSMD1 deletion (8%) and ETV4 amplification (5%) were associated with a favourable histopathological response, whereas SMURF1 amplification (5%) and SMARCA4 mutation (7%) were associated with an unfavourable histopathological response. KRAS (15%) and GATA4 (7%) amplification were associated with shorter OS. In OSCC, TP63 amplification (25%) and TFPI2 (10%) gene promoter methylation were associated with an unfavourable histopathological response and shorter DFS (TP63) and OS (TFPI2), whereas CDKN2A deletion (38%) was associated with prolonged OS. In conclusion, this study identified candidate genetic biomarkers associated with response to neoadjuvant chemoradiotherapy in patients with localized oesophageal cancer.
Collapse
Affiliation(s)
- Leonie K de Klerk
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Oncode Institute, Utrecht, The Netherlands
| | - Ruben S A Goedegebuure
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands
| | - Johanna W van Sandick
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jurrien Stiekema
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Rosa T van der Kaaij
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Arantza Farina Sarasqueta
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands.,Department of Pathology, Leiden University Medical Center, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Maarten A J M Jacobs
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location VUmc, The Netherlands
| | - Roy L J van Wanrooij
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location VUmc, The Netherlands
| | | | - Aaron R Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henk M W Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands
| | | | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
15
|
Wang Y, Yang CH, Schultz AP, Sims MM, Miller DD, Pfeffer LM. Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells. J Cell Mol Med 2021; 25:2956-2966. [PMID: 33528916 PMCID: PMC7957270 DOI: 10.1111/jcmm.16330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma‐Related Gene‐1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR‐Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1‐KO also sensitized GBM cells to the anti‐proliferative effects of the anti‐cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG‐1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew P Schultz
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences (College of Pharmacy), University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
16
|
Mehrvarz Sarshekeh A, Alshenaifi J, Roszik J, Manyam GC, Advani SM, Katkhuda R, Verma A, Lam M, Willis J, Shen JP, Morris J, Davis JS, Loree JM, Lee HM, Ajani JA, Maru DM, Overman MJ, Kopetz S. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res 2021; 27:1663-1670. [PMID: 33414133 DOI: 10.1158/1078-0432.ccr-20-2404] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE AT-rich interactive domain 1A (ARID1A) is commonly mutated in colorectal cancer, frequently resulting in truncation and loss of protein expression. ARID1A recruits MSH2 for mismatch repair during DNA replication. ARID1A deficiency promotes hypermutability and immune activation in preclinical models, but its role in patients with colorectal cancer is being explored. EXPERIMENTAL DESIGN The DNA sequencing and gene expression profiling of patients with colorectal cancer were extracted from The Cancer Genome Atlas and MD Anderson Cancer Center databases, with validation utilizing external databases, and correlation between ARID1A and immunologic features. IHC for T-cell markers was performed on a separate cohort of patients. RESULTS Twenty-eight of 417 patients with microsatellite stable (MSS) colorectal cancer (6.7%) had ARID1A mutation. Among 58 genes most commonly mutated in colorectal cancer, ARID1A mutation had the highest increase with frameshift mutation rates in MSS cases (8-fold, P < 0.001). In MSS, ARID1A mutation was enriched in immune subtype (CMS1) and had a strong correlation with IFNγ expression (Δz score +1.91, P < 0.001). Compared with ARID1A wild-type, statistically significant higher expression for key checkpoint genes (e.g., PD-L1, CTLA4, and PDCD1) and gene sets (e.g., antigen presentation, cytotoxic T-cell function, and immune checkpoints) was observed in mutant cases. This was validated by unsupervised differential expression of genes related to immune response and further confirmed by higher infiltration of T cells in IHC of tumors with ARID1A mutation (P = 0.01). CONCLUSIONS The immunogenicity of ARID1A-mutant cases is likely due to an increased level of neoantigens resulting from increased tumor mutational burden and frameshift mutations. Tumors with ARID1A mutation may be more susceptible to immune therapy-based treatment strategies and should be recognized as a unique molecular subgroup in future immune therapy trials.
Collapse
Affiliation(s)
- Amir Mehrvarz Sarshekeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jumanah Alshenaifi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Riham Katkhuda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuj Verma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Willis
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
18
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
19
|
Andrade D, Mehta M, Griffith J, Oh S, Corbin J, Babu A, De S, Chen A, Zhao YD, Husain S, Roy S, Xu L, Aube J, Janknecht R, Gorospe M, Herman T, Ramesh R, Munshi A. HuR Reduces Radiation-Induced DNA Damage by Enhancing Expression of ARID1A. Cancers (Basel) 2019; 11:cancers11122014. [PMID: 31847141 PMCID: PMC6966656 DOI: 10.3390/cancers11122014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, regulates cell cycle progression, interacts with the tumor suppressor TP53, and prevents genomic instability. In addition, ARID1A has been shown to foster resistance to cancer therapy. By promoting non-homologous end joining (NHEJ), ARID1A enhances DNA repair. Consequently, ARID1A has been proposed as a promising therapeutic target to sensitize cancer cells to chemotherapy and radiation. Here, we report that ARID1A is regulated by human antigen R (HuR), an RNA-binding protein that is highly expressed in a wide range of cancers and enables resistance to chemotherapy and radiation. Our results indicate that HuR binds ARID1A mRNA, thereby increasing its stability in breast cancer cells. We further find that ARID1A expression suppresses the accumulation of DNA double-strand breaks (DSBs) caused by radiation and can rescue the loss of radioresistance triggered by HuR inhibition, suggesting that ARID1A plays an important role in HuR-driven resistance to radiation. Taken together, our work shows that HuR and ARID1A form an important regulatory axis in radiation resistance that can be targeted to improve radiotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Daniel Andrade
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - James Griffith
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
| | - Sangphil Oh
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joshua Corbin
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Anish Babu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Supriyo De
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (S.D.); (M.G.)
| | - Allshine Chen
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Yan D. Zhao
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sanam Husain
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (J.A.)
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jeffrey Aube
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (J.A.)
| | - Ralf Janknecht
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (S.D.); (M.G.)
| | - Terence Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - Rajagopal Ramesh
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
- Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Correspondence: ; Tel.: +1-405-271-6102; Fax: +1-405-271-2141
| |
Collapse
|
20
|
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12:68. [PMID: 31722744 PMCID: PMC6852734 DOI: 10.1186/s13072-019-0315-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.
Collapse
Affiliation(s)
- Iga Jancewicz
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland.
| |
Collapse
|
21
|
Naito T, Umemura S, Nakamura H, Zenke Y, Udagawa H, Kirita K, Matsumoto S, Yoh K, Niho S, Motoi N, Aokage K, Tsuboi M, Ishii G, Goto K. Successful treatment with nivolumab for SMARCA4-deficient non-small cell lung carcinoma with a high tumor mutation burden: A case report. Thorac Cancer 2019; 10:1285-1288. [PMID: 30972962 PMCID: PMC6501032 DOI: 10.1111/1759-7714.13070] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
SMARCA4 is a subunit of the switch/sucrose non‐fermentable (SWI/SNF) chromatin‐remodeling complex. An effective treatment for SMARCA4‐deficient non‐small cell lung carcinoma (NSCLC) has not yet been established. Correlations between a response to immune checkpoint inhibitors and the SWI/SNF complex have been suggested, but little is known about the efficacy of immune checkpoint inhibitors against SMARCA4‐deficient NSCLC. A 43‐year‐old man underwent left upper lobe lung resection and was diagnosed with SMARCA4‐deficient lung adenocarcinoma. Two months after surgery, multiple lung metastases appeared. Immunohistochemical analysis showed no PD‐L1 expression. Whole‐exon sequencing revealed a relatively high tumor mutation burden at 396. After the failure of three standard chemotherapy regimens, the patient was treated with nivolumab as fourth‐line treatment. An obvious reduction in the lung metastases was obtained for more than 14 months. We report the first case of SMARCA4‐deficient NSCLC with a high tumor mutation burden successfully treated with nivolumab. Anti‐PD‐1 antibodies might be a promising treatment strategy for patients with SMARCA4‐deficient NSCLC.
Collapse
Affiliation(s)
- Tomoyuki Naito
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Nakamura
- Division of Pathology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keisuke Kirita
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Seiji Niho
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Noriko Motoi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Keijyu Aokage
- Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
22
|
Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst) 2019; 77:87-95. [PMID: 30897376 DOI: 10.1016/j.dnarep.2019.03.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
SWI/SNF complexes are among the most studied ATP-dependent chromatin remodeling complexes, mostly due to their critical role in coordinating chromatin architecture and gene expression. Mutations in genes encoding SWI/SNF subunits are frequently observed in a large variety of human cancers, suggesting that one or more of the multiple SWI/SNF functions protect against tumorigenesis. Chromatin remodeling is an integral component of the DNA damage response (DDR), which safeguards against DNA damage-induced genome instability and tumorigenesis by removing DNA damage through interconnected DNA repair and signaling pathways. SWI/SNF has been implicated in facilitating repair of double-strand breaks, by non-homologous end-joining as well as homologous recombination, and repair of helix-distorting DNA damage by nucleotide excision repair. Here, we review current knowledge on SWI/SNF activity in the DDR and discuss the potential of exploiting DDR-related vulnerabilities due to SWI/SNF dysfunction for precision cancer therapy.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Ganguly D, Sims M, Cai C, Fan M, Pfeffer LM. Chromatin Remodeling Factor BRG1 Regulates Stemness and Chemosensitivity of Glioma Initiating Cells. Stem Cells 2018; 36:1804-1815. [PMID: 30171737 DOI: 10.1002/stem.2909] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor that is refractory to existing therapeutic regimens, which reflects the presence of stem-like cells, termed glioma-initiating cells (GICs). The complex interactions between different signaling pathways and epigenetic regulation of key genes may be critical in the maintaining GICs in their stem-like state. Although several signaling pathways have been identified as being dysregulated in GBM, the prognosis of GBM patients remains miserable despite improvements in targeted therapies. In this report, we identified that BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, plays a fundamental role in maintaining GICs in their stem-like state. In addition, we identified a novel mechanism by which BRG1 regulates glycolysis genes critical for GICs. BRG1 downregulates the expression of TXNIP, a negative regulator of glycolysis. BRG1 knockdown also triggered the STAT3 pathway, which led to TXNIP activation. We further identified that TXNIP is an STAT3-regulated gene. Moreover, BRG1 suppressed the expression of interferon-stimulated genes, which are negatively regulated by STAT3 and regulate tumorigenesis. We further demonstrate that BRG1 plays a critical role in the drug resistance of GICs and in GIC-induced tumorigenesis. By genetic and pharmacological means, we found that inhibiting BRG1 can sensitize GICs to chemotherapeutic drugs, temozolomide and carmustine. Our studies suggest that BRG1 may be a novel therapeutic target in GBM. The identification of the critical role that BRG1 plays in GIC stemness and chemosensitivity will inform the development of better targeted therapies in GBM and possibly other cancers. Stem Cells 2018;36:1806-12.
Collapse
Affiliation(s)
- Debolina Ganguly
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chun Cai
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
24
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
25
|
Ribeiro-Silva C, Aydin ÖZ, Mesquita-Ribeiro R, Slyskova J, Helfricht A, Marteijn JA, Hoeijmakers JHJ, Lans H, Vermeulen W. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat Commun 2018; 9:4067. [PMID: 30287812 PMCID: PMC6172278 DOI: 10.1038/s41467-018-06402-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in SWI/SNF genes are amongst the most common across all human cancers, but efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and therefore compromises TFIIH stability and function in transcription and nucleotide excision repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-deficient cells to DNA damage induced by UV irradiation and cisplatin treatment depends on GTF2H1 levels. Together, our results expose GTF2H1 as a potential novel predictive marker of platinum drug sensitivity in SWI/SNF-deficient cancer cells. SWI/SNF genes are commonly found to be mutated in different cancers. Here the authors report that the remodelers BRM and BRG1 are necessary for efficient nucleotide excision repair by promoting the expression of TFIIH subunit GTF2H1.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Özge Z Aydin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Molecular Biology and Genetics Department, Koç University, Istanbul, 34450, Turkey
| | | | - Jana Slyskova
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Angela Helfricht
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Grasse S, Lienhard M, Frese S, Kerick M, Steinbach A, Grimm C, Hussong M, Rolff J, Becker M, Dreher F, Schirmer U, Boerno S, Ramisch A, Leschber G, Timmermann B, Grohé C, Lüders H, Vingron M, Fichtner I, Klein S, Odenthal M, Büttner R, Lehrach H, Sültmann H, Herwig R, Schweiger MR. Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med 2018; 10:55. [PMID: 30029672 PMCID: PMC6054719 DOI: 10.1186/s13073-018-0562-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide and is primarily treated with radiation, surgery, and platinum-based drugs like cisplatin and carboplatin. The major challenge in the treatment of NSCLC patients is intrinsic or acquired resistance to chemotherapy. Molecular markers predicting the outcome of the patients are urgently needed. Methods Here, we employed patient-derived xenografts (PDXs) to detect predictive methylation biomarkers for platin-based therapies. We used MeDIP-Seq to generate genome-wide DNA methylation profiles of 22 PDXs, their parental primary NSCLC, and their corresponding normal tissues and complemented the data with gene expression analyses of the same tissues. Candidate biomarkers were validated with quantitative methylation-specific PCRs (qMSP) in an independent cohort. Results Comprehensive analyses revealed that differential methylation patterns are highly similar, enriched in PDXs and lung tumor-specific when comparing differences in methylation between PDXs versus primary NSCLC. We identified a set of 40 candidate regions with methylation correlated to carboplatin response and corresponding inverse gene expression pattern even before therapy. This analysis led to the identification of a promoter CpG island methylation of LDL receptor-related protein 12 (LRP12) associated with increased resistance to carboplatin. Validation in an independent patient cohort (n = 35) confirmed that LRP12 methylation status is predictive for therapeutic response of NSCLC patients to platin therapy with a sensitivity of 80% and a specificity of 84% (p < 0.01). Similarly, we find a shorter survival time for patients with LRP12 hypermethylation in the TCGA data set for NSCLC (lung adenocarcinoma). Conclusions Using an epigenome-wide sequencing approach, we find differential methylation patterns from primary lung cancer and PDX-derived cancers to be very similar, albeit with a lower degree of differential methylation in primary tumors. We identify LRP12 DNA methylation as a powerful predictive marker for carboplatin resistance. These findings outline a platform for the identification of epigenetic therapy resistance biomarkers based on PDX NSCLC models. Electronic supplementary material The online version of this article (10.1186/s13073-018-0562-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Grasse
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Present Address: Department of Cell Biology and Immunology, Institute for Parasitology and Biomedicine, Granada, Spain
| | - Anne Steinbach
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Michelle Hussong
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Michael Becker
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Felix Dreher
- Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Uwe Schirmer
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna Ramisch
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Sebastian Klein
- Institute of Pathology, University of Cologne, Cologne, Germany.,Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
| | | | | | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany. .,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany.
| |
Collapse
|
27
|
Agaimy A, Amin MB, Gill AJ, Popp B, Reis A, Berney DM, Magi-Galluzzi C, Sibony M, Smith SC, Suster S, Trpkov K, Hes O, Hartmann A. SWI/SNF protein expression status in fumarate hydratase-deficient renal cell carcinoma: immunohistochemical analysis of 32 tumors from 28 patients. Hum Pathol 2018; 77:139-146. [PMID: 29689242 DOI: 10.1016/j.humpath.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Fumarate hydratase-deficient renal cell carcinoma (FH-RCC) is a rare, aggressive RCC type, originally described in the setting of hereditary leiomyomatosis and RCC syndrome, which is defined by germline FH gene inactivation. Inactivation of components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex is involved in renal medullary carcinoma (SMARCB1/INI1 loss), clear cell RCC (PBRM1 loss), and subsets of dedifferentiated RCC of clear cell, chromophobe, and papillary types (loss of different SWI/SNF components). FH-RCC and SWI/SNF-deficient RCC share anaplastic nuclear features and highly aggressive course. We analyzed 32 FH-RCCs from 28 patients using 7 commercially available SWI/SNF antibodies (SMARCB1/INI1, SMARCA2, SMARCA4, SMARCC1, SMARCC2, PBRM1, and ARID1A). Variable loss of SMARCB1, ARID1A, and SMARCC1 was observed in 1 of 31, 2 of 31, and 1 of 29 evaluable cases, respectively; 3 of these 4 SWI/SNF-deficient tumors had confirmed FH mutations. No correlation of SWI/SNF loss with solid or sarcomatoid features was observed. Two tumors with SMARCB1 and ARID1A deficiency had available SWI/SNF molecular data; both lacked SMARCB1 and ARID1A mutations. The remaining 5 SWI/SNF components were intact in all cases. Especially PBRM1 seems not to be involved in the pathogenesis or progression of FH-RCC. Our data showed that a subset of FH-RCC (12%) have a variable loss of SWI/SNF complex subunits, likely as secondary genetic events. This should not be confused with SWI/SNF-deficient RCC of other types. Evaluation of FH and SWI/SNF together with comprehensive molecular genetic profiling is needed to explore possible prognostic implications of FH/SWI-SNF double deficiency and to better understand the somatic mutation landscape in high-grade RCC.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital of Erlangen, 91054 Erlangen, Germany.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences, Memphis, TN 38103, USA
| | - Anthony J Gill
- University of Sydney NSW Australia 2006, Cancer Diagnosis and Pathology Group, Kolling Institute, Royal North Shore Hospital NSW Australia 2065 and NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London ECIM 6BQ, UK
| | | | | | - Steven C Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Saul Suster
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kiril Trpkov
- Calgary Laboratory Services and University of Calgary, Calgary, Alberta, Canada
| | - Ondřej Hes
- Charles University and University Hospital Plzen, 304 60 Plzen, Czech Republic
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital of Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
28
|
Watanabe R, Kanno SI, Mohammadi Roushandeh A, Ui A, Yasui A. Nucleosome remodelling, DNA repair and transcriptional regulation build negative feedback loops in cancer and cellular ageing. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0473. [PMID: 28847829 DOI: 10.1098/rstb.2016.0473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Nucleosome remodelling (NR) regulates transcription in an ATP-dependent manner, and influences gene expression required for development and cellular functions, including those involved in anti-cancer and anti-ageing processes. ATP-utilizing chromatin assembly and remodelling factor (ACF) and Brahma-associated factor (BAF) complexes, belonging to the ISWI and SWI/SNF families, respectively, are involved in various types of DNA repair. Suppression of several BAF factors makes U2OS cells significantly sensitive to X-rays, UV and especially to cisplatin, and these BAF factors contribute to the accumulation of repair proteins at various types of DNA damage and to DNA repair. Recent cancer genome sequencing and expression analysis has shown that BAF factors are frequently mutated or, more frequently, silenced in various types of cancer cells. Thus, those cancer cells are potentially X-ray- and especially cisplatin-sensitive, suggesting a way of optimizing current cancer therapy. Recent single-stem cell analysis suggests that mutations and epigenetic changes influence stem cell functionality leading to cellular ageing. Genetic and epigenetic changes in the BAF factors diminish DNA repair as well as transcriptional regulation activities, and DNA repair defects in turn negatively influence NR and transcriptional regulation. Thus, they build negative feedback loops, which accelerate both cellular senescence and transformation as common and rare cellular events, respectively, causing cellular ageing.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Reiko Watanabe
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Amaneh Mohammadi Roushandeh
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Ayako Ui
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
29
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
30
|
Davidson J, Shen Z, Gong X, Pollack JR. SWI/SNF aberrations sensitize pancreatic cancer cells to DNA crosslinking agents. Oncotarget 2017. [PMID: 29515757 PMCID: PMC5839388 DOI: 10.18632/oncotarget.20033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While gemcitabine has been the mainstay therapy for advanced pancreatic cancer, newer combination regimens (e.g. FOLFIRINOX) have extended patient survival, though carry greater toxicity. Biomarkers are needed to better stratify patients for appropriate therapy. Previously, we reported that one-third of pancreatic cancers harbor deletions or deleterious mutations in key subunits of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. The SWI/SNF complex mobilizes nucleosomes on DNA, and plays a key role in modulating DNA transcription and repair. Thus, we hypothesized that pancreatic cancers with SWI/SNF aberrations might exhibit compromised DNA repair, and show increased sensitivity to DNA damaging agents. Here, we studied human pancreatic cancer cell lines with deficient (or else exogenously reconstituted) SWI/SNF subunits, as well as normal pancreatic epithelial cells following SWI/SNF subunit knockdown. Cells were challenged with DNA damaging agents, including those used in current combination regimens, and then cell viability assayed. We found that pancreatic cells with SWI/SNF dysfunction showed markedly increased sensitivity to DNA damaging agents, and in particular DNA crosslinking agents (cisplatin and oxaliplatin). Assaying clearance of γH2AX confirmed that SWI/SNF dysfunction impaired DNA damage response/repair. Finally, by analyzing pancreatic cancer patient data from The Cancer Genome Atlas, we found that pancreatic cancers with SWI/SNF deficiency (subunit mutation and/or decreased expression) were associated with extended patient survival specifically when treated with platinum containing regimens. Thus, SWI/SNF dysfunction sensitizes pancreatic cancer cells to DNA crosslinking agents, and SWI/SNF mutation status may provide a useful biomarker to predict which patients are likely to benefit from platinum-containing chemotherapy regimens.
Collapse
Affiliation(s)
- Jean Davidson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Current address: Department of Cardiovascular Research, Stanford University School of Medicine, Stanford, California, USA
| | - Zhewei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xue Gong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Krämer KF, Moreno N, Frühwald MC, Kerl K. BRD9 Inhibition, Alone or in Combination with Cytostatic Compounds as a Therapeutic Approach in Rhabdoid Tumors. Int J Mol Sci 2017; 18:ijms18071537. [PMID: 28714904 PMCID: PMC5536025 DOI: 10.3390/ijms18071537] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive therapy, survival is poor and new treatment approaches are required. The only recurrent mutations in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits alters the function of the SWI/SNF complex, resulting in tumor development. We hypothesized that inhibition of aberrant SWI/SNF function by selective blockade of the BRD9 subunit of the SWI/SNF complex would reduce tumor cell proliferation. The cytotoxic and anti-proliferative effects of two specific chemical probes (I-BRD9 and BI-9564) which target the bromodomain of SWI/SNF protein BRD9 were evaluated in 5 RT cell lines. Combinatorial effects of I-BRD9 and cytotoxic drugs on cell proliferation were evaluated by cytotoxicity assays. Single compound treatment of RT cells with I-BRD9 and BI-9564 resulted in decreased cell proliferation, G1-arrest and apoptosis. Combined treatment of doxorubicin or carboplatin with I-BRD9 resulted in additive to synergistic inhibitory effects on cell proliferation. In contrast, the combination of I-BRD9 with vincristine demonstrated the antagonistic effects of these two compounds. We conclude that the BRD9 bromodomain is an attractive target for novel therapies in this cancer.
Collapse
Affiliation(s)
- Katja F Krämer
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| | - Natalia Moreno
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| | - Michael C Frühwald
- Children's Hospital and Swabian Children's Cancer Center, 86156 Augsburg, Germany.
| | - Kornelius Kerl
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| |
Collapse
|
32
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
33
|
SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1neg/CK7pos/HepPar-1pos immunophenotype. Virchows Arch 2017; 471:599-609. [DOI: 10.1007/s00428-017-2148-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
34
|
Wu Q, Lian JB, Stein JL, Stein GS, Nickerson JA, Imbalzano AN. The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics 2017; 9:919-931. [PMID: 28521512 PMCID: PMC5705788 DOI: 10.2217/epi-2017-0034] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian SWI/SNF enzymes are ATP-dependent remodelers of chromatin structure. These multisubunit enzymes are heterogeneous in composition; there are two catalytic ATPase subunits, BRM and BRG1, that are mutually exclusive, and additional subunits are incorporated in a combinatorial manner. Recent findings indicate that approximately 20% of human cancers contain mutations in SWI/SNF enzyme subunits, leading to the conclusion that the enzyme subunits are critical tumor suppressors. However, overexpression of specific subunits without apparent mutation is emerging as an alternative mechanism by which cellular transformation may occur. Here we highlight recent evidence linking elevated expression of the BRG1 ATPase to tissue-specific cancers and work suggesting that inhibiting BRG1 may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Anthony N Imbalzano
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Garimella R, Tadikonda P, Tawfik O, Gunewardena S, Rowe P, Van Veldhuizen P. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells. Int J Mol Sci 2017; 18:ijms18030642. [PMID: 28300755 PMCID: PMC5372654 DOI: 10.3390/ijms18030642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology.
Collapse
Affiliation(s)
- Rama Garimella
- Division of Medical Clinical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Departments of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Orthopedic Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Dietetics and Nutrition, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Midwest Biomedical Research Foundation-KCVAMC Affiliate, Kansas City, KS 64128, USA.
- Hematology and Oncology, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA.
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | - Priyanka Tadikonda
- Dietetics and Nutrition, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ossama Tawfik
- Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sumedha Gunewardena
- Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Peter Rowe
- Departments of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kidney Institute, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Peter Van Veldhuizen
- Division of Medical Clinical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Departments of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Sarah Cannon HCA Midwest Health Cancer Network, Overland Park, KS 66209, USA.
- Hematology and Oncology, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA.
| |
Collapse
|
36
|
Morel D, Almouzni G, Soria JC, Postel-Vinay S. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Ann Oncol 2017; 28:254-269. [DOI: 10.1093/annonc/mdw552] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience 2016; 3:337-350. [PMID: 28105458 PMCID: PMC5235922 DOI: 10.18632/oncoscience.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The SWI/SNF complex is an important regulator of gene expression that functions by interacting with a diverse array of cellular proteins. The catalytic subunits of SWI/SNF, BRG1 and BRM, are frequently lost alone or concomitantly in a range of different cancer types. This loss abrogates SWI/SNF complex function as well as the functions of proteins that are required for SWI/SNF function, such as RB1 and TP53. Yet while both proteins are known to be dependent on SWI/SNF, we found that BRG1, but not BRM, is functionally linked to RB1, such that loss of BRG1 can directly or indirectly inactivate the RB1 pathway. This newly discovered dependence of RB1 on BRG1 is important because it explains why BRG1 loss can blunt the growth-inhibitory effect of tyrosine kinase inhibitors (TKIs). We also observed that selection for Trp53 mutations occurred in Brm-positive tumors but did not occur in Brm-negative tumors. Hence, these data indicate that, during cancer development, Trp53 is functionally dependent on Brm but not Brg1. Our findings show for the first time the key differences in Brm- and Brg1-specific SWI/SNF complexes and help explain why concomitant loss of Brg1 and Brm frequently occurs in cancer, as well as how their loss impacts cancer development.
Collapse
Affiliation(s)
| | - Sudhir K Rai
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Jb Gramling
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Li Lu
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA; Department of Pathology, University of Florida, Gainesville, FL, USA
| | - David N Reisman
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Liu G, Cuffe S, Liang S, Azad AK, Cheng L, Brhane Y, Qiu X, Cescon DW, Bruce J, Chen Z, Cheng D, Patel D, Tse BC, Laurie SA, Goss G, Leighl NB, Hung R, Bradbury PA, Seymour L, Shepherd FA, Tsao MS, Chen BE, Xu W, Reisman DN. BRM Promoter Polymorphisms and Survival of Advanced Non-Small Cell Lung Cancer Patients in the Princess Margaret Cohort and CCTG BR.24 Trial. Clin Cancer Res 2016; 23:2460-2470. [PMID: 27827316 DOI: 10.1158/1078-0432.ccr-16-1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/04/2016] [Accepted: 10/23/2016] [Indexed: 01/08/2023]
Abstract
Introduction: BRM, a key catalytic subunit of the SWI/SNF chromatin remodeling complex, is a putative tumor susceptibility gene that is silenced in 15% of non-small cell lung cancer (NSCLC). Two novel BRM promoter polymorphisms (BRM-741 and BRM-1321) are associated with reversible epigenetic silencing of BRM protein expression.Experimental Design: Advanced NSCLC patients from the Princess Margaret (PM) cohort study and from the CCTG BR.24 clinical trial were genotyped for BRM promoter polymorphisms. Associations of BRM variants with survival were assessed using log-rank tests, the method of Kaplan and Meier, and Cox proportional hazards models. Promoter swap, luciferase assays, and chromatin immunoprecipitation (ChIP) experiments evaluated polymorphism function. In silico analysis of publicly available gene expression datasets with outcome were performed.Results: Carrying the homozygous variants of both polymorphisms ("double homozygotes", DH) when compared with those carrying the double wild-type was associated with worse overall survival, with an adjusted hazard ratios (aHR) of 2.74 (95% CI, 1.9-4.0). This was confirmed in the BR.24 trial (aHR, 8.97; 95% CI, 3.3-18.5). Lower BRM gene expression (by RNA-Seq or microarray) was associated with worse outcome (P < 0.04). ChIP and promoter swap experiments confirmed binding of MEF2D and HDAC9 only to homozygotes of each polymorphism, associated with reduced promoter activity in the DH.Conclusions: Epigenetic regulatory molecules bind to two BRM promoter sequence variants but not to their wild-type sequences. These variants are associated with adverse overall and progression-free survival. Decreased BRM gene expression, seen with these variants, is also associated with worse overall survival. Clin Cancer Res; 23(10); 2460-70. ©2016 AACR.
Collapse
Affiliation(s)
- Geoffrey Liu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Sinead Cuffe
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Abul Kalam Azad
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Lu Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xin Qiu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brandon C Tse
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | - Glenwood Goss
- Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Natasha B Leighl
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean Hung
- Lunenfeld Research Institute and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Penelope A Bradbury
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Bingshu E Chen
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
40
|
Bell EH, Chakraborty AR, Mo X, Liu Z, Shilo K, Kirste S, Stegmaier P, McNulty M, Karachaliou N, Rosell R, Bepler G, Carbone DP, Chakravarti A. SMARCA4/BRG1 Is a Novel Prognostic Biomarker Predictive of Cisplatin-Based Chemotherapy Outcomes in Resected Non-Small Cell Lung Cancer. Clin Cancer Res 2015; 22:2396-404. [PMID: 26671993 DOI: 10.1158/1078-0432.ccr-15-1468] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/06/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Identification of predictive biomarkers is critically needed to improve selection of patients who derive the most benefit from platinum-based chemotherapy. We hypothesized that decreased expression of SMARCA4/BRG1, a known regulator of transcription and DNA repair, is a novel predictive biomarker of increased sensitivity to adjuvant platinum-based therapies in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN The prognostic value was tested using a gene-expression microarray from the Director's Challenge Lung Study (n = 440). The predictive significance of SMARCA4 was determined using a gene-expression microarray (n = 133) from control and treatment arms of the JBR.10 trial of adjuvant cisplatin/vinorelbine. Kaplan-Meier method and log-rank tests were used to estimate and test the differences of probabilities in overall survival (OS) and disease-specific survival (DSS) between expression groups and treatment arms. Multivariate Cox regression models were used while adjusting for other clinical covariates. RESULTS In the Director's Challenge Study, reduced expression of SMARCA4 was associated with poor OS compared with high and intermediate expression (P < 0.001 and P = 0.009, respectively). In multivariate analysis, compared with low, high SMARCA4 expression predicted a decrease in risk of death [HR, 0.6; 95% confidence interval (CI), 0.4-0.8; P = 0.002]. In the JBR.10 trial, improved 5-year DSS was noted only in patients with low SMARCA4 expression when treated with adjuvant cisplatin/vinorelbine [HR, 0.1; 95% CI, 0.0-0.5, P = 0.002 (low); HR, 1.0; 95% CI, 0.5-2.3, P = 0.92 (high)]. An interaction test was highly significant (P = 0.01). CONCLUSIONS Low expression of SMARCA4/BRG1 is significantly associated with worse prognosis; however, it is a novel significant predictive biomarker for increased sensitivity to platinum-based chemotherapy in NSCLC. Clin Cancer Res; 22(10); 2396-404. ©2015 AACR.
Collapse
Affiliation(s)
- Erica Hlavin Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio.
| | - Arup R Chakraborty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ziyan Liu
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Simon Kirste
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Petra Stegmaier
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Maureen McNulty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Niki Karachaliou
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Rafael Rosell
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain. Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Gerold Bepler
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
41
|
Padilla-Benavides T, Nasipak BT, Imbalzano AN. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts. J Cell Physiol 2015; 230:2990-7. [PMID: 26036967 DOI: 10.1002/jcp.25031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
Abstract
Brg1 (Brahma-related gene 1) is a catalytic component of the evolutionarily conserved mammalian SWI/SNF ATP-dependent chromatin remodeling enzymes that disrupt histone-DNA contacts on the nucleosome. While the requirement for the SWI/SNF enzymes in cell differentiation has been extensively studied, its role in precursor cell proliferation and survival is not as well defined. Muscle satellite cells constitute the stem cell pool that sustains and regenerates myofibers in adult skeletal muscle. Here, we show that deletion of Brg1 in primary mouse myoblasts derived from muscle satellite cells cultured ex vivo leads to a cell proliferation defect and apoptosis. We determined that Brg1 regulates cell proliferation and survival by controlling chromatin remodeling and activating transcription at the Pax7 promoter, which is expressed during somite development and is required for controlling viability of the satellite cell population. Reintroduction of catalytically active Brg1 or of Pax7 into Brg1-deficient satellite cells rescued the apoptotic phenotype and restored proliferation. These data demonstrate that Brg1 functions as a positive regulator for cellular proliferation and survival of primary myoblasts. Therefore, the regulation of gene expression through Brg1-mediated chromatin remodeling is critical not just for skeletal muscle differentiation but for maintaining the myoblast population as well.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
42
|
SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6:732-45. [PMID: 25544751 PMCID: PMC4359251 DOI: 10.18632/oncotarget.2715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Abstract
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Collapse
|
43
|
Freeman MD, Mazu T, Miles JS, Darling-Reed S, Flores-Rozas H. Inactivation of chromatin remodeling factors sensitizes cells to selective cytotoxic stress. Biologics 2014; 8:269-80. [PMID: 25484574 PMCID: PMC4238754 DOI: 10.2147/btt.s67046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SWI/SNF chromatin-remodeling complex plays an essential role in several cellular processes including cell proliferation, differentiation, and DNA repair. Loss of normal function of the SWI/SNF complex because of mutations in its subunits correlates with tumorigenesis in humans. For many of these cancers, cytotoxic chemotherapy is the primary, and sometimes the only, therapeutic alternative. Among the antineoplastic agents, anthracyclines are a common treatment option. Although effective, resistance to these agents usually develops and serious dose-related toxicity, namely, chronic cardiotoxicity, limits its use. Previous work from our laboratory showed that a deletion of the SWI/SNF factor SNF2 resulted in hypersensitivity to doxorubicin. We further investigated the contribution of other chromatin remodeling complex components in the response to cytotoxic chemotherapy. Our results indicate that, of the eight SWI/SNF strains tested, snf2, taf14, and swi3 were the most sensitive and displayed distinct sensitivity to different cytotoxic agents, while snf5 displayed resistance. Our experimental results indicate that the SWI/SNF complex plays a critical role in protecting cells from exposure to cytotoxic chemotherapy and other cytotoxic agents. Our findings may prove useful in the development of a strategy aimed at targeting these genes to provide an alternative by hypersensitizing cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Miles D Freeman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Tryphon Mazu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Jana S Miles
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Selina Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
44
|
Kamieniak MM, Rico D, Milne RL, Muñoz-Repeto I, Ibáñez K, Grillo MA, Domingo S, Borrego S, Cazorla A, García-Bueno JM, Hernando S, García-Donas J, Hernández-Agudo E, Y Cajal TR, Robles-Díaz L, Márquez-Rodas I, Cusidó M, Sáez R, Lacambra-Calvet C, Osorio A, Urioste M, Cigudosa JC, Paz-Ares L, Palacios J, Benítez J, García MJ. Deletion at 6q24.2-26 predicts longer survival of high-grade serous epithelial ovarian cancer patients. Mol Oncol 2014; 9:422-36. [PMID: 25454820 PMCID: PMC5528660 DOI: 10.1016/j.molonc.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Standard treatments for advanced high-grade serous ovarian carcinomas (HGSOCs) show significant side-effects and provide only short-term survival benefits due to disease recurrence. Thus, identification of novel prognostic and predictive biomarkers is urgently needed. We have used 42 paraffin-embedded HGSOCs, to evaluate the utility of DNA copy number alterations, as potential predictors of clinical outcome. Copy number-based unsupervised clustering stratified HGSOCs into two clusters of different immunohistopathological features and survival outcome (HR = 0.15, 95%CI = 0.03-0.81; Padj = 0.03). We found that loss at 6q24.2-26 was significantly associated with the cluster of longer survival independently from other confounding factors (HR = 0.06, 95%CI = 0.01-0.43, Padj = 0.005). The prognostic value of this deletion was validated in two independent series, one consisting of 36 HGSOCs analyzed by fluorescent in situ hybridization (P = 0.04) and another comprised of 411 HGSOCs from the Cancer Genome Atlas study (TCGA) (HR = 0.67, 95%CI = 0.48-0.93, Padj = 0.019). In addition, we confirmed the association of low expression of the genes from the region with longer survival in 799 HGSOCs (HR = 0.74, 95%CI = 0.61-0.90, log-rank P = 0.002) and 675 high-FIGO stage HGSOCs (HR = 0.76, 95%CI = 0.61-0.96, log-rank P = 0.02) available from the online tool KM-plotter. Finally, by integrating copy number, RNAseq and survival data of 296 HGSOCs from TCGA we propose a few candidate genes that can potentially explain the association. Altogether our findings indicate that the 6q24.2-26 deletion is an independent marker of favorable outcome in HGSOCs with potential clinical value as it can be analyzed by FISH on tumor sections and guide the selection of patients towards more conservative therapeutic strategies in order to reduce side-effects and improve quality of life.
Collapse
Affiliation(s)
- Marta M Kamieniak
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Rico
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne 3004, Australia; Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street Carlton, Melbourne 3010, Victoria, Australia
| | - Ivan Muñoz-Repeto
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Kristina Ibáñez
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Miguel A Grillo
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Samuel Domingo
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Salud Borrego
- Departments of Genetics, Reproduction, and Fetal Medicine, IBIS, University Hospital Virgen del Rocio/CSIC/University of Seville, Avda. Manuel Siurot, s/n., 41013 Sevilla, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Alicia Cazorla
- Pathology Department, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain
| | - José M García-Bueno
- Oncology Department, Hospital General de Albacete, Calle Hermanos Falco, 37, 02006 Albacete, Spain
| | - Susana Hernando
- Oncology Department, Fundación Hospital Alcorcón, Calle Valdelaguna, 1, 28922 Alcorcón, Spain
| | - Jesús García-Donas
- Medical Oncology Service, Oncologic Center Clara Campal, Calle Oña, 10, 28050 Madrid, Spain
| | - Elena Hernández-Agudo
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Teresa Ramón Y Cajal
- Medical Oncology Service, Hospital Sant Pau, Carrer de Sant Quintí, 89, 08026 Barcelona, Spain
| | - Luis Robles-Díaz
- Familial Cancer Unit and Medical Oncology Department, Hospital 12 de Octubre, Avda de Córdoba, s/n, 28041 Madrid, Spain
| | - Ivan Márquez-Rodas
- Medical Oncology Service, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Maite Cusidó
- Obstetrics and Gynecology Department, Institut Universitari Dexeus, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain
| | - Raquel Sáez
- Laboratory of Genetics, Hospital Donostia, Calle Doctor Begiristain, 117, 20080 San Sebastián, Spain
| | - Carmen Lacambra-Calvet
- Department of Internal Medicine, Hospital Severo Ochoa, Avd. de Orellana, s/n., 28911 Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Luis Paz-Ares
- Medical Oncology Department, University Hospital Virgen del Rocio, Avda. Manuel Siurot s/n., 41013 Sevilla, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - María J García
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
45
|
Hassan NMM, Painter N, Howlett CR, Farrell AW, Di Girolamo N, Lyons JG, Halliday GM. Brm inhibits the proliferative response of keratinocytes and corneal epithelial cells to ultraviolet radiation-induced damage. PLoS One 2014; 9:e107931. [PMID: 25254962 PMCID: PMC4177874 DOI: 10.1371/journal.pone.0107931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/17/2014] [Indexed: 11/18/2022] Open
Abstract
Ultraviolet radiation (UV) from sunlight is the primary cause of skin and ocular neoplasia. Brahma (BRM) is part of the SWI/SNF chromatin remodeling complex. It provides energy for rearrangement of chromatin structure. Previously we have found that human skin tumours have a hotspot mutation in BRM and that protein levels are substantially reduced. Brm−/− mice have enhanced susceptibility to photocarcinogenesis. In these experiments, Brm−/− mice, with both or a single Trp53 allele were exposed to UV for 2 or 25 weeks. In wild type mice the central cornea and stroma became atrophic with increasing time of exposure while the peripheral regions became hyperplastic, presumably as a reparative process. Brm−/−, Trp53+/−, and particularly the Brm−/− Trp53+/− mice had an exaggerated hyperplastic regeneration response in the corneal epithelium and stroma so that the central epithelial atrophy or stromal loss was reduced. UV induced hyperplasia of the epidermis and corneal epithelium, with an increase in the number of dividing cells as determined by Ki-67 expression. This response was considerably greater in both the Brm−/− Trp53+/+ and Brm−/− Trp53+/− mice indicating that Brm protects from UV-induced enhancement of cell division, even with loss of one Trp53 allele. Cell division was disorganized in Brm−/− mice. Rather than being restricted to the basement membrane region, dividing cells were also present in the suprabasal regions of both tissues. Brm appears to be a tumour suppressor gene that protects from skin and ocular photocarcinogenesis. These studies indicate that Brm protects from UV-induced hyperplastic growth in both cutaneous and corneal keratinocytes, which may contribute to the ability of Brm to protect from photocarcinogenesis.
Collapse
Affiliation(s)
- Nur Mohammad Monsur Hassan
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Nicole Painter
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - C. Rolfe Howlett
- Department of Pathology and Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Andrew W. Farrell
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - J. Guy Lyons
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
- Sydney Head and Neck Cancer Institute, Cancer Services, Royal Prince Alfred Hospital, Sydney, Australia
| | - Gary M. Halliday
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
46
|
Zhang L, Nemzow L, Chen H, Hu JJ, Gong F. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells. PLoS One 2014; 9:e105764. [PMID: 25157878 PMCID: PMC4144907 DOI: 10.1371/journal.pone.0105764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/19/2014] [Indexed: 12/16/2022] Open
Abstract
UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Leah Nemzow
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jennifer J. Hu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
ARID1A has emerged as a tumor suppressor gene, which is mutated in a broad spectrum of cancers, especially in those arising from ectopic or eutopic endometrium. As a subunit of SWI/SNF chromatin remodeler, ARID1A facilitates target-specific binding of SWI/SNF complexes to chromatin, thereby altering the accessibility of chromatin to a variety of nuclear factors. In human cancer, ARID1A possesses not only features of a gatekeeper, regulating cell cycle progression, but also features of a caretaker, preventing genomic instability. An increasing body of evidence suggests crosstalk between ARID1A and PI3K/Akt pathways, and between ARID1A and p53. In this review, we discuss the spectrum of ARID1A alterations in cancers, tumor suppression mechanisms of ARID1A, oncogenic pathways cooperating with ARID1A, and clinical implications of ARID1A mutation.
Collapse
Affiliation(s)
- Ren-Chin Wu
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan, Taiwan
| | - Tian-Li Wang
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Departments of Oncology and Gynecology and Obstetrics; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Ie-Ming Shih
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Departments of Oncology and Gynecology and Obstetrics; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
48
|
Song S, Walter V, Karaca M, Li Y, Bartlett CS, Smiraglia DJ, Serber D, Sproul CD, Plass C, Zhang J, Hayes DN, Zheng Y, Weissman BE. Gene silencing associated with SWI/SNF complex loss during NSCLC development. Mol Cancer Res 2014; 12:560-70. [PMID: 24445599 DOI: 10.1158/1541-7786.mcr-13-0427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non-small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. IMPLICATIONS Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development.
Collapse
Affiliation(s)
- Shujie Song
- Lineberger Cancer Center, Room 32-048, University of North Carolina, Chapel Hill, NC 27599-7295.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
D'Antonio M, Guerra RF, Cereda M, Marchesi S, Montani F, Nicassio F, Di Fiore PP, Ciccarelli FD. Recessive cancer genes engage in negative genetic interactions with their functional paralogs. Cell Rep 2013; 5:1519-26. [PMID: 24360954 DOI: 10.1016/j.celrep.2013.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 01/01/2023] Open
Abstract
Cancer genetic heterogeneity offers a wide repertoire of molecular determinants to be screened as therapeutic targets. Here, we identify potential anticancer targets by exploiting negative genetic interactions between genes with driver loss-of-function mutations (recessive cancer genes) and their functionally redundant paralogs. We identify recessive genes with additional copies and experimentally test our predictions on three paralogous pairs. We confirm digenic negative interactions between two cancer genes (SMARCA4 and CDH1) and their corresponding paralogs (SMARCA2 and CDH3). Furthermore, we identify a trigenic negative interaction between the cancer gene DNMT3A, its functional paralog DNMT3B, and a third gene, DNMT1, which encodes the only other human DNA-methylase domain. Although our study does not exclude other causes of synthetic lethality, it suggests that functionally redundant paralogs of cancer genes could be targets in anticancer therapy.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Rosalinda F Guerra
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Matteo Cereda
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Stefano Marchesi
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Francesca Montani
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Francesco Nicassio
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy; Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Pier Paolo Di Fiore
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy
| | - Francesca D Ciccarelli
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy; Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Lee HR, No HK, Ryu CJ, Park HJ. Brahma‑related gene 1-associated expression of 9-27 and IFI-27 is involved in acquired cisplatin resistance of gastric cancer cells. Mol Med Rep 2013; 8:747-50. [PMID: 23836109 DOI: 10.3892/mmr.2013.1576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
In order to investigate the mechanism of cisplatin resistance, a cisplatin-resistant human gastric cancer cell line was established. Subsequent to the exposure of the YCC-3 gastric cancer cell line to equal concentrations of cis-diammine-dichloroplatinum (II) (cisplatin, CDDP) for 6 months, a cisplatin-resistant cell line was established (YCC-3/R). To determine the molecular mechanism of cisplatin resistance in YCC-3/R cells, differentially expressed genes (DEGs) were investigated between YCC-3 and YCC-3/R by annealing control primer-based reverse transcriptase-polymerase chain reaction (ACP RT-PCR) technology. Eleven DEGs were successfully identified and sequenced. Among them, interferon-induced transmembrane protein 1 (9-27) and interferon α-inducible protein 27 (IFI-27) were markedly increased in YCC-3/R cells. In addition, western blot analysis demonstrated that the Brahma-related gene 1 (BRG1), which was observed to selectively activate 9-27 and IFI-27 genes, was overexpressed in YCC-3/R cells. The results suggested that the BRG1‑associated expression of 9-27 and IFI-27 is involved in cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Gyeonggi-do 411-706, Republic of Korea
| | | | | | | |
Collapse
|