1
|
Roy PK, Deepak K, Kola P, Das CK, Sesodia R, Borkar SA, Mandal M. PSMC2 upregulation enhances epithelial-to-mesenchymal transition in glioblastoma via activating AKT/GSK3β/β-catenin axis. Cell Signal 2025; 132:111809. [PMID: 40233917 DOI: 10.1016/j.cellsig.2025.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Glioblastoma multiforme (GBM), a grade IV brain tumor, remains one of the most aggressive and difficult-to-treat cancers, emphasizing the urgent need for novel therapeutic targets. The dysregulation of the unfolded protein response, particularly involving the proteasomal pathway, contributes significantly to the pathogenesis of GBM. Proteasome 26S subunit ATPase 2 (PSMC2) has recently been identified as a potential factor in carcinogenesis; however, the molecular mechanisms involved remain unclear. In this study, we found significantly high expression of PSMC2 in GBM, with increased levels associated with an unfavorable prognosis. PSMC2 knockdown in GBM cell lines reduced proliferation, impaired migration, and induced apoptosis, while its overexpression enhanced epithelial-to-mesenchymal transition (EMT) related marker expression. Further, the tumorigenic effect of PSMC2 was confirmed in vivo as PSMC2 knockdown reduced the tumor volume and weight. Mechanistically, PSMC2 promoted malignancy via nuclear localizing of β-catenin by activating AKT/GSK3β/β-catenin axis, with AKT-mediated inhibitory phosphorylation of GSK3β enabling β-catenin activation. Besides, we used Lithium chloride to induce GSK3β phosphorylation which reversed the effects of PSMC2 knockdown, further validating this pathway. These findings demonstrate that PSMC2 drives GBM progression by regulating the AKT/GSK3β/β-catenin axis, positioning it as a promising biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Rohit Sesodia
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin A Borkar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Li Z, Du L, Du B, Ullah Z, Zhang Y, Tu Y, Zhou Y, Guo B. Inorganic and hybrid nanomaterials for NIR-II fluorescence imaging-guided therapy of Glioblastoma and perspectives. Theranostics 2025; 15:5616-5665. [PMID: 40365286 PMCID: PMC12068291 DOI: 10.7150/thno.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is the most invasive and lethal brain tumor, with limited therapeutic options due to its highly infiltrative nature, resistance to conventional therapies, and blood-brain barriers. Recent advancements in near-infrared II (NIR-II) fluorescence imaging have facilitated greater tissue penetration, improved resolution, and real-time visualization of GBM, providing a promising approach for precise diagnosis and treatment. The inorganic and hybrid NIR-II fluorescent materials have developed rapidly for NIR-II fluorescence imaging-guided diagnosis and therapy of many diseases, including GBM. Herein, we offer a timely update to explore the contribution of inorganic/hybrid NIR-II fluorescent nanomaterials, such as quantum dots, rare-earth-doped nanoparticles, carbon-based nanomaterials, and metal nanoclusters in imaging-guided treatment for GBM. These nanomaterials provide high photostability, strong fluorescence intensity, and tunable optical properties, allowing for multimodal imaging and enhanced therapeutic efficacy. Additionally, their integration with modern therapeutic strategies, such as photothermal therapy, chemodynamic therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, has shown significant potential in overcoming the limitations of traditional treatments. Looking forward, future advancements including safe body clearance, long-term biocompatibility, efficient BBB penetration, and extended emission wavelengths beyond 1500 nm could enhance the theranostic outcomes. The integration of dual imaging with immunotherapy and AI-driven strategies will further enhance precision and accelerate the clinical translation of smart theranostic platforms for GBM treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Binghua Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, Guangdong Province, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Firuzpour F, Saleki K, Aram C, Rezaei N. Nanocarriers in glioblastoma treatment: a neuroimmunological perspective. Rev Neurosci 2024:revneuro-2024-0097. [PMID: 39733347 DOI: 10.1515/revneuro-2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/08/2024] [Indexed: 12/31/2024]
Abstract
Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60-75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6-14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood-brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.
Collapse
Affiliation(s)
- Faezeh Firuzpour
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
| | - Kiarash Saleki
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Cena Aram
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| |
Collapse
|
4
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
6
|
Hu Y, Li CY, Lu Q, Kuang Y. Multiplex miRNA reporting platform for real-time profiling of living cells. Cell Chem Biol 2024; 31:150-162.e7. [PMID: 38035883 DOI: 10.1016/j.chembiol.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Accurately characterizing cell types within complex cell structures provides invaluable information for comprehending the cellular status during biological processes. In this study, we have developed an miRNA-switch cocktail platform capable of reporting and tracking the activities of multiple miRNAs (microRNAs) at the single-cell level, while minimizing disruption to the cell culture. Drawing on the principles of traditional miRNA-sensing mRNA switches, our platform incorporates subcellular tags and employs intelligent engineering to segment three subcellular regions using two fluorescent proteins. These designs enable the quantification of multiple miRNAs within the same cell. Through our experiments, we have demonstrated the platform's ability to track marker miRNA levels during cell differentiation and provide spatial information of heterogeneity on outlier cells exhibiting extreme miRNA levels. Importantly, this platform offers real-time and in situ miRNA reporting, allowing for multidimensional evaluation of cell profile and paving the way for a comprehensive understanding of cellular events during biological processes.
Collapse
Affiliation(s)
- Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qiuyu Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
7
|
Brynjulvsen M, Solli E, Walewska M, Zucknick M, Djirackor L, Langmoen IA, Mughal AA, Skaga E, Vik-Mo EO, Sandberg CJ. Functional and Molecular Heterogeneity in Glioma Stem Cells Derived from Multiregional Sampling. Cancers (Basel) 2023; 15:5826. [PMID: 38136371 PMCID: PMC10741477 DOI: 10.3390/cancers15245826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly heterogeneous primary brain tumor. Glioma stem cells represent a subpopulation of tumor cells with stem cell traits that are presumed to be the cause of tumor relapse. There exists complex tumor heterogeneity in drug sensitivity patterns between glioma stem cell (GSC) cultures derived from different patients. Here, we describe that heterogeneity also exists between GSC cultures derived from multiple biopsies within a single tumor. From biopsies harvested within spatially distinct regions representing the entire tumor mass, we established seven GSC cultures and compared their stem cell properties, mutations, gene expression profiles, and drug sensitivity patterns against 115 different anticancer drugs. The results were compared to 14 GSC cultures derived from other patients. Between the multiregional-derived GSC cultures, we observed only minor differences in their phenotype, proliferative capacity, and global gene expression. Further, they displayed intratumoral heterogeneity in mutational profiles and sensitivity patterns to anticancer drugs. This heterogeneity, however, did not exceed the extensive heterogeneity found between GSC cultures derived from other GBM patients. Our results suggest that the use of GSC cultures from one single focal biopsy may underestimate the overall complexity of the GSC population and display the importance of including GSC cultures reflecting the entire tumor mass in drug screening strategies.
Collapse
Affiliation(s)
- Marit Brynjulvsen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Elise Solli
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Maria Walewska
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Blindern, P.O. Box 1122, 0317 Oslo, Norway
| | - Luna Djirackor
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Iver A. Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Awais Ahmad Mughal
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Erlend Skaga
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Einar O. Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Cecilie J. Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| |
Collapse
|
8
|
Skaga E, Kulesskiy E, Potdar S, Panagopoulos I, Micci F, Langmoen IA, Sandberg CJ, Vik-Mo EO. Functional temozolomide sensitivity testing of patient-specific glioblastoma stem cell cultures is predictive of clinical outcome. Transl Oncol 2022; 26:101535. [PMID: 36115076 PMCID: PMC9483808 DOI: 10.1016/j.tranon.2022.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
Serum-free culturing of patient-derived glioblastoma biopsies enrich for glioblastoma stem cells (GSCs) and is recognized as a disease-relevant model system in glioblastoma (GBM). We hypothesized that the temozolomide (TMZ) drug sensitivity of patient-derived GSC cultures correlates to clinical sensitivity patterns and has clinical predictive value in a cohort of GBM patients. To this aim, we established 51 individual GSC cultures from surgical biopsies from both treatment-naïve primary and pretreated recurrent GBM patients. The cultures were evaluated for sensitivity to TMZ over a dosing range achievable in normal clinical practice. Drug efficacy was quantified by the drug sensitivity score. MGMT-methylation status was investigated by pyrosequencing. Correlative, contingency, and survival analyses were performed for associations between experimental and clinical data. We found a heterogeneous response to temozolomide in the GSC culture cohort. There were significant differences in the sensitivity to TMZ between the newly diagnosed and the TMZ-treated recurrent disease (p <0.01). There was a moderate correlation between MGMT-status and sensitivity to TMZ (r=0.459, p=0.0009). The relationship between MGMT status and TMZ efficacy was statistically significant on multivariate analyses (p=0.0051). We found a predictive value of TMZ sensitivity in individual GSC cultures to patient survival (p=0.0089). We conclude that GSC-enriched cultures hold clinical and translational relevance by their ability to reflect the clinical heterogeneity in TMZ-sensitivity, substantiate the association between TMZ-sensitivity and MGMT-promotor methylation status and appear to have a stronger predictive value than MGMT-promotor methylation on clinical responses to TMZ.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 4954 Nydalen, 0424, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 4954 Nydalen, 0424, Oslo, Norway
| | - Iver A Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Einar O Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
9
|
Ucci S, Spaziani S, Quero G, Vaiano P, Principe M, Micco A, Sandomenico A, Ruvo M, Consales M, Cusano A. Advanced Lab-on-Fiber Optrodes Assisted by Oriented Antibody Immobilization Strategy. BIOSENSORS 2022; 12:1040. [PMID: 36421158 PMCID: PMC9688615 DOI: 10.3390/bios12111040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Lab-on-fiber (LoF) optrodes offer several advantages over conventional techniques for point-of-care platforms aimed at real-time and label-free detection of clinically relevant biomarkers. Moreover, the easy integration of LoF platforms in medical needles, catheters, and nano endoscopes offer unique potentials for in vivo biopsies and tumor microenvironment assessment. The main barrier to translating the vision close to reality is the need to further lower the final limit of detection of developed optrodes. For immune-biosensing purposes, the assay sensitivity significantly relies on the capability to correctly immobilize the capture antibody in terms of uniform coverage and correct orientation of the bioreceptor, especially when very low detection limits are requested as in the case of cancer diagnostics. Here, we investigated the possibility to improve the immobilization strategies through the use of hinge carbohydrates by involving homemade antibodies that demonstrated a significantly improved recognition of the antigen with ultra-low detection limits. In order to create an effective pipeline for the improvement of biofunctionalization protocols to be used in connection with LoF platforms, we first optimized the protocol using a microfluidic surface plasmon resonance (mSPR) device and then transferred the optimized strategy onto LoF platforms selected for the final validation. Here, we selected two different LoF platforms: a biolayer interferometry (BLI)-based device (commercially available) and a homemade advanced LoF biosensor based on optical fiber meta-tips (OFMTs). As a clinically relevant scenario, here we focused our attention on a promising serological biomarker, Cripto-1, for its ability to promote tumorigenesis in breast and liver cancer. Currently, Cripto-1 detection relies on laborious and time-consuming immunoassays. The reported results demonstrated that the proposed approach based on oriented antibody immobilization was able to significantly improve Cripto-1 detection with a 10-fold enhancement versus the random approach. More interestingly, by using the oriented antibody immobilization strategy, the OFMTs-based platform was able to reveal Cripto-1 at a concentration of 0.05 nM, exhibiting detection capabilities much higher (by a factor of 250) than those provided by the commercial LoF platform based on BLI and similar to the ones shown by the commercial and well-established bench-top mSPR Biacore 8K system. Therefore, our work opened new avenues into the development of high-sensitivity LoF biosensors for the detection of clinically relevant biomarkers in the sub-ng/mL range.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Sara Spaziani
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Giuseppe Quero
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Patrizio Vaiano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Maria Principe
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Alberto Micco
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Marco Consales
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| |
Collapse
|
10
|
Chen B, Li X, Wu L, Zhou D, Song Y, Zhang L, Wu Q, He Q, Wang G, Liu X, Hu H, Zhou W. Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-catenin/ZEB1 Signaling Pathway. Front Pharmacol 2022; 13:963614. [PMID: 36386155 PMCID: PMC9663482 DOI: 10.3389/fphar.2022.963614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/19/2022] [Indexed: 07/20/2023] Open
Abstract
High invasiveness is a biological and clinical characteristic of glioblastoma and predicts poor prognosis of patients. Quercetin, a natural flavonoid compound, exhibits anticancer activity. However, we have a limited understanding of the possible underlying mechanism of quercetin in glioblastoma. In this study, we investigated the anticancer effect of quercetin in human glioblastoma cells. Our results showed that quercetin markedly suppressed the viability of glioblastoma cells in vitro and in vivo, and significantly inhibited glioblastoma cell migration and invasion. Moreover, quercetin reversed EMT-like mesenchymal phenotype and reduced the expression levels of EMT-related markers. Furthermore, we found that quercetin suppressed GSK-3β/β-catenin/ZEB1 signaling in glioblastoma. Taken together, our results demonstrate that quercetin inhibited migration and invasion of human glioma cells by suppressing GSK3β/β-catenin/ZEB1 signaling. Our study provides evidence that quercetin is a promising therapeutic natural compound to treat glioblastoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hui Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Pang X, Huang H, Wei Y, Leng J. Ethanolic Leaf Extract of C. angustifolia Instigates ROS Mediated Apoptosis within Glioblastoma C6 Cells. J Oleo Sci 2022; 71:1375-1385. [PMID: 36047243 DOI: 10.5650/jos.ess22143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme or GBM is a destructive malignancy of the central nervous system and is accountable for leading cause of cancer related mortality. Inadequate success rate of surgical interventions and development of resistance towards the current therapeutical regime provides impetus for exploring novel therapeutical interventions against the disease. Recently, several epidemiological studies have explored the plausible utility of natural, dietary compounds in influencing the development, progression, and cancer metastasis. Recently, different phytoconstituents of Cassia angustifolia were found to be associated with anti-microbial, anti-cancer and anti-inflammatory effects. Therefore, the aim of the present study was to evaluate the anti-proliferative efficacy of ethanolic leaf extract of C. angustifolia (LCaEt-OH) against rat derived glioblastoma C6 cells. Briefly, the anti-proliferative potential of LCaEt-OH was assessed using MTT assay, quantitative estimation of ROS, and evaluation of mitochondrial membrane potential (ΔΨm). Moreover, the activity of caspases involved in intrinsic apoptotic pathways was also investigated using colorimetric kit followed by quantitative RT-PCR evaluation of modulation in gene expressions triggered due to LCaEt-OH treatment. Treatment of LCaEt-OH on C6 cells elucidated substantial dose-dependent decline in cellular viability. Furthermore, LCaEt-OH showed its efficacy in substantially enhancing intracellular ROS. LCaEt-OH also incited apoptosis in C6 cells by instigating nuclear condensation and dissipation of ΔΨm. In addition, LCaEt-OH mediated instigation of apoptosis was directly influenced by increased activity of caspases indispensable for intrinsic apoptotic pathway. These conclusive evidences indicate towards anticancer efficacy of LCaEt-OH against C6 cells.
Collapse
Affiliation(s)
- Xiaojun Pang
- Department of Neurosurgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine
| | - Haojun Huang
- Department of Neurosurgery, The Fifth Hospital of Xiamen
| | - Yuyu Wei
- Department of Neurosurgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine
| | - Jiyong Leng
- Department of Neurosurgery, Dalian Municipal Central Hospital
| |
Collapse
|
12
|
Singh DK, Shivalingappa PKM, Sharma A, Mondal A, Muzumdar D, Shiras A, Bapat SA. NSG-70, a new glioblastoma cell line with mixed proneural-mesenchymal features, associates NOTCH1-WNT5A signaling with stem cell maintenance and angiogenesis. J Neurooncol 2022; 157:575-591. [DOI: 10.1007/s11060-022-04002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
|
13
|
In Vitro and Computational Studies of Perezone and Perezone Angelate as Potential Anti-Glioblastoma Multiforme Agents. Molecules 2022; 27:molecules27051565. [PMID: 35268667 PMCID: PMC8911992 DOI: 10.3390/molecules27051565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most malignant type of astrocytoma, with a life expectancy of two years. It has been shown that Poly (ADP-ribose) polymerase 1 (PARP-1) protein is over-expressed in GBM cells, while its expression in healthy tissue is low. In addition, perezone, a phyto-compound, is a PARP-1 inhibitor with anti-neoplastic activity. As a consequence, in the present study, both in vitro and computational evaluations of perezone and its chemically related compound, perezone angelate, as anti-GBM agents were performed. Hence, the anti-proliferative assay showed that perezone angelate induces higher cytotoxicity in the GBM cell line (U373 IC50 = 6.44 μM) than perezone (U373 IC50 = 51.20 μM) by induction of apoptosis. In addition, perezone angelate showed low cytotoxic activity in rat glial cells (IC50 = 173.66 μM). PARP-1 inhibitory activity (IC50 = 5.25 μM) and oxidative stress induction by perezone angelate were corroborated employing in vitro studies. In the other hand, the performed docking studies allowed explaining the PARP-1 inhibitory activity of perezone angelate, and ADMET studies showed its probability to permeate cell membranes and the blood–brain barrier, which is an essential characteristic of drugs to treat neurological diseases. Finally, it is essential to highlight that the results confirm perezone angelate as a potential anti-GBM agent.
Collapse
|
14
|
Curcumin and Radiotherapy Exert Synergistic Anti-Glioma Effect In Vitro. Biomedicines 2021; 9:biomedicines9111562. [PMID: 34829791 PMCID: PMC8615260 DOI: 10.3390/biomedicines9111562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Curcumin, a bioactive polyphenol, is known to have anticancer properties. In this study, the effectiveness of curcumin pretreatment as a strategy for radio-sensitizing glioblastoma cell lines was explored. For this, U87 and T98 cells were treated with curcumin, exposed to 2 Gy or 4 Gy of irradiation, and the combined effect was compared to the antiproliferative effect of each agent when given individually. Cell viability and proliferation were evaluated with the trypan blue exclusion assay and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The synergistic effects of the combination treatment were analyzed with CompuSyn software. To examine how the co-treatment affected different phases of cell-cycle progression, a cell-cycle analysis via flow cytometry was performed. Treatment with curcumin and radiation significantly reduced cell viability in both U87 and T98 cell lines. The combination treatment arrested both cell lines at the G2/M phase to a higher extent than radiation or curcumin treatment alone. The synergistic effect of curcumin when combined with temozolomide resulted in increased tumor cell death. Our results demonstrate for the first time that low doses of curcumin and irradiation exhibit a strong synergistic anti-proliferative effect on glioblastoma cells in vitro. Therefore, this combination may represent an innovative and promising strategy for the treatment of glioblastoma, and further studies are needed to fully understand the molecular mechanism underlying this effect.
Collapse
|
15
|
Marques C, Unterkircher T, Kroon P, Oldrini B, Izzo A, Dramaretska Y, Ferrarese R, Kling E, Schnell O, Nelander S, Wagner EF, Bakiri L, Gargiulo G, Carro MS, Squatrito M. NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1. eLife 2021; 10:e64846. [PMID: 34399888 PMCID: PMC8370767 DOI: 10.7554/elife.64846] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/18/2021] [Indexed: 12/22/2022] Open
Abstract
The molecular basis underlying glioblastoma (GBM) heterogeneity and plasticity is not fully understood. Using transcriptomic data of human patient-derived brain tumor stem cell lines (BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 transcription factor FOSL1 as a key regulator of the mesenchymal (MES) subtype. We provide a mechanistic basis to the role of the neurofibromatosis type 1 gene (NF1), a negative regulator of the RAS/MAPK pathway, in GBM mesenchymal transformation through the modulation of FOSL1 expression. Depletion of FOSL1 in NF1-mutant human BTSCs and Kras-mutant mouse neural stem cells results in loss of the mesenchymal gene signature and reduction in stem cell properties and in vivo tumorigenic potential. Our data demonstrate that FOSL1 controls GBM plasticity and aggressiveness in response to NF1 alterations.
Collapse
Affiliation(s)
- Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | | | - Paula Kroon
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Annalisa Izzo
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Roberto Ferrarese
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Eva Kling
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Sven Nelander
- Dept of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
- Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
| | - Erwin F Wagner
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
- Dermatology Department, Medical University of ViennaViennaAustria
| | - Latifa Bakiri
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| |
Collapse
|
16
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
17
|
Zhang H, Yuan F, Qi Y, Liu B, Chen Q. Circulating Tumor Cells for Glioma. Front Oncol 2021; 11:607150. [PMID: 33777749 PMCID: PMC7987781 DOI: 10.3389/fonc.2021.607150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy has entered clinical applications for several cancers, including metastatic breast, prostate, and colorectal cancer for CTC enumeration and NSCLC for EGFR mutations in ctDNA, and has improved the individualized treatment of many cancers, but relatively little progress has been made in validating circulating biomarkers for brain malignancies. So far, data on circulating tumor cells about glioma are limited, the application of circulating tumor cells as biomarker for glioma patients has only just begun. This article reviews the research status and application prospects of circulating tumor cells in gliomas. Several detection methods and research results of circulating tumor cells about clinical research in gliomas are briefly discussed. The wide application prospect of circulating tumor cells in glioma deserves further exploration, and the research on more sensitive and convenient detection methods is necessary.
Collapse
Affiliation(s)
- Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Förnvik K, Maddahi A, Liljedahl E, Osther K, Salford LG, Redebrandt HN. What is the role of CRP in glioblastoma? Cancer Treat Res Commun 2021; 26:100293. [PMID: 33385735 DOI: 10.1016/j.ctarc.2020.100293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. Previous studies have suggested that CRP (C-reactive protein) could serve as a biomarker candidate as well as a prognostic factor in glioblastoma patients, and we here further investigate its potential role. MATERIALS AND METHODS Publicly available datasets were used to compare gene expression between brain samples from glioblastoma patients and non-tumor tissue. The structure of CRP was compared between humans and rats. Glioblastoma cells from humans and rats were stained with anti-CRP. Fischer 344 rats were inoculated with syngeneic glioblastoma cells pre-coated with anti-CRP, and survival was monitored. CRP concentration in rats carrying glioblastoma was followed. RESULTS CRP was upregulated on one locus on gene level in glioblastoma tissue as compared to non-tumor brain tissue, but not in glioma stem cells as compared to neural stem cells. The structure of the CRP protein was a characteristic pentamer in both humans and rats. Both human and rat glioblastoma cells were clearly positive for anti-CRP staining. Pre-coating of glioblastoma cells with anti-CRP antibodies did not affect survival in rats with intracranial tumors. Serum levels of CRP increased during tumor progression but did not reach significantly different levels. CONCLUSIONS Both human and rat glioblastoma cells could be stained with anti-CRP antibodies in vitro. In a syngeneic glioblastoma rat model we could see an increase in serum CRP during tumor progression, but coating glioblastoma cells with anti-CRP antibodies did not provide any survival change for the animals.
Collapse
Affiliation(s)
- Karolina Förnvik
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden; Department of Clinical Chemistry, Skåne University Hospital, Sweden
| | - Aida Maddahi
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden
| | - Emma Liljedahl
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden
| | - Kurt Osther
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden
| | - Leif G Salford
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden
| | - Henrietta Nittby Redebrandt
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University, Sweden; Department of Neurosurgery, Skåne University Hospital, Sweden.
| |
Collapse
|
19
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
20
|
Sha Z, Zhou J, Wu Y, Zhang T, Li C, Meng Q, Musunuru PP, You F, Wu Y, Yu R, Gao S. BYSL Promotes Glioblastoma Cell Migration, Invasion, and Mesenchymal Transition Through the GSK-3β/β-Catenin Signaling Pathway. Front Oncol 2020; 10:565225. [PMID: 33178594 PMCID: PMC7593785 DOI: 10.3389/fonc.2020.565225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
BYSL, which encodes the human bystin protein, is a sensitive marker for astrocyte proliferation during brain damage and inflammation. Previous studies have revealed that BYSL has important roles in embryo implantation and prostate cancer infiltration. However, the role and mechanism of BYSL in glioblastoma (GBM) cell migration and invasion remain unknown. We found that knockdown of BYSL inhibited cell migration and invasion, downregulated the expression of mesenchymal markers (e.g., β-catenin and N-cadherin), and upregulated the expression of epithelial marker E-cadherin in GBM cell lines. Overexpression of BYSL promoted GBM cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, the role of BYSL in promoting EMT was further confirmed in a glioma stem cell line derived from a GBM patient. Mechanistically, overexpression of BYSL increased the phosphorylation of GSK-3β and the nuclear distribution of β-catenin. Inhibition of GSK-3β by 1-Azakenpaullone could partially reverse the effects of BYSL downregulation on the transcriptional activity of β-catenin, the expression of EMT markers, and GBM cell migration/invasion. Moreover, immunohistochemical analysis showed strong expression of BYSL in GBM tissues, which was positively correlated with markers of mesenchymal GBM. These results suggest that BYSL promotes GBM cell migration, invasion, and EMT through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhuang Sha
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yihao Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tong Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Li
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingming Meng
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Preethi Priyanka Musunuru
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fangting You
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yue Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Vieira de Castro J, Gonçalves CS, Hormigo A, Costa BM. Exploiting the Complexities of Glioblastoma Stem Cells: Insights for Cancer Initiation and Therapeutic Targeting. Int J Mol Sci 2020; 21:ijms21155278. [PMID: 32722427 PMCID: PMC7432229 DOI: 10.3390/ijms21155278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery of glioblastoma stem cells (GSCs) in the 2000s revolutionized the cancer research field, raising new questions regarding the putative cell(s) of origin of this tumor type, and partly explaining the highly heterogeneous nature of glioblastoma (GBM). Increasing evidence has suggested that GSCs play critical roles in tumor initiation, progression, and resistance to conventional therapies. The remarkable oncogenic features of GSCs have generated significant interest in better defining and characterizing these cells and determining novel pathways driving GBM that could constitute attractive key therapeutic targets. While exciting breakthroughs have been achieved in the field, the characterization of GSCs is a challenge and the cell of origin of GBM remains controversial. For example, the use of several cell-surface molecular markers to identify and isolate GSCs has been a challenge. It is now widely accepted that none of these markers is, per se, sufficiently robust to distinguish GSCs from normal stem cells. Finding new strategies that are able to more efficiently and specifically target these niches could also prove invaluable against this devastating and therapy-insensitive tumor. In this review paper, we summarize the most relevant findings and discuss emerging concepts and open questions in the field of GSCs, some of which are, to some extent, pertinent to other cancer stem cells.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Adília Hormigo
- Department of Neurology, Neurosurgery, Medicine, The Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, NY 10029-6574, USA;
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-1-253-604-872
| |
Collapse
|
22
|
Reddy RG, Bhat UA, Chakravarty S, Kumar A. Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells. Cancer Chemother Pharmacol 2020; 86:165-179. [PMID: 32638092 DOI: 10.1007/s00280-020-04109-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal grade IV glioma (WHO classification) and widely prevalent primary brain tumor in adults. GBM tumors harbor cellular heterogeneity with the presence of a small subpopulation of tumor cells, described as GBM cancer stem cells (CSCs) that pose resistance to standard anticancer regimens and eventually mediate aggressive relapse or intractable progressive GBM. Existing conventional anticancer therapies for GBM do not target GBM stem cells and are mostly palliative; therefore, exploration of new strategies to target stem cells of GBM has to be prioritized for the development of effective GBM therapy. Recent developments in the understanding of GBM pathophysiology demonstrated dysregulation of epigenetic mechanisms along with the genetic changes in GBM CSCs. Altered expression/activity of key epigenetic regulators, especially histone deacetylases (HDACs) in GBM stem cells has been associated with poor prognosis; inhibiting the activity of HDACs using histone deacetylase inhibitors (HDACi) has been promising as mono-therapeutic in targeting GBM and in sensitizing GBM stem cells to an existing anticancer regimen. Here, we review the development of pan/selective HDACi as potential anticancer agents in targeting the stem cells of glioblastoma as a mono or combination therapy.
Collapse
Affiliation(s)
- R Gajendra Reddy
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Unis Ahmad Bhat
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
23
|
Kierulf-Vieira KS, Sandberg CJ, Waaler J, Lund K, Skaga E, Saberniak BM, Panagopoulos I, Brandal P, Krauss S, Langmoen IA, Vik-Mo EO. A Small-Molecule Tankyrase Inhibitor Reduces Glioma Stem Cell Proliferation and Sphere Formation. Cancers (Basel) 2020; 12:cancers12061630. [PMID: 32575464 PMCID: PMC7352564 DOI: 10.3390/cancers12061630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence suggests that the growth and therapeutic resistance of glioblastoma (GBM) may be enabled by a population of glioma stem cells (GSCs) that are regulated by typical stem cell pathways, including the WNT/β-catenin signaling pathway. We wanted to explore the effect of treating GSCs with a small-molecule inhibitor of tankyrase, G007-LK, which has been shown to be a potent modulator of the WNT/β-catenin and Hippo pathways in colon cancer. Four primary GSC cultures and two primary adult neural stem cell cultures were treated with G007-LK and subsequently evaluated through the measurement of growth characteristics, as well as the expression of WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Treatment with G007-LK decreased in vitro proliferation and sphere formation in all four primary GSC cultures in a dose-dependent manner. G007-LK treatment altered the expression of key downstream WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Finally, cotreatment with the established GBM chemotherapeutic compound temozolomide (TMZ) led to an additive reduction in sphere formation, suggesting that WNT/β-catenin signaling may contribute to TMZ resistance. These observations suggest that tankyrase inhibition may serve as a supplement to current GBM therapy, although more work is needed to determine the exact downstream mechanisms involved.
Collapse
Affiliation(s)
- Kirsten Strømme Kierulf-Vieira
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Correspondence:
| | - Cecilie Jonsgar Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Kaja Lund
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Birthe Mikkelsen Saberniak
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Iver Arne Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Einar Osland Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
24
|
Li L, Maire CL, Bilenky M, Carles A, Heravi-Moussavi A, Hong C, Tam A, Kamoh B, Cho S, Cheung D, Li I, Wong T, Nagarajan RP, Mungall AJ, Moore R, Wang T, Kleinman CL, Jabado N, Jones SJM, Marra MA, Ligon KL, Costello JF, Hirst M. Epigenomic programming in early fetal brain development. Epigenomics 2020; 12:1053-1070. [PMID: 32677466 PMCID: PMC7857341 DOI: 10.2217/epi-2019-0319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To provide a comprehensive understanding of gene regulatory networks in the developing human brain and a foundation for interpreting pathogenic deregulation. Materials & methods: We generated reference epigenomes and transcriptomes of dissected brain regions and primary neural progenitor cells (NPCs) derived from cortical and ganglionic eminence tissues of four normal human fetuses. Results: Integration of these data across developmental stages revealed a directional increase in active regulatory states, transcription factor activities and gene transcription with developmental stage. Consistent with differences in their biology, NPCs derived from cortical and ganglionic eminence regions contained common, region specific, and gestational week specific regulatory states. Conclusion: We provide a high-resolution regulatory network for NPCs from different brain regions as a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Luolan Li
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cecile L Maire
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Misha Bilenky
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Annaïck Carles
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Angela Tam
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Baljit Kamoh
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Stephanie Cho
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Dorothy Cheung
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Irene Li
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Raman P Nagarajan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andrew J Mungall
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Ting Wang
- Department of Genetics, Washington University, St Louis, MO 63108, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Steven JM Jones
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
25
|
Ahlstedt J, Konradsson E, Ceberg C, Redebrandt HN. Increased effect of two-fraction radiotherapy in conjunction with IDO1 inhibition in experimental glioblastoma. PLoS One 2020; 15:e0233617. [PMID: 32469935 PMCID: PMC7259656 DOI: 10.1371/journal.pone.0233617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives The aim of the study was to investigate therapeutic efficacy of single- or two-fraction radiotherapy in conjunction with IDO1-inhibition in a syngeneic rat glioblastoma model. IDO is known to cause immunosuppression through breakdown of tryptophan in the tumor microenvironment. Methods Gene expression analyses of IDO in glioblastoma were performed with data from publicly available datasets. Fractionation studies were done on animals to evaluate tumor size, immune cell infiltration of tumors and serum profile on day 18 after tumor inoculation. Survival analyses were done with animals carrying intracranial glioblastomas comparing two-fraction radiotherapy+IDO1-inhibition to controls. IDO inhibition was achieved by administration of 1-methyl tryptophan (1-MT), and radiotherapy (RT) was delivered in doses of 8Gy. Results The expression of IDO1 was increased on gene level in glioblastoma stem cells. Tumor size was significantly reduced in animals treated with 1-MT+RTx 2 (both long and short intervals, i.e. 7 and 4 days between the treatments) as compared to control animals, animals treated with only 1-MT or animals treated with 1-MT+RTx1. Serum levels of IL-1A were significantly altered in all treated animals as compared to control animals. Survival was significantly increased in the animals treated with 1-MT+RTx2 (7-day interval) compared to control animals. Conclusions Addition of two-fraction RT to IDO1 inhibition with 1-MT significantly reduced tumor size in animals with glioblastoma. Survival was significantly increased in animals treated with two-fractioned RT+1-MT as compared to untreated controls increased significantly. Advances in knowledge The currently used combination of only two fractions of radiotherapy and immune therapy is a promising area of research, increasing efficacy compared to single fraction irradiation, while potentially lowering radiation side effects compared to radiation in current clinical practice.
Collapse
Affiliation(s)
- Jonatan Ahlstedt
- Division of Neurosurgery, Department of Clinical Sciences, The Rausing Laboratory, Lund University, Lund, Sweden
- * E-mail:
| | - Elise Konradsson
- Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Crister Ceberg
- Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- Division of Neurosurgery, Department of Clinical Sciences, The Rausing Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:11-34. [PMID: 32304077 DOI: 10.1007/978-3-030-35805-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells offer an unprecedented window into the metastatic cascade, and to some extent can be considered as intermediates in the process of metastasis. They exhibit dynamic oscillations in epithelial to mesenchymal plasticity and provide important opportunities for prognosis, therapy response monitoring, and targeting of metastatic disease. In this manuscript, we review the involvement of epithelial-mesenchymal plasticity in the early steps of metastasis and what we have learned about its contribution to genomic instability and genetic diversity, tumor progression and therapeutic responses using cell culture, mouse models and circulating tumor cells enriched from patients.
Collapse
|
27
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
28
|
Tompa M, Nagy A, Komoly S, Kalman B. Wnt pathway markers in molecular subgroups of glioblastoma. Brain Res 2019; 1718:114-125. [DOI: 10.1016/j.brainres.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
29
|
Diana A, Gaido G, Murtas D. MicroRNA Signature in Human Normal and Tumoral Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174123. [PMID: 31450858 PMCID: PMC6747235 DOI: 10.3390/ijms20174123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Giuseppe Gaido
- Department of Surgery, Cottolengo Mission Hospital Charia, 60200 Meru, Kenya
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
30
|
Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D, Du C. Gene and microRNA Signatures Are Associated with the Development and Survival of Glioblastoma Patients. DNA Cell Biol 2019; 38:688-699. [PMID: 31188028 DOI: 10.1089/dna.2018.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Yang
- Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Rui Wang
- Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chuangang Peng
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, P.R. China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Guozhang Hu
- Department of Emergency Medicine and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
31
|
Skaga E, Kulesskiy E, Fayzullin A, Sandberg CJ, Potdar S, Kyttälä A, Langmoen IA, Laakso A, Gaál-Paavola E, Perola M, Wennerberg K, Vik-Mo EO. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer 2019; 19:628. [PMID: 31238897 PMCID: PMC6593575 DOI: 10.1186/s12885-019-5861-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/20/2019] [Indexed: 02/15/2023] Open
Abstract
Background A major barrier to effective treatment of glioblastoma (GBM) is the large intertumoral heterogeneity at the genetic and cellular level. In early phase clinical trials, patient heterogeneity in response to therapy is commonly observed; however, how tumor heterogeneity is reflected in individual drug sensitivities in the treatment-naïve glioblastoma stem cells (GSC) is unclear. Methods We cultured 12 patient-derived primary GBMs as tumorspheres and validated tumor stem cell properties by functional assays. Using automated high-throughput screening (HTS), we evaluated sensitivity to 461 anticancer drugs in a collection covering most FDA-approved anticancer drugs and investigational compounds with a broad range of molecular targets. Statistical analyses were performed using one-way ANOVA and Spearman correlation. Results Although tumor stem cell properties were confirmed in GSC cultures, their in vitro and in vivo morphology and behavior displayed considerable tumor-to-tumor variability. Drug screening revealed significant differences in the sensitivity to anticancer drugs (p < 0.0001). The patient-specific vulnerabilities to anticancer drugs displayed a heterogeneous pattern. They represented a variety of mechanistic drug classes, including apoptotic modulators, conventional chemotherapies, and inhibitors of histone deacetylases, heat shock proteins, proteasomes and different kinases. However, the individual GSC cultures displayed high biological consistency in drug sensitivity patterns within a class of drugs. An independent laboratory confirmed individual drug responses. Conclusions This study demonstrates that patient-derived and treatment-naïve GSC cultures maintain patient-specific traits and display intertumoral heterogeneity in drug sensitivity to anticancer drugs. The heterogeneity in patient-specific drug responses highlights the difficulty in applying targeted treatment strategies at the population level to GBM patients. However, HTS can be applied to uncover patient-specific drug sensitivities for functional precision medicine. Electronic supplementary material The online version of this article (10.1186/s12885-019-5861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Artem Fayzullin
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Emília Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.,National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| |
Collapse
|
32
|
Addeo R, Lamberti G, Simonetti G, Iodice P, Marinelli A, Montella L, Cappabianca S, Gaviani P, Caraglia M, Prete SD, Silvani A. Biweekly fotemustine schedule for recurrent glioblastoma in the elderly: activity and toxicity assessment of a multicenter study. CNS Oncol 2019; 8:CNS32. [PMID: 31290692 PMCID: PMC6713024 DOI: 10.2217/cns-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the efficacy and safety of alternative fotemustine administration schedule in elderly patients with recurrent glioblastoma. Patients & methods: Patients aged >65 years with recurrent glioblastoma received fotemustine (80 mg/m2; days 1, 15, 30, 45 and 60, and subsequently every 4 weeks). Primary end point was progression-free survival (PFS) rate at 6 months. Main secondary end point was safety. Results: 58 patients were enrolled at two centers. PFS at 6 months was 47% (27 patients) and overall response rate was 29%. Median PFS and survival were 6 and 7 months, respectively, and longer in responders versus nonresponders. No grade 3-4 hematological toxicities occurred. Conclusion: The alternative fotemustine administration schedule was an effective and safe treatment for recurrent glioblastoma in elderly patients.
Collapse
Affiliation(s)
- Raffaele Addeo
- Medical Oncology Unit, ‘San Giovanni di Dio’ Hospital, A.S.L. Napoli 2 Nord, Frattamaggiore (Naples), Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic & Specialty Medicine, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Patrizia Iodice
- Medical Oncology Unit, ‘San Giovanni di Dio’ Hospital, A.S.L. Napoli 2 Nord, Frattamaggiore (Naples), Italy
| | - Alfredo Marinelli
- Department of Clinical Medicine & Surgery, University Federico II of Naples, Naples, Italy
| | - Liliana Montella
- Medical Oncology Unit, ‘San Giovanni di Dio’ Hospital, A.S.L. Napoli 2 Nord, Frattamaggiore (Naples), Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Paola Gaviani
- Neuro Oncology Unit, Fondazione IRCSS ‘Carlo Besta’, Milano, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Salvatore Del Prete
- Medical Oncology Unit, ‘San Giovanni di Dio’ Hospital, A.S.L. Napoli 2 Nord, Frattamaggiore (Naples), Italy
| | - Antonio Silvani
- Neuro Oncology Unit, Fondazione IRCSS ‘Carlo Besta’, Milano, Italy
| |
Collapse
|
33
|
Skaga E, Skaga IØ, Grieg Z, Sandberg CJ, Langmoen IA, Vik-Mo EO. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J Cancer Res Clin Oncol 2019; 145:1495-1507. [PMID: 31028540 PMCID: PMC6527541 DOI: 10.1007/s00432-019-02920-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Constructed from a theoretical framework, the coordinated undermining of survival paths in glioblastoma (GBM) is a combination of nine drugs approved for non-oncological indications (CUSP9; aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, and sertraline) combined with temozolomide (TMZ). The availability of these drugs outside of specialized treatment centers has led patients to embark on combination treatments without systematic follow-up. However, no experimental data on efficacy using the CUSP9 strategy in GBM have been reported. METHODS Using patient-derived glioblastoma stem cell (GSC) cultures from 15 GBM patients, we described stem cell properties of individual cultures, determined the dose-response relationships of the drugs in the CUSP9, and assessed the efficacy the CUSP9 combination with TMZ in concentrations clinically achievable. The efficacy was evaluated by cell viability, cytotoxicity, and sphere-forming assays in both primary and recurrent GSC cultures. RESULTS We found that CUSP9 with TMZ induced a combination effect compared to the drugs individually (p < 0.0001). Evaluated by cell viability and cytotoxicity, 50% of the GSC cultures displayed a high sensitivity to the drug combination. In clinical plasma concentrations, the effect of the CUSP9 with TMZ was superior to TMZ monotherapy (p < 0.001). The Wnt-signaling pathway has been shown important in GSC, and CUSP9 significantly reduces Wnt-activity. CONCLUSIONS Adding experimental data to the theoretical rationale of CUSP9, our results demonstrate that the CUSP9 treatment strategy can induce a combination effect in both treatment-naïve and pretreated GSC cultures; however, predicting response in individual cultures will require further profiling of GSCs.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway.
| | - Ida Ø Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Zanina Grieg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| |
Collapse
|
34
|
Yoon H, Radulovic M, Scarisbrick IA. Kallikrein-related peptidase 6 orchestrates astrocyte form and function through proteinase activated receptor-dependent mechanisms. Biol Chem 2019; 399:1041-1052. [PMID: 29604205 DOI: 10.1515/hsz-2018-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 02/01/2023]
Abstract
Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of β-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA.,Rehabilitation Medicine Research Center, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Yang W, Wu PF, Ma JX, Liao MJ, Wang XH, Xu LS, Xu MH, Yi L. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis 2019; 10:208. [PMID: 30814514 PMCID: PMC6393543 DOI: 10.1038/s41419-019-1449-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
High aggressiveness is a hallmark of glioblastoma and predicts poor prognosis of patients with glioblastoma. The expression level of sortilin has been preliminarily reported to be elevated in high-grade glioma; however, the potential significance of sortilin in glioblastoma progression has not been elucidated. In this study, we investigated the oncogenic effect of sortilin in glioblastoma. Increased levels of sortilin were noted in the mesenchymal subtype of glioblastoma and highly aggressive subtypes of glioblastoma tissues and cell lines. In addition, high levels of sortilin predicted poor prognoses in patients with glioblastoma. Sortilin knockdown or inhibition with AF38469 (an orally bioavailable inhibitor of sortilin) significantly suppressed migration and invasion by inhibiting EMT-like mesenchymal transition in glioblastoma cells. Furthermore, we proved that sortilin promoted cell invasion mainly via Glycogen synthase kinase 3 beta (GSK-3β)/β-catenin/Twist-induced EMT-like mesenchymal transition in glioblastoma. Taken together, our results demonstrate a critical role of sortilin in glioblastoma invasion and EMT-like mesenchymal transition, indicating that sortilin contributes to glioblastoma progression. These data also highlight the dramatic antitumor effects of AF38469 in glioblastoma, suggesting that AF38469 is a potentially powerful antitumor agent for sortilin-overexpressing human glioblastoma.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Jian-Xing Ma
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Xu-Hui Wang
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Min-Hui Xu
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China.
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
36
|
Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol 2018; 105:166-174. [DOI: 10.1016/j.yexmp.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
37
|
Contribution of the Wnt Pathway to Defining Biology of Glioblastoma. Neuromolecular Med 2018; 20:437-451. [PMID: 30259273 DOI: 10.1007/s12017-018-8514-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM), a highly lethal brain tumor, has been comprehensively characterized at the molecular level with the identification of several potential treatment targets. Data concerning the Wnt pathway are relatively sparse, but apparently very important in defining several aspects of tumor biology. The Wnt ligands are involved in numerous basic biological processes including regulation of embryogenic development, cell fate determination, and organogenesis, but growing amount of data also support the roles of Wnt pathways in the formation of many tumors, including gliomas. Two main Wnt pathways are distinguished: the canonical (β-catenin) and non-canonical (planar cell polarity, Wnt/Ca2+) routes. Wnt signaling regulates glioma stem cells (GSCs), thereby defining invasive potential, recurrence, and treatment resistance of GBM. Some observations suggest that the Wnt pathways are differentially active in molecular subtypes of this tumor, thereby may also guide prognostication and novel therapeutic decisions. In this review, we highlight main elements and biological relevance of the Wnt pathways, primarily focusing on the pathogenesis and subtypes of GBM. Finally, we briefly summarize newer therapeutic strategies targeting networks of the Wnt signaling cascades and their molecular associates that appear to be marked contributors to GBM aggressiveness.
Collapse
|
38
|
Xie C, Xu M, Lu D, Zhang W, Wang L, Wang H, Li J, Ren F, Wang C. Candidate genes and microRNAs for glioma pathogenesis and prognosis based on gene expression profiles. Mol Med Rep 2018; 18:2715-2723. [PMID: 30015885 PMCID: PMC6102685 DOI: 10.3892/mmr.2018.9231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/14/2017] [Indexed: 01/28/2023] Open
Abstract
Glioma is the most common malignant brain tumor, and the incidence of glioma demonstrates an upward trend. It is vital to elucidate the pathogenesis of glioma and seek effective therapies. The aim of the present study was to identify the potential gene markers associated with glioma based on GSE31262 gene expression profiles, and to explore the underlying mechanism of glioma progression by analyzing the gene markers. The microarray dataset GSE31262 was downloaded and neural stem cell samples (control group) and glioma samples (glioma group) were analyzed to identify the differentially expressed genes (DEGs) between the two groups. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using DAVID software. Subsequently, a protein-protein interaction (PPI) network was constructed and important modules were extracted from this network. Additionally, the miRNA-target regulatory network was established. In total, 1377 DEGs with P<0.01 and |log2 fold change| ≥2 were identified between the control and glioma groups. The DEGs that were upregulated in glioma samples compared with controls were primarily associated with functions such as the M phase and cell cycle pathway, while the downregulated genes were associated with functions such as nerve impulse and the axon guidance pathway. The results also indicated that certain DEGs, including cyclin-dependent kinase 1 (CDK1) and cadherin 1 (CDH1), had important roles in the PPI network. The MCODE tool in Cytoscape software was used to identify upregulated and downregulated modules in the PPI network, and 5 upregulated and 2 downregulated modules were extracted. Furthermore, the WebGestal online tool was used to identify potential interactions of the upregulated and downregulated genes with microRNAs (miRNA/miR), and miR-135A/B and its two targets, discs large MAGUK scaffold protein 2 and forkhead box O1 (FOXO1), had the highest number of connections in the miRNA-target regulatory network. In addition, cell division cycle 20 and FOXO1 were confirmed to be upregulated in U87 glioma cells compared with normal human astrocytes (HA1800) by reverse transcription-quantitative polymerase chain reaction. In conclusion, M phase function and the axon guidance pathway may be vital for glioma progression. In addition, CDK1 and CDH1 may be associated with the process of glioma. Furthermore, miR-135A/B, and the target FOXO1, may be potential therapy targets for glioma treatment.
Collapse
Affiliation(s)
- Chen Xie
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Xu
- Department of Neurosurgery, First People's Hospital of Heihe City, Heihe, Heilongjiang 164300, P.R. China
| | - Dejuan Lu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weiguang Zhang
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Laizang Wang
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongwei Wang
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Li
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Fubin Ren
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
39
|
Bhargava S, Visvanathan A, Patil V, Kumar A, Kesari S, Das S, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. IGF2 mRNA binding protein 3 (IMP3) promotes glioma cell migration by enhancing the translation of RELA/p65. Oncotarget 2018; 8:40469-40485. [PMID: 28465487 PMCID: PMC5522290 DOI: 10.18632/oncotarget.17118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The diffusely infiltrative nature of glioblastoma (GBM) makes them highly recurrent. IGF2 mRNA-binding protein 3 (IMP3), a GBM upregulated RNA binding protein, promotes glioma cell migration. An integrative bioinformatics analysis identified p65 (RELA), a subunit of NF-κB heterodimer as a target and an important mediator of IMP3 promoted glioma cell migration. IMP3 increased p65 protein levels without any change in p65 transcript levels, but promoted its polysome association. RIP-PCR demonstrated the binding of IMP3 to p65 transcript. UV crosslinking experiments with in vitro transcribed RNA confirmed the specific and direct binding of IMP3 to sites on p65 3′UTR. Further, IMP3 induced luciferase activity from p65 3′UTR reporter carrying wild type sites but not mutated sites. Exogenous overexpression of p65 from a 3′UTR-less construct rescued the reduced migration of glioma cells in IMP3 silenced condition. In addition, IMP3 silencing inhibited glioma stem-like cell maintenance and migration. The exogenous overexpression of 3′UTR-less p65 significantly alleviated the inhibition of neurosphere formation observed in IMP3 silenced glioma stem-like cells. Further, we show that IMP3 is transcriptionally activated by NF-κB pathway indicating the presence of a positive feedback loop between IMP3 and p65. This study establishes p65 as a novel target of IMP3 in increasing glioma cell migration and underscores the significance of IMP3-p65 feedback loop for therapeutic targeting in GBM.
Collapse
Affiliation(s)
- Shruti Bhargava
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhirami Visvanathan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anuj Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Alangar S Hegde
- Sri Satya Sai Institute of Higher Medical Sciences, Bangalore, India
| | - Arimappamagan Arivazhagan
- Departments of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Vani Santosh
- Departments of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
40
|
Wang Y, Huang N, Li H, Liu S, Chen X, Yu S, Wu N, Bian XW, Shen HY, Li C, Xiao L. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma. Oncotarget 2018; 8:37511-37524. [PMID: 28415586 PMCID: PMC5514926 DOI: 10.18632/oncotarget.16400] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yun Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shubao Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Xianjun Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shichang Yu
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Nan Wu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, China
| | - Xiu-Wu Bian
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Chengren Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
41
|
Ahmadi-Beni R, Khoshnevisan A. An overview of crucial genes involved in stemness of glioblastoma multiforme. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241704002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Natural Bioactive Compounds: Alternative Approach to the Treatment of Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9363040. [PMID: 29359162 PMCID: PMC5735581 DOI: 10.1155/2017/9363040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent, primary malignant brain tumor prevalent in humans. GBM characteristically exhibits aggressive cell proliferation and rapid invasion of normal brain tissue resulting in poor patient prognosis. The current standard of care of surgical resection followed by radiotherapy and chemotherapy with temozolomide is not very effective. The inefficacy of the chemotherapeutic agents may be attributed to the challenges in drug delivery to the tumor. Several epidemiological studies have demonstrated the chemopreventive role of natural, dietary compounds in the development and progression of cancer. Many of these studies have reported the potential of using natural compounds in combination with chemotherapy and radiotherapy as a novel approach for the effective treatment of cancer. In this paper, we review the role of several natural compounds individually and in combination with chemotherapeutic agents in the treatment of GBM. We also assess the potential of drug delivery approaches such as the Gliadel wafers and role of nanomaterial based drug delivery systems for the effective treatment of GBM.
Collapse
|
43
|
Pediatric glioblastoma cells inhibit neurogenesis and promote astrogenesis, phenotypic transformation and migration of human neural progenitor cells within cocultures. Exp Cell Res 2017; 362:159-171. [PMID: 29129566 DOI: 10.1016/j.yexcr.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
Abstract
Neural progenitor cell (NPC) fate is influenced by a variety of biological cues elicited from the surrounding microenvironment and recent studies suggest their possible role in pediatric glioblastoma multiforme (GBM) development. Since a few GBM cells also display NPC characteristics, it is not clear whether NPCs transform to tumor cell phenotype leading to the onset of GBM formation, or NPCs migrate to developing tumor sites in response to paracrine signaling from GBM cells. Elucidating the paracrine interactions between GBM cells and NPCs in vivo is challenging due to the inherent complexity of the CNS. Here, we investigated the interactions between human NPCs (ReNcell) and human pediatric GBM-derived cells (SJ-GBM2) using a Transwell® coculture setup to assess the effects of GBM cells on ReNcells (cytokine and chemokine release, viability, phenotype, differentiation, migration). Standalone ReNcell or GBM cultures served as controls. Qualitative and quantitative results from ELISA®, Live/Dead® and BrdU assays, immunofluorescence labeling, western blot analysis, and scratch test suggests that although ReNcell viability remained unaffected in the presence of pediatric GBM cells, their morphology, phenotype, differentiation patterns, neurite outgrowth, migration patterns (average speed, distance, number of cells) and GSK-3β expression were significantly influenced. The cumulative distance migrated by the cells in each condition was fit to Furth's formula, derived formally from Ornstein-Uhlenbeck process. ReNcell differentiation into neural lineage was compromised and astrogenesis promoted within cocultures. Such coculture platform could be extended to identify the specific molecules contributing to the observed phenomena, to investigate whether NPCs could be transplanted to replace lesions of excised tumor sites, and to elucidate the underlying molecular pathways involved in GBM-NPC interactions within the tumor microenvironment.
Collapse
|
44
|
Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model. Exp Neurol 2017; 299:281-288. [PMID: 28923369 DOI: 10.1016/j.expneurol.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/25/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
Abstract
Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design.
Collapse
|
45
|
Bo L, Wei B, Li C, Wang Z, Gao Z, Miao Z. Identification of potential key genes associated with glioblastoma based on the gene expression profile. Oncol Lett 2017; 14:2045-2052. [PMID: 28789435 PMCID: PMC5530036 DOI: 10.3892/ol.2017.6460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/03/2017] [Indexed: 01/10/2023] Open
Abstract
Gliomas are serious primary brain tumors. The aim of the present study was to identify potential key genes associated with the progression of gliomas. The GSE31262 gene expression profile data, which included 9 glioblastoma stem cells (GSCs) samples and 5 neural stem cell samples from adult humans, were downloaded from Gene Expression Omnibus (GEO) database. limma package was used to identify differentially expressed genes (DEGs). Based on STRING database and Pearson Correlation Coefficient (PCC), a co-expression network was constructed to comprehensively understand the interactions between DEGs, and function analysis of genes in the network was conducted. Furthermore, the DEGs that were associated with prognosis were analyzed. A total of 431 DEGs were identified, including 98 upregulated DEGs and 333 downregulated DEGs. Genes including PDZ binding kinase, topoisomerase (DNA) II α (TOP2A), cyclin dependent kinase (CDK) 1, cell division cycle 6 and NIMA related kinase 2 had a relatively high degree in the co-expression network. A set of genes including cyclin D1, CDK1 and CDK2 were significantly enriched in the cell cycle and p53 signaling pathway. Additionally, 69 DEGs were identified as genes involved in glioblastoma prognosis, such as CDK2 and TOP2A. The genes that had a higher degree and were associated with cell cycle and p53 signaling pathway may play pivotal roles in the progress of glioblastoma.
Collapse
Affiliation(s)
- Lijuan Bo
- Department of Infections, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zheng Gao
- Department of Neurosurgery, First Hospital of Dandong, Dandong, Liaoning 118015, P.R. China
| | - Zhuang Miao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
46
|
Cilibrasi C, Riva G, Romano G, Cadamuro M, Bazzoni R, Butta V, Paoletta L, Dalprà L, Strazzabosco M, Lavitrano M, Giovannoni R, Bentivegna A. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS One 2017; 12:e0169854. [PMID: 28081224 PMCID: PMC5231344 DOI: 10.1371/journal.pone.0169854] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Riccardo Bazzoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Valentina Butta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Laura Paoletta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
- * E-mail:
| |
Collapse
|
47
|
Kit O, Vodolazhsky D, Rostorguev E, Porksheyan D, Panina S. The role of micro-RNA in the regulation of signal pathways in gliomas. ACTA ACUST UNITED AC 2017; 63:481-498. [DOI: 10.18097/pbmc20176306481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gliomas are invasive brain tumors with high rates of recurrence and mortality. Glioblastoma multiforme (GBM) is the most deadly form of glioma with nearly 100% rate of recurrence and unfavorable prognosis in patients. Micro-RNAs (miR) are the class of wide-spread short non-coding RNAs that inhibit translation via binding to the mRNA of target genes. The aim of the present review is to analyze recent studies and experimental results concerning aberrant expression profiles of miR, which target components of the signaling pathways Hedgehog, Notch, Wnt, EGFR, TGFb, HIF1a in glioma/glioblastoma. Particularly, the interactions of miR with targets of 2-hydroxyglutarate (the product of mutant isocytrate dehydrogenase, R132H IDH1, which is specific for the glioma pathogenesis) have been considered in the present review. Detecting specific miRNAs in tissue and serum may serve as a diagnostic and prognostic tool for glioma, as well as for predicting treatment response of an individual patient, and potentially serving as a mechanism for creating personalized treatment strategies
Collapse
Affiliation(s)
- O.I. Kit
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | | | - E.E. Rostorguev
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - D.H. Porksheyan
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - S.B. Panina
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| |
Collapse
|
48
|
Yabut OR, Pleasure SJ. The Crossroads of Neural Stem Cell Development and Tumorigenesis. OPERA MEDICA ET PHYSIOLOGICA 2016; 2:181-187. [PMID: 28795171 DOI: 10.20388/omp2016.003.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Isolated brain tumors contain cells that exhibit stem cell features and a tissue microenvironment bearing remarkable similarities to the normal neurogenic niche. This supports the idea that neural stem (NSCs) or progenitor cells, and their progeny are the likely tumor cell(s) of origin. This prompted the investigation of the relationship between NSCs/progenitors and the initiation of tumorigenesis. These studies led to the identification of common signaling machineries underlying NSC development and tumor formation, particularly those with known roles in proliferation and cell fate determination. This review will explore the molecular mechanisms that regulate NSC behavior in the neurogenic niche of the forebrain, and how deregulation of the developmental potential of NSCs might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Odessa R Yabut
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Programs in Neuroscience and Developmental Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, USA
| |
Collapse
|
49
|
Binda E, Visioli A, Giani F, Trivieri N, Palumbo O, Restelli S, Dezi F, Mazza T, Fusilli C, Legnani F, Carella M, Di Meco F, Duggal R, Vescovi AL. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells. Cancer Res 2016; 77:996-1007. [PMID: 28011620 DOI: 10.1158/0008-5472.can-16-1693] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5aHigh). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5aLow mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. Cancer Res; 77(4); 996-1007. ©2016 AACR.
Collapse
Affiliation(s)
- Elena Binda
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy.
| | | | - Fabrizio Giani
- Dept. of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | - Nadia Trivieri
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Italy
| | | | - Fabio Dezi
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy
| | - Tommaso Mazza
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | - Caterina Fusilli
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | | | - Massimo Carella
- Medical Genetics Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Italy
| | - Francesco Di Meco
- National Neurological Institute "C. Besta," Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland
| | - Rohit Duggal
- Stem Cell Research Unit, Sorrento Therapeutics Inc., San Diego, California
| | - Angelo L Vescovi
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy.
- StemGen SpA, Milan, Italy
- Dept. of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| |
Collapse
|
50
|
Brain tissue banking for stem cells for our future. Sci Rep 2016; 6:39394. [PMID: 27991551 PMCID: PMC5171803 DOI: 10.1038/srep39394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023] Open
Abstract
In our lab we study neurogenesis and the development of brain tumors. We work towards treatment strategies for glioblastoma and towards using autologous neural stem cells for tissue regeneration strategies for brain damage and neurodegenerative disorders. It has been our policy to try to establish living cell cultures from all human biopsy material that we obtain. We hypothesized that small pieces of brain tissue could be cryopreserved and that live neural stem cells could be recovered at a later time. DMSO has been shown to possess a remarkable ability to diffuse through cell membranes and pass into cell interiors. Its chemical properties prevent the formation of damaging ice crystals thus allowing cell storage at or below −180 C. We report here a protocol for successful freezing of small pieces of tissue derived from human brain and human brain tumours. Virtually all specimens could be successfully revived. Assays of phenotype and behaviour show that the cell cultures derived were equivalent to those cultures previously derived from fresh tissue.
Collapse
|