1
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
3
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
4
|
Ding R, Chen Y, Shi X, Li Y, Yu Y, Sun Z, Duan J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169514. [PMID: 38135073 DOI: 10.1016/j.scitotenv.2023.169514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been generally regarded as emerging pollutants and received worldwide attention in recent years. Water and food consumption are the primary pathways for human exposure to MPs/NPs, thus gastrointestinal tracts may be susceptible to their toxicity. Although the recent report has indicated the presence of MPs/NPs in multiple human organs, little is known about their gastric effects. Therefore, this study focused on the adverse effects of polystyrene microplastics (PS-MPs) on gastric epithelium in vivo and in vitro. Surface-enhanced Raman spectroscopy (SERS) revealed the distribution of PS-MPs was associated with their particle sizes, and predominantly concentrated in gastric tissues. Gastric barrier injury and mitochondrial damage were observed in rats after exposure to PS-MPs. Compared with the larger ones, polystyrene nanoplastics (PS-NPs) more significantly reduced the activity of antioxidant enzymes while enhancing the level of MDA, 8-OhdG and γ-H2AX. Meanwhile, PS-MPs caused upregulation of β-catenin/YAP through redox-dependent regulation of nucleoredoxin (NXN) and dishevelled (Dvl). These findings supported the size-dependent effects of PS-MPs on oxidative stress and DNA damage. Moreover, the redox-dependent activation of the β-catenin/YAP cascade suggested a novel toxic mechanism for PS-MPs and implied the potential carcinogenic effects.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xuemin Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
5
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
6
|
Carr HS, Zuo Y, Frost JA. The Wnt pathway protein Dvl1 targets somatostatin receptor 2 for lysosome-dependent degradation. J Biol Chem 2023; 299:104645. [PMID: 36965619 PMCID: PMC10164914 DOI: 10.1016/j.jbc.2023.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
The Somatostatin receptor 2 (Sstr2) is a heterotrimeric G protein-coupled receptor that is highly expressed in neuroendocrine tumors and is a common pharmacological target for intervention. Unfortunately, not all neuroendocrine tumors express Sstr2, and Sstr2 expression can be downregulated with prolonged agonist use. Sstr2 is rapidly internalized following agonist stimulation and, in the short term, is quantitatively recycled back to the plasma membrane. However, mechanisms controlling steady state expression of Sstr2 in the absence of agonist are less well described. Here, we show that Sstr2 interacts with the Wnt pathway protein Dvl1 in a ligand-independent manner to target Sstr2 for lysosomal degradation. Interaction of Sstr2 with Dvl1 does not affect receptor internalization, recycling, or signaling to adenylyl cyclase but does suppress agonist-stimulated ERK1/2 activation. Importantly, Dvl1-dependent degradation of Sstr2 can be stimulated by overexpression of Wnts and treatment of cells with Wnt pathway inhibitors can boost Sstr2 expression in neuroendocrine tumor cells. Taken together, this study identifies for the first time a mechanism that targets Sstr2 for lysosomal degradation that is independent of Sstr2 agonist and can be potentiated by Wnt ligand. Intervention in this signaling mechanism has the potential to elevate Sstr2 expression in neuroendocrine tumors and enhance Sstr2-directed therapies.
Collapse
Affiliation(s)
- Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA.
| |
Collapse
|
7
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
8
|
Weina T, Ying L, Yiwen W, Huan-Huan Q. What we have learnt from Drosophila model organism: the coordination between insulin signaling pathway and tumor cells. Heliyon 2022; 8:e09957. [PMID: 35874083 PMCID: PMC9304707 DOI: 10.1016/j.heliyon.2022.e09957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer development is related to a variety of signaling pathways which mediate various cellular processes including growth, survival, division and competition of cells, as well as cell-cell interaction. The insulin signaling pathway interacts with different pathways and plays a core role in the regulations of all these processes. In this study, we reviewed recent studies on the relationship between the insulin signaling pathway and tumors using the Drosophila melanogaster model. We found that on one hand, the insulin pathway is normally hyperactive in tumor cells, which promotes tumor growth, and on the other hand, tumor cells can suppress the growth of healthy tissues via inhibition of their insulin pathway. Moreover, systematic disruption in glucose homeostasis also facilitates cancer development by different mechanisms. The studies on how the insulin network regulates the behaviors of cancer cells may help to discover new therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Tang Weina
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Li Ying
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qiao Huan-Huan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
9
|
Kadian LK, Arora M, Prasad CP, Pramanik R, Chauhan SS. Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clin Transl Oncol 2022; 24:1014-1032. [PMID: 34990001 DOI: 10.1007/s12094-021-02763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is a complex gastrointestinal malignancy with an extremely poor outcome. Approximately 80% of cases of this malignancy in Asian countries including India are of squamous cell origin, termed Esophageal Squamous Cell Carcinoma (ESCC).The five-year survival rate in ESCC patients is less than 20%. Neo-adjuvant chemo-radiotherapy (NACRT) followed by surgical resection remains the major therapeutic strategy for patients with operable ESCC. However, resistance to NACRT and local recurrence after initial treatment are the leading cause of dismal outcomes in these patients. Therefore, an alternative strategy to promote response to the therapy and reduce the post-operative disease recurrence is highly needed. At the molecular level, wide variations have been observed in tumor characteristics among different populations, nevertheless, several common molecular features have been identified which orchestrate disease progression and clinical outcome in the malignancy. Therefore, determination of candidate molecular pathways for targeted therapy remains the mainstream idea of focus in ESCC research. In this review, we have discussed the key signaling pathways associated with ESCC, i.e., Notch, Wnt, and Nrf2 pathways, and their crosstalk during disease progression. We further discuss the recent developments of novel agents to target these pathways in the context of targeted cancer therapy. In-depth research of the signaling pathways, gene signatures, and a combinatorial approach may help in discovering targeted therapy for ESCC.
Collapse
Affiliation(s)
- L K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - C P Prasad
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - R Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - S S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Liu Z, Zhou S, Zhang Y, Zhao M. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infect Agent Cancer 2022; 17:17. [PMID: 35440002 PMCID: PMC9017036 DOI: 10.1186/s13027-022-00432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can effectively alleviate liver fibrosis, which is a pathological injury caused by various chronic liver diseases. This study aimed to investigate the antifibrotic effects of BMSCs and elucidate the underlying mechanism by which BMSCs affect liver fibrosis in vitro and in vivo. Methods After the rat liver fibrosis model was induced by continuous injection of carbon tetrachloride (CCl4), BMSCs were administered for 4 weeks, and histopathological analysis and liver function tests were performed. T6 hepatic stellate cells (HSC-T6 cells) were stimulated by TGF-β1, and the activation and proliferation of cells were analyzed by CCK-8 assays, flow cytometry, real-time PCR, western blotting and enzyme-linked immunosorbent assay (ELISA). Results Our data demonstrated that BMSCs effectively reduced the accumulation of collagen, enhanced liver functionality and ameliorated liver fibrosis in vivo. BMSCs increased the sub-G1 population in HSC-T6 cells. In addition, coculture with BMSCs reduced the expression of α-SMA, collagen I, cyclin-D1, and c-Myc in HSC-T6 cells and activated the phosphorylation of GSK3β. The GSK3β inhibitor SB216763 reversed the effect of BMSCs. The Wnt/β-catenin signalling pathway was involved in BMSC-mediated inhibition of HSC-T6 cell activation. Conclusions Our data suggested that BMSCs exerted antifibrotic effects by activating the expression of GSK3β and inhibiting the Wnt3a/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Zhaoguo Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.,Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, China
| | - Song Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ya Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ming Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China. .,Department of Organ Transplantation, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
11
|
Zhou YQ, Tian XB, Tian YK, Mei W, Liu DQ, Ye DW. Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol Ther 2022; 231:107984. [PMID: 34480969 DOI: 10.1016/j.pharmthera.2021.107984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Despite the rapid advance over the past decades to design effective therapeutic pharmacological interventions, chronic pain remains to be an unresolved healthcare concern. Long term use of opioids, the first line analgesics, often causes detrimental side effects. Therefore, a profound understanding of the mechanisms underlying the development and maintenance of chronic pain states is urgently needed for the management of chronic pain. Substantial evidence indicates aberrant activation of Wnt signaling pathways in sciatic nerve, dorsal root ganglia and spinal cord dorsal horn in rodent models of chronic pain. Moreover, growing evidence shows that pharmacological blockage of aberrant activation of Wnt signaling pathways attenuates pain behaviors in animal models of chronic pain. Importantly, both intrathecal injection of Wnt agonists and Wnt ligands to naïve rats lead to the development of mechanical allodynia, which was inhibited by Wnt inhibitors. In this review, we summarized and discussed the therapeutic potential of pharmacological inhibitors of Wnt signaling in chronic pain in preclinical studies. These evidence showed that aberrant activation of Wnt signaling pathways contributed to chronic pain via enhancing neuroinflammation, regulating synaptic plasticity and reducing intraepidermal nerve fiber density. However, these findings raise further questions. Overall, despite the future challenges, these pioneering studies suggest that Wnt signaling is a promising therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Da-Wei Ye
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Song Y, Hu C, Fu Y, Gao H. Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. VIEW 2022. [DOI: 10.1002/viw.20200129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yujun Song
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Chuan Hu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Yao Fu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| |
Collapse
|
13
|
Yin H, Gao T, Xie J, Huang Z, Zhang X, Yang F, Qi W, Yang Z, Zhou T, Gao G, Yang X. FUBP1 promotes colorectal cancer stemness and metastasis via DVL1-mediated activation of Wnt/β-catenin signaling. Mol Oncol 2021; 15:3490-3512. [PMID: 34288405 PMCID: PMC8637553 DOI: 10.1002/1878-0261.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Distant metastasis is, unfortunately, the leading cause of death in colorectal cancer (CRC). Approximately 50% of CRC patients develop liver metastases, while 10–30% of patients develop pulmonary metastases. The occurrence of metastasis is considered to be almost exclusively driven by cancer stem cells (CSCs) formation. However, the key molecules that confer the transformation to stem cells in CRC, and subsequent metastasis, remain unclear. Far upstream element‐binding protein 1 (FUBP1), a transcriptional regulator of c‐Myc, was screened in CSCs of CRC by mass spectrometry and was examined by immunohistochemistry in a cohort of CRC tissues. FUBP1 was upregulated in 85% of KRAS‐mutant and 25% of wild‐type CRC patients. Further, whether in KRAS‐mutant or wild‐type patients, elevated FUBP1 was positively correlated with CRC lymph node metastasis and clinical stage, and negatively associated with overall survival. Overexpression of FUBP1 significantly enhanced CRC cell migration, invasion, tumor sphere formation, and CD133 and ALDH1 expression in vitro, and tumorigenicity in vivo. Mechanistically, FUBP1 promoted the initiation of CSCs by activating Wnt/β‐catenin signaling via directly binding to the promoter of DVL1, a potent activator of β‐catenin. Knockdown of DVL1 significantly inhibited the transformation to stem cells in, as well as the tumorigenicity of, CRC. Activation of Wnt/β‐catenin signaling by DVL1 increased pluripotent transcription factors, including c‐Myc, NANOG, and SOX2. Moreover, FUBP1 was upregulated at the post‐transcriptional level. Elevated FUBP1 levels in KRAS wild‐type CRC patients is due to the decrease in Smurf2, which promotes ubiquitin‐mediated degradation of FUBP1. In contrast, FUBP1 was upregulated in KRAS‐mutant patients through both inhibition of caspase 3‐dependent cleavage and decreased Smurf2. Our results demonstrate, for the first time, that FUBP1 is an oncogene, initiating the development of CSCs, as well as a new powerful endogenous Wnt‐signaling agonist that could provide an important prognostic factor and therapeutic target for metastasis in both KRAS‐mutant and wild‐type CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tianxiao Gao
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| | - Jinye Xie
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhijian Huang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaoyan Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fengyu Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiwei Qi
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhonghan Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ti Zhou
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
14
|
Kamdem N, Roske Y, Kovalskyy D, Platonov M, Balinskyi O, Kreuchwig A, Saupe J, Fang L, Diehl A, Schmieder P, Krause G, Rademann J, Heinemann U, Birchmeier W, Oschkinat H. Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:355-374. [PMID: 37904770 PMCID: PMC10539800 DOI: 10.5194/mr-2-355-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 11/01/2023]
Abstract
Dishevelled (Dvl) proteins are important regulators of the Wnt signalling pathway, interacting through their PDZ domains with the Wnt receptor Frizzled. Blocking the Dvl PDZ-Frizzled interaction represents a potential approach for cancer treatment, which stimulated the identification of small-molecule inhibitors, among them the anti-inflammatory drug Sulindac and Ky-02327. Aiming to develop tighter binding compounds without side effects, we investigated structure-activity relationships of sulfonamides. X-ray crystallography showed high complementarity of anthranilic acid derivatives in the GLGF loop cavity and space for ligand growth towards the PDZ surface. Our best binding compound inhibits Wnt signalling in a dose-dependent manner as demonstrated by TOP-GFP assays (IC50 ∼ 50 µ M ) and Western blotting of β -catenin levels. Real-time PCR showed reduction in the expression of Wnt-specific genes. Our compound interacted with Dvl-1 PDZ (KD = 2.4 µ M ) stronger than Ky-02327 and may be developed into a lead compound interfering with the Wnt pathway.
Collapse
Affiliation(s)
- Nestor Kamdem
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dmytro Kovalskyy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- ChemBio Ctr, Taras Shevchenko National University of Kyiv, 62 Volodymyrska, Kyiv 01033, Ukraine
| | - Maxim O. Platonov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- ChemBio Ctr, Taras Shevchenko National University of Kyiv, 62 Volodymyrska, Kyiv 01033, Ukraine
| | - Oleksii Balinskyi
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- ChemBio Ctr, Taras Shevchenko National University of Kyiv, 62 Volodymyrska, Kyiv 01033, Ukraine
| | - Annika Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Jörn Saupe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Liang Fang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Jörg Rademann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Udo Heinemann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
15
|
Gu S, Yan M, Wang C, Meng X, Xiang Z, Qiu Y, Han X. Microcystin-leucine-arginine induces liver fibrosis by activating the Hedgehog pathway in hepatic stellate cells. Biochem Biophys Res Commun 2020; 533:770-778. [PMID: 32988585 DOI: 10.1016/j.bbrc.2020.09.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Microcystin-leucine-arginine (MC-LR), produced by cyanobacteria, accumulates in the liver through blood circulation. We investigated the impact of MC-LR on liver fibrosis. Mice received a daily injection of MC-LR at various concentrations for 14 consecutive days aa and then mouse liver was obtained for histopathological and immunoblot analysis. Next, a human hepatic stellate cell line (LX-2) was treated with MC-LR at various concentrations followed by measurement of cell viability, cell cycle and relevant protein expression levels. Our data confirmed the induction of mouse liver fibrosis after exposure to MC-LR at 15 μg/kg and 30 μg/kg. Furthermore, we demonstrated that LX-2 cells could uptake MC-LR, resulting in cell proliferation and differentiation through impacting the Hedgehog signaling after the treatment of MC-LR at 50 nM. Our data supported that MC-LR could induce liver fibrosis by modulating the expression of the transcription factor Gli2 in the Hedgehog signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Shen Gu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, China; Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
16
|
Sun Z, Yang Z, Wang M, Huang C, Ren Y, Zhang W, Gao F, Cao L, Li L, Nie S. Paraquat induces pulmonary fibrosis through Wnt/β-catenin signaling pathway and myofibroblast differentiation. Toxicol Lett 2020; 333:170-183. [PMID: 32795487 DOI: 10.1016/j.toxlet.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Paraquat (PQ) poisoning-induced pulmonary fibrosis always results in fatal harm to patients. Our study aimed to investigate the functions of the Wnt/β-catenin pathway in PQ-induced pulmonary fibrosis. By comparing the proteomic profiles of rat lung tissues using protein array in the absence or presence of PQ, the Wnt/β-catenin signaling, as a fibrosis-related pathway, was discovered to be profoundly activated by PQ. The protein levels of Wnt/β-catenin signaling components including MMP-2, β-catenin, Wnt3a, Wnt10b, Cyclin D1, and WISP1 were increased in PQ-treated rat lung tissues. Surprisingly, PQ was found to be able to promote lung epithelial cells and fibroblasts differentiating into myofibroblasts by activating Wnt/β-catenin signaling pathway. Dickkopf-1 (DKK1), an antagonist of Wnt/β-catenin signaling pathway, could inhibit the myofibroblast differentiation and attenuate PQ-induced pulmonary fibrogenesis in vitro and in vivo. The expression levels of fibroblasts markers Vimentin, α-smooth muscle actin (α-SMA) and Collagen I was detected and found to be increased when PQ treated and restored with additional DKK1 treatment. In summary, these assays indicated that Wnt/β-catenin signaling pathway played a regulatory role in the differentiation of lung epithelial cells and fibroblasts, and the pathogenesis of pulmonary fibrosis related to PQ. Inhibition of the Wnt/β-catenin signaling pathway may be investigated further as a potential fibrosis suppressor for pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, PR China.
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Changbao Huang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Fei Gao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, PR China.
| |
Collapse
|
17
|
Zhang Y, Zu D, Chen Z, Ying G. An update on Wnt signaling pathway in cancer. Transl Cancer Res 2020; 9:1246-1252. [PMID: 35117469 PMCID: PMC8797977 DOI: 10.21037/tcr.2019.12.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Wnt signaling involves many aspects of development, cell biology and physiology. Mutations in the Wnt gene can lead to abnormal embryonic development and cancer formation, including various aspects that affect proliferation, morphogenesis, and differentiation. The occurrence and development of tumors is a complex process involving multiple factors. The Wnt signaling pathway participates in this process as an anti-tumor target by activating multiple gene transcriptions. The emergence of Wnt pathway inhibitors and targeted drugs has opened up a new world of cancer treatment. This review focuses on the mechanism of action of the Wnt signaling pathway in different cancers. Secondly, we have organized and introduced the latest Wnt anti-tumor drugs.
Collapse
Affiliation(s)
- Yanlu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan Zu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhe Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
18
|
Gu S, Chen J, Zhou Q, Yan M, He J, Han X, Qiu Y. LRRK2 Is Associated with Recurrence-Free Survival in Intrahepatic Cholangiocarcinoma and Downregulation of LRRK2 Suppresses Tumor Progress In Vitro. Dig Dis Sci 2020; 65:500-508. [PMID: 31489563 DOI: 10.1007/s10620-019-05806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND The leucine-rich repeat kinase 2 (LRRK2) gene was confirmed to be associated with a variety of diseases, while the physiological function of LRRK2 remains poorly understood. Intrahepatic cholangiocarcinoma (ICC) has over the last 10 years become the focus of increasing concern largely. Despite recent progress in the standard of care and management options for ICC, the prognosis for this devastating cancer remains dismal. METHODS A total of 57 consecutive ICC patients who underwent curative hepatectomy in our institution were included in our study. We conduct a retrospective study to evaluate the prognostic value of LRRK2 in ICC after resection. The mechanism of LRRK2 in ICC development was also investigated in vitro. RESULTS All patients were divided into two groups according to the content of LRRK2 in the tissue microarray blocks via immunohistochemistry: low-LRRK2 group (n = 33) and high-LRRK2 group (n = 24). The recurrence-free survival rate of high-LRRK2 group was significantly poorer than that of low-LRRK2 group (P = 0.010). Multivariate analysis showed high-LRRK2 was the prognostic factor for recurrence-free survival after hepatectomy. We demonstrated that downregulation of LRRK2 depressed the proliferation and metastasis of ICC cells in vitro. CONCLUSION We provide evidence that LRRK2 was an independent prognostic factor for ICC in humans by participating in the proliferation and metastasis of ICC cells.
Collapse
Affiliation(s)
- Shen Gu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Qun Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
19
|
Chen X, Xu H, Hou J, Wang H, Zheng Y, Li H, Cai H, Han X, Dai J. Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY) 2019; 12:242-259. [PMID: 31891567 PMCID: PMC6977687 DOI: 10.18632/aging.102613] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease tightly correlated with aging. The pathological features of IPF include epithelial cell senescence and abundant foci of highly activated pulmonary fibroblasts. However, the underlying mechanism between epithelial cell senescence and pulmonary fibroblast activation remain to be elucidated. In our study, we demonstrated that Nanog, as a pluripotency gene, played an essential role in the activation of pulmonary fibroblasts. In the progression of IPF, senescent epithelial cells could contribute to the activation of pulmonary fibroblasts via increasing the expression of senescence-associated secretory phenotype (SASP). In addition, we found activated pulmonary fibroblasts exhibited aberrant activation of Wnt/β-catenin signalling and elevated expression of Nanog. Further study revealed that the activation of Wnt/β-catenin signalling was responsible for senescent epithelial cell-induced Nanog phenotype in pulmonary fibroblasts. β-catenin was observed to bind to the promoter of Nanog during the activation of pulmonary fibroblasts. Targeted inhibition of epithelial cell senescence or Nanog could effectively suppress the activation of pulmonary fibroblasts and impair the development of pulmonary fibrosis, indicating a potential for the exploration of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hongyang Xu
- Department of Critical Care Medicine, The Affiliated WuXi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hui Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Zheng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
20
|
Resham K, Sharma SS. Pharmacological interventions targeting Wnt/β-catenin signaling pathway attenuate paclitaxel-induced peripheral neuropathy. Eur J Pharmacol 2019; 864:172714. [PMID: 31586636 DOI: 10.1016/j.ejphar.2019.172714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition which occurs as a consequence of cancer chemotherapy with anti-cancer agents like paclitaxel, oxaliplatin, etc. Despite immense research in the pathological pathways involved in CIPN, treatment options still remain limited. Recently, pathological involvement of Wnt signaling has been investigated in various neuropathic pain models, however there are no reports as yet on the role of Wnt signaling in CIPN. In the present study, we have investigated the neuroprotective effects of Wnt signaling inhibitors namely LGK974 (Porcupine inhibitor), NSC668036 (Disheveled inhibitor) and PNU76454 (β-catenin inhibitor) in paclitaxel-induced neuropathic pain. Paclitaxel (2 mg/kg, i. p.) was administered to male Sprague Dawley rats on four alternate days. After 21 days, paclitaxel-treated rats showed reduced behavioral pain thresholds (cold allodynia, heat & mechanical hyperalgesia) and nerve functions (nerve conduction velocity and nerve blood flow). Moreover, Wnt signaling proteins (Wnt3a, β-catenin, c-myc and Dvl1), inflammatory marker (matrix metalloproteinase 2) and endoplasmic reticulum stress marker (GRP78) were found to be upregulated in the sciatic nerves of paclitaxel-treated rats accompanied with loss of intraepidermal nerve fiber density as compared to the control rats. Intrathecal administration of Wnt inhibitors (each at dose of 10 and 30 μM) for three consecutive days to paclitaxel-treated rats, significantly improved behavioral pain thresholds and nerve functional parameters by inhibition of Wnt signaling, inflammation, endoplasmic reticulum stress and improvement of intraepidermal nerve fiber density. All these results suggested the neuroprotective potential of Wnt signaling inhibitors in CIPN.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
21
|
Chen L, Hou J, Fu X, Chen X, Wu J, Han X. tPA promotes the proliferation of lung fibroblasts and activates the Wnt/β-catenin signaling pathway in idiopathic pulmonary fibrosis. Cell Cycle 2019; 18:3137-3146. [PMID: 31550972 DOI: 10.1080/15384101.2019.1669997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible and the most common fatal interstitial lung disease, which is characterized by damaged alveolar structure, the massive proliferation of fibroblasts and deposition of extracellular matrix (ECM). While the pathogenesis of IPF remains unclear, it has been clearly established that the excessive proliferation of lung fibroblasts is the most direct cause of fibrogenesis. Numerous proliferating fibroblasts form fibrous foci and secrete a large amount of ECM to aggravate the process of pulmonary fibrosis. Tissue plasminogen activator (tPA) is a kind of serine protease, its main function is to activate zymogens into active enzymes involved in fibrinolysis. Our study found tPA functioned as a cytokine to promote the proliferation of lung fibroblasts through intracellular signaling events involving Erk1/2, p90RSK, GSK-3β phosphorylation, and cyclinD1 induction. We also uncovered that tPA indirectly activated the Wnt/β-catenin signaling pathway by regulating the GSK-3β phosphorylation level. It's well-known that Wnt/β-catenin signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis, in which the accumulation of β-catenin in the cytoplasm is an important signal of the activation of Wnt/β-catenin signaling pathway. Our study unveiled that tPA can serve as a cytokine involved in Wnt/β-catenin signaling pathway and be implicated in pulmonary fibrosis.
Collapse
Affiliation(s)
- Ling Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| | - Xiao Fu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University , Nanjing , China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University , Nanjing , China
| |
Collapse
|
22
|
Resham K, Sharma SS. Pharmacologic Inhibition of Porcupine, Disheveled, and β-Catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats. THE JOURNAL OF PAIN 2019; 20:1338-1352. [PMID: 31075529 DOI: 10.1016/j.jpain.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Wnt signaling pathway has been investigated extensively for its diverse metabolic and pain-modulating mechanisms; recently its involvement has been postulated in the development of neuropathic pain. However, there are no reports as yet on the involvement of Wnt signaling pathway in one of the most debilitating neurovascular complication of diabetes, namely, diabetic peripheral neuropathy (DPN). Thus, in the present study, involvement of Wnt signaling was investigated in DPN using Wnt signaling inhibitors namely LGK974 (porcupine inhibitor), NSC668036 (disheveled inhibitor), and PNU74654 (β-catenin inhibitor). Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg) to male Sprague-Dawley rats. Diabetic rats after 6 weeks of diabetes induction showed increased expression of Wnt signaling proteins in the spinal cord (L4-L6 lumbar segment), dorsal root ganglions and sciatic nerves. Subsequent increase in inflammation, endoplasmic reticulum stress and loss of intraepidermal nerve fiber density was also observed, leading to neurobehavioral and nerve functional deficits in diabetic rats. Intrathecal administration of Wnt signaling inhibitors (each at doses of 10 and 30 µmol/L) in diabetic rats showed improvement in pain-associated behaviors (heat, cold, and mechanical hyperalgesia) and nerve functions (motor, sensory nerve conduction velocities, and nerve blood flow) by decreasing the expression of Wnt pathway proteins, inflammatory marker, matrix metalloproteinase 2, endoplasmic reticulum stress marker, glucose-regulated protein 78, and improving intraepidermal nerve fiber density. All these results signify the neuroprotective potential of Wnt signaling inhibitors in DPN. PERSPECTIVE: This study emphasizes the involvement of Wnt signaling pathway in DPN. Blockade of this pathway using Wnt inhibitors provided neuroprotection in experimental DPN in rats. This study may provide a basis for exploring the therapeutic potential of Wnt inhibitors in DPN patients.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
23
|
Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2019; 110:473-481. [PMID: 30530050 DOI: 10.1016/j.biopha.2018.11.082] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling has often been reported in different cancers, particularly colorectal cancer (CRC), and this signaling cascade is central to carcinogenesis. Approximately 80% of CRC cases harbor mutations in the adenomatous polyposis coli gene, and half of the remaining cases feature mutations in the β-catenin gene that affect the Wnt/β-catenin signaling pathway. Unsurprisingly, the Wnt/β-catenin signaling pathway has potential value as a therapeutic target in the treatment of CRC. Several inhibitors of the Wnt/β-catenin signaling pathway have been developed for CRC treatment, but so far no molecular therapeutic targeting this pathway has been incorporated into oncological practice. In this review, we discuss the role of Wnt/β-catenin signaling in CRC and its potential as a target of innovative therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Xu
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Dong Chen
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Zhang E, Yang Y, Chen S, Peng C, Lavin MF, Yeo AJ, Li C, Liu X, Guan Y, Du X, Du Z, Shao H. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats. Stem Cell Res Ther 2018; 9:311. [PMID: 30428918 PMCID: PMC6234553 DOI: 10.1186/s13287-018-1045-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis induced by silica dust is an irreversible, chronic, and fibroproliferative lung disease with no effective treatment at present. Previous studies have shown that early intervention with bone marrow mesenchymal stem/stromal cells (BMSCs) has positive effect on anti-pulmonary fibrosis caused by silica dust. However, early intervention using BMSCs is not practical, and the therapeutic effects of BMSCs advanced intervention on pulmonary fibrosis have rarely been reported. In this study, we investigated the effects of advanced transplantation (on the 28th day after exposure to silica suspension) of BMSCs on an established rat model of pulmonary fibrosis. METHODS Sprague Dawley (SD) rats were randomly divided into four groups including (1) control group (n = 6) which were normally fed, (2) silica model group (n = 6) which were exposed to silica suspension (1 mL of 50 mg/mL/rat), (3) BMSC transplantation group (n = 6) which received 1 mL BMSC suspension (2 × 106 cells/mL) by tail vein injection on the 28th day after exposure to silica suspension, and (4) BMSC-CM (conditioned medium) transplantation group (n = 6) which received CM from the same cell number by tail vein injection on the 28th day after exposure to silica suspension. On the 56th day after exposure to silica suspension, we used computed tomography (CT), hematoxylin and eosin (H&E), and Masson's trichrome staining to evaluate the changes in lung tissue. We examined the expression of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in lung tissue using immunohistochemistry and western blotting. RESULTS Successful construction of a pulmonary fibrosis model was confirmed by H&E and Masson's trichrome staining on the 28th day after exposure to silica suspension. On the 56th day after exposure, pulmonary CT examination showed a relieving effect of BMSCs on silica-induced pulmonary fibrosis which was confirmed by H&E and Masson's trichrome staining. Treatment of BMSCs increased the expression of epithelial marker proteins including E-cadherin (E-cad) and cytokeratin19 (CK19) and reduced the expression of fibrosis marker proteins including Vimentin (Vim) and α-Smooth actin (α-SMA) after exposure to silica suspension. Furthermore, we found that Wnt/β-catenin signaling pathway is abnormally activated in silica-induced pulmonary fibrosis, and exogenous transplantation of BMSCs may attenuate their expression. CONCLUSIONS BMSC transplantation inhibits the EMT to alleviate silica-induced pulmonary fibrosis in rats and the anti-fibrotic effect potentially by attenuating Wnt/β-catenin signaling. ᅟ: ᅟ.
Collapse
Affiliation(s)
- Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xiaoshan Liu
- Department of Radiology, Shandong Tumor Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yingjun Guan
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xinjing Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
26
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
27
|
Distinct Roles of Wnt/ β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017; 2017:3520581. [PMID: 28588349 PMCID: PMC5447271 DOI: 10.1155/2017/3520581] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases.
Collapse
|
28
|
|
29
|
Sun Y, Tsao R, Chen F, Li H, Peng H, Jiang L, Chen Y, Deng Z. The phenolic profiles of Radix Tetrastigma after solid phase extraction (SPE) and their antitumor effects and antioxidant activities in H22 tumor-bearing mice. Food Funct 2017; 8:4014-4027. [DOI: 10.1039/c7fo00769h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photographic illustrations of phenolic profiles, antitumor effects and antioxidant activities of Radix Tetrastigma after solid phase extraction (SPE) in H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Yong Sun
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Guelph Food Research and Development Centre
| | - Rong Tsao
- Guelph Food Research and Development Centre
- Agricultural and Agri-Food Canada
- Guelph
- Canada
| | - Fang Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Han Peng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Yuhuan Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Guelph Food Research and Development Centre
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
30
|
Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:267-279. [PMID: 27864076 DOI: 10.1016/j.bbamcr.2016.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 02/02/2023]
Abstract
Bone marrow-derived cells are thought to participate and enhance the healing process contributing to skin cells or releasing regulatory cytokines. Directional cell migration in a weak direct current electric field (DC-EF), known as electrotaxis, may be a way of cell recruitment to the wound site. Here we examined the influence of electric field on bone marrow adherent cells (BMACs) and its potential role as a factor attracting mesenchymal stem cells to cutaneous wounds. We observed that in an external EF, BMAC movement was accelerated and highly directed with distinction of two cell populations migrating toward opposite poles: mesenchymal stem cells migrated toward the cathode, whereas macrophages toward the anode. Analysis of intracellular pathways revealed that macrophage electrotaxis mostly depended on Rho family small GTPases and calcium ions, but interruption of PI3K and Arp2/3 had the most pronounced effect on electrotaxis of MSCs. However, in all cases we observed only a partial decrease in directionality of cell movement after inhibition of certain proteins. Additionally, although we noticed the accumulation of EGFR at the cathodal side of MSCs, it was not involved in electrotaxis. Moreover, the cell reaction to EF was very dynamic with first symptoms occurring within <1min. In conclusion, the physiological DC-EF may act as a factor positioning bone marrow cells within a wound bed and the opposite direction of MSC and macrophage movement did not result either from utilizing different signalling or redistribution of investigated cell surface receptors.
Collapse
|
31
|
Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:538-52. [DOI: 10.1183/13993003.00398-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.
Collapse
|
32
|
A role for antimetabolites in glaucoma tube surgery: current evidence and future directions. Curr Opin Ophthalmol 2016; 27:164-9. [PMID: 26720778 DOI: 10.1097/icu.0000000000000244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glaucoma is the leading cause of irreversible blindness worldwide. The main treatment modality for glaucoma is the reduction and control of the intraocular pressure (IOP). Glaucoma filtration surgery, including trabeculectomy and/or implantation of a glaucoma drainage device (GDD), is warranted if IOP remains medically uncontrolled. However, postoperative scarring remains a critical determinant of long-term bleb survival and IOP control after drainage surgery. Antimetabolites, such as mitomycin C and 5-fluorouracil, have been used for many years to increase survival time of filtration surgeries by preventing bleb fibrosis and scarring. The aim of this study is to provide an overview of: the current usage of these antimetabolites in GDD, the recent advancements of these antimetabolites in combination with other technologies, and the role of future antimetabolites. RECENT FINDINGS Mitomycin C and 5-fluorouracil have been used in GDD and trabeculectomy to prevent the exaggerated cellular reaction that leads to fibrosis. The adjunctive administration of these drugs intraoperatively and postoperatively has resulted in a lower rate of the hypertensive phase, and possibly a better long-term success rate in Ahmed valve surgeries. However, the application of these antimetabolites and their multiple-dosing applications are associated with nonspecific cytotoxicity and potentially severe complications such as bleb leak and conjunctival erosion over the tube. Recent studies are thus focusing on different medications, targeting new molecular pathways, and designing new delivery vehicles to minimize current antimetabolites side-effects and increase their efficacy. Promising results of these studies have led to development of new collaborative medications and advanced drug delivery systems for better modulation of GDD surgeries' predictable outcomes. SUMMARY The development of small molecule therapeutics, combination therapies, and innovative drug vehicles to prevent postsurgical fibrosis and achieve better surgical outcome in glaucoma filtration surgeries is promising.
Collapse
|
33
|
Chen X, Shi C, Meng X, Zhang K, Li X, Wang C, Xiang Z, Hu K, Han X. Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2. Exp Mol Pathol 2016; 101:22-30. [PMID: 27112840 DOI: 10.1016/j.yexmp.2016.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/14/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder of unknown etiology, which is characterized by alterations in alveolar epithelium function, fibroblast activation, and increased extracellular matrix deposition. Recent studies have demonstrated that PF is associated with uncontrolled production of cytokines after lung injury. In the present study, we found that transforming growth factor-β1 (TGF-β1) and fibroblast growth factor 2 (FGF-2) were both upregulated in bleomycin-induced fibrotic lung tissue and primary murine alveolar epithelial Type II (ATII) cells treated with bleomycin. Furthermore, we discovered that TGF-β1 could induce the differentiation of lung resident mesenchymal stem cells (LR-MSCs) into fibroblasts, which may play an essential role in PF. LR-MSCs incubated with FGF-2 showed modest alterations in the expression of α-SMA and Vimentin. Moreover, in our study, we found that Wnt/β-catenin signaling was activated both in vitro and in vivo as a result of bleomycin treatment. Interestingly, we also found that suppression of the Wnt/β-catenin signaling could significantly attenuate bleomycin-induced PF accompanied with decreased expression of TGF-β1 and FGF-2 in vitro and in vivo. These results support that controlling the aberrant expression of TGF-β1 and FGF-2 via inhibition of Wnt/β-catenin signaling could serve as a potential therapeutic strategy for PF.
Collapse
Affiliation(s)
- Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Chaowen Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Kaijia Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Xiaoyao Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Kebin Hu
- Department of Medicine, Division of Nephrology, Penn State University College of Medicine, Hershey, PA 17033, United States.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| |
Collapse
|
34
|
The toxic effects of microcystin-LR on mouse lungs and alveolar type II epithelial cells. Toxicon 2016; 115:81-8. [PMID: 26995211 DOI: 10.1016/j.toxicon.2016.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Microcystin-leucine arginine (MC-LR) is produced by cyanobacteria and can accumulate in lungs through blood circulation. However, the effect of MC-LR on lung remains unclear. In this study, we investigated the chronic, low-dose effect of MC-LR on mouse lung tissues and the influence of MC-LR on mouse alveolar type II epithelial cells (ATII cells). METHODS MC-LR was orally administered to mice at 0, 1, 10, and 40 μg/L for 6 consecutive months and mouse lungs were obtained for histopathological and immunoblot analysis. ATII cells were cultured in various concentrations of MC-LR (0, 0.5, 5, 50, 500 nmol/L) for indicated time and the cell viability and proteins change were tested. RESULTS Our study revealed that the chronic, low-dose MC-LR exposure induced alveolar collapse and lung cell apoptosis as well as the breach of cell junction integrity. Furthermore, following treatment with MC-LR, ATII cells could uptake MC-LR, resulting in apoptosis and disruption of cell junction integrity. CONCLUSIONS These data support the toxic potential of low-dose MC-LR in rendering chronic injury to lung tissues.
Collapse
|
35
|
Novel cancer chemotherapy hits by molecular topology: dual Akt and Beta-catenin inhibitors. PLoS One 2015; 10:e0124244. [PMID: 25910265 PMCID: PMC4409212 DOI: 10.1371/journal.pone.0124244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 01/12/2023] Open
Abstract
Background and Purpose Colorectal and prostate cancers are two of the most common types and cause of a high rate of deaths worldwide. Therefore, any strategy to stop or at least slacken the development and progression of malignant cells is an important therapeutic choice. The aim of the present work is the identification of novel cancer chemotherapy agents. Nowadays, many different drug discovery approaches are available, but this paper focuses on Molecular Topology, which has already demonstrated its extraordinary efficacy in this field, particularly in the identification of new hit and lead compounds against cancer. This methodology uses the graph theoretical formalism to numerically characterize molecular structures through the so called topological indices. Once obtained a specific framework, it allows the construction of complex mathematical models that can be used to predict physical, chemical or biological properties of compounds. In addition, Molecular Topology is highly efficient in selecting and designing new hit and lead drugs. According to the aforementioned, Molecular Topology has been applied here for the construction of specific Akt/mTOR and β-catenin inhibition mathematical models in order to identify and select novel antitumor agents. Experimental Approach Based on the results obtained by the selected mathematical models, six novel potential inhibitors of the Akt/mTOR and β-catenin pathways were identified. These compounds were then tested in vitro to confirm their biological activity. Conclusion and Implications Five of the selected compounds, CAS n° 256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4) and 431925-096 (Inhibitor n°6) gave positive responses and resulted to be active for Akt/mTOR and/or β-catenin inhibition. This study confirms once again the Molecular Topology’s reliability and efficacy to find out novel drugs in the field of cancer.
Collapse
|