1
|
Wang J, Du J, Song Y, Tan X, Wu J, Wang T, Shi Y, Xu X, Yu Z, Song B. CILP1 interacting with YBX1 promotes hypertrophic scar formation by suppressing PPARs transcription. Cell Death Dis 2025; 16:371. [PMID: 40346063 PMCID: PMC12064789 DOI: 10.1038/s41419-025-07554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
Hypertrophic scar (HS) represents the most prevalent form of skin fibrosis, significantly impacting the quality of life. Despite this, the molecular mechanisms driving HS formation remain largely undefined, impeding the development of effective treatments. The study showed that Cartilage Intermediate Layer Protein 1 (CILP1) was predominantly expressed in myofibroblasts and was up-regulated in various forms of skin fibrosis, including human hypertrophic and keloid scars, and in animal models of HS. Notably, we detected elevated serum levels of CILP1 in fifty-two patients with HS compared to twenty healthy individuals, suggesting its potential as a novel biomarker. The findings indicated that CILP1 was involved in a negative feedback loop with TGF-β and inhibited the transcription of Peroxisome Proliferator-Activated Receptors (PPARs) via interaction with Y-box-binding protein 1 (YBX1). This interaction promoted cell proliferation, migration, and collagen production in hypertrophic scar fibroblasts (HSFs). In vivo studies further confirmed that CILP1 knockdown markedly reduced HS formation, whereas administration of recombinant human CILP1 protein exacerbated it. These discoveries illuminated the CILP1-YBX1-PPARs signaling pathway as a key regulator of HS formation, offering a foundation for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Junzheng Wu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| |
Collapse
|
2
|
Li Z, Lu W, Yin F, Huang A. YBX1 as a prognostic biomarker and potential therapeutic target in hepatocellular carcinoma: A comprehensive investigation through bioinformatics analysis and in vitro study. Transl Oncol 2024; 45:101965. [PMID: 38688048 PMCID: PMC11070759 DOI: 10.1016/j.tranon.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUNDS Y-box binding protein 1 (YBX1) is a DNA/RNA binding protein known to contribute to the progression of various malignancies, however, a comprehensive pan-cancer analysis to investigate YBX1 across a broad spectrum of cancer types has not yet been conducted. METHODS We utilized the TIMER database for a comprehensive pan-cancer analysis and assessed YBX-1 expression via the TCGA and GEO databases. The relationship between YBX-1 expression and tumor-infiltrating cells was examined using TIMER and the R programming language. To evaluate the prognostic value of YBX1, we performed Kaplan-Meier plots and Cox regression analyses. Through LinkedOmics, we identified genes significantly correlated with YBX-1. The WEB-based Gene SeT AnaLysis Toolkit was used for KEGG pathway enrichment analysis. Additionally, using shRNA-mediated knockdown, we explored the potential role of YBX1 in tumor cell biology. RESULTS Our study identifies pronounced overexpression of YBX-1 across multiple cancer types, correlating with adverse outcomes, notably in liver hepatocellular carcinoma (LIHC). A distinct association between elevated YBX-1 expression and heightened immune cell infiltration suggests YBX-1's potential role in reshaping the tumor microenvironment. Intriguingly, our KEGG pathway analysis indicated a tight nexus between YBX-1 expression and lipid metabolism. Moreover, the suppression of YBX-1 via shRNA revealed diminished cellular proliferation and marked reductions in crucial molecules steering the fatty acid synthesis pathway, implicating YBX-1's potential regulatory role in lipid metabolism within LIHC. CONCLUSIONS YBX-1 serves as a favorable prognostic indicator in various cancers, particularly in liver hepatocellular carcinoma. Targeting YBX1 in HCC offers potential therapeutic strategies. This work paves the way for fresh insights into targeted therapeutic approaches for cancers, especially benefiting liver hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
3
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
4
|
Chen S, Cao X, Ben S, Zhu L, Gu D, Wu Y, Li S, Yu Q. Genetic variants in RNA m 5 C modification genes associated with survival and chemotherapy efficacy of colorectal cancer. Cancer Med 2022; 12:1376-1388. [PMID: 35861369 PMCID: PMC9883553 DOI: 10.1002/cam4.5018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant digestive tract tumors with a poor prognosis. RNA 5-methylcytosine (m5 C) is an important posttranscriptional widespread modification involved in many biological processes. However, the association between genetic variations of m5 C modification genes and the prognostic value of colorectal cancer remains unclear. METHODS We investigated the association between candidate single nucleotide polymorphisms (SNPs) in 13 m5 C modification genes and colorectal cancer overall survival (OS) after chemotherapy by the Cox regression model. The combined effect of selected SNPs on OS, progression-free survival (PFS), and disease control rate (DCR) was assessed by the number of risk alleles (NRA). The GTEx and TCGA database were used to perform expression qualitative trait locus (eQTL) analysis. RESULTS We identified that two SNPs in YBX1 were associated with OS after chemotherapy (HR = 1.43, p = 0.001 for rs10890208; HR = 1.36, p = 0.025 for rs3862218). A striking dose-response effect between NRA and OS after chemotherapy was found (ptrend = 0.002). The DCR of patients receiving oxaliplatin chemotherapy in the 3-4 NRA group was markedly reduced in comparison to that in the 0-2 NRA group (OR = 1.49, p = 0.036). Moreover, YBX1 mRNA expression was significantly overexpressed in tumor tissues (p < 0.05) in the TCGA database, and eQTL analysis demonstrated that the two SNPs were associated with YBX1 (p = 0.003 for rs10890208 and p = 0.024 for rs3862218). CONCLUSION Our study indicates that genetic variants in m5 C modification genes may mediate changes in YBX1 mRNA levels and affect the chemotherapeutic efficacy of colorectal cancer patients.
Collapse
Affiliation(s)
- Silu Chen
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Xiangming Cao
- Department of OncologyThe Affiliated Jiangyin Hospital of Southeast University Medical CollegeJiangyinChina
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Lingjun Zhu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dongying Gu
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yuan Wu
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Qiang Yu
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina
| |
Collapse
|
5
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
6
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
7
|
Lin Y, Zhang J, Li Y, Guo W, Chen L, Chen M, Chen X, Zhang W, Jin X, Jiang M, Xiao H, Wang C, Song C, Fu F. CTPS1 promotes malignant progression of triple-negative breast cancer with transcriptional activation by YBX1. J Transl Med 2022; 20:17. [PMID: 34991621 PMCID: PMC8734240 DOI: 10.1186/s12967-021-03206-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03206-5.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenzhe Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuan Jin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Zhao J, Zhang P, Wang X. YBX1 promotes tumor progression via the PI3K/AKT signaling pathway in laryngeal squamous cell carcinoma. Transl Cancer Res 2021; 10:4859-4869. [PMID: 35116338 PMCID: PMC8797748 DOI: 10.21037/tcr-21-2087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly seen malignancies of the head and neck, with increasing incidence and mortality. The Y-box-binding protein 1 (YBX1) is a type of oncoprotein which is related to the malignant phenotype of many cancers. It is reported that YBX1 could regulate tumorigenesis, recurrence, and metastasis in multiple cancers. However, little is known about its carcinogenic function and mechanism in LSCC. METHODS Firstly, Through Oncomine StarBase, we found that the YBX1 mRNA level was increased in a variety of cancer tissues, including in the LSCC, compared with normal tissues. We silenced YBX1 in LSCC cells using short hairpin RNAs (shRNAs). Secondly, the biological function of YBX1 in LSCC cells was examined by the Cell Counting Kit-8 (CCK-8) assay, flow cytometry, the wound healing assay, and the transwell assay. Thirdly, the correlation between YBX1 and the PI3K/AKT pathway was verified by the western blot assay. RESULTS Expression of YBX1 is higher in a variety of cancer tissues, especially in the head and neck cancers. After transfected with lentiviral vectors, the expression of YBX1 was significantly silenced. Functionally, low expression of YBX1 promoted LSCC cell apoptosis and inhibited LSCC cell proliferation, migration, and invasion. The transfection of sh-YBX1 resulted in an obvious decrease in PI3K/AKT signaling molecules in LSCC cells. CONCLUSIONS We demonstrated that YBX1 could promote LSCC cell progression through the PI3K/AKT pathway, providing new insights into a potential biomarker and target for LSCC treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pu Zhang
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Wang
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Yang H, Pan Y, Zhang J, Jin L, Zhang X. LncRNA FOXD3-AS1 Promotes the Malignant Progression of Nasopharyngeal Carcinoma Through Enhancing the Transcription of YBX1 by H3K27Ac Modification. Front Oncol 2021; 11:715635. [PMID: 34395290 PMCID: PMC8359730 DOI: 10.3389/fonc.2021.715635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can affect the progression of various tumors, including nasopharyngeal carcinoma (NPC). Here, lncRNA FOXD3-AS1 is highly expressed in NPC tissues through bioinformatics analysis and related to the malignant progression of NPC. METHODS Bioinformatics analysis and real-time reverse transcription quantitative PCR(RT-qPCR) assay were applied to identify the expression of FOXD3-AS1 in NPC tissues and cells. Specific short hairpin RNAs (shRNAs) or overexpression plasmids were used to knockdown or upregulate FOXD3-AS1 in NPC cells. The effect of FOXD3-AS1 on proliferation and metastasis of NPC was confirmed by CCK8, colony formation, transwell assays in vitro and mouse tumor growth and metastasis models in vivo, of which the mechanism was explored by RNA pull down, mass spectrometry (MS), RNA Immunoprecipitation (RIP), chromatin immunoprecipitation (CHIP) and luciferase assays. RESULTS FOXD3-AS1 was highly expressed in NPC tissues and cells. Knockdown of FOXD3-AS1 significantly inhibited proliferation, migration, and invasion of NPC cells in vitro and vivo. FOXD3-AS1 could specifically bind to YBX1 and have a positive effect on the expression of YBX1. Bioinformatics analysis showed that the promoter of YBX1 had a high enrichment of H3K27ac, which promote mRNA transcription and protein translation of YBX1. Moreover, overexpression of YBX1 could reverse the proliferation, migration and invasion arrest caused by FOXD3-AS1 knockdown. CONCLUSION LncRNA FOXD3-AS1 is highly expressed and promotes malignant phenotype in NPC, which may provide a new molecular mechanism for NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Liu T, Xie XL, Zhou X, Chen SX, Wang YJ, Shi LP, Chen SJ, Wang YJ, Wang SL, Zhang JN, Dou SY, Jiang XY, Cui RL, Jiang HQ. Y-box binding protein 1 augments sorafenib resistance via the PI3K/Akt signaling pathway in hepatocellular carcinoma. World J Gastroenterol 2021; 27:4667-4686. [PMID: 34366628 PMCID: PMC8326262 DOI: 10.3748/wjg.v27.i28.4667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Y-box binding protein 1 (YB-1) is closely correlated with tumors and drug resistance. However, the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.
AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.
METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues. Next, we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib. Then, we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling, flow cytometry and Western blotting assays. We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo. Moreover, we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing (DGE-seq).
RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues. YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis. Consistently, the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down. Furthermore, KEGG pathway enrichment analysis of DGE-seq demonstrated that the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was essential for the sorafenib resistance induced by YB-1. Subsequently, YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway (Akt1 and PIK3R1) as shown by searching the BioGRID and HitPredict websites. Finally, YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib, and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.
CONCLUSION Overall, we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene, which is of great significance for the application of sorafenib in advanced-stage HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Sheng-Xiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yi-Jun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Lin-Ping Shi
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Jia Chen
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Yong-Juan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Ling Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jiu-Na Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shi-Ying Dou
- Department of Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ruo-Lin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
11
|
Song S, He X, Wang J, Song H, Wang Y, Liu Y, Zhou Z, Yu Z, Miao D, Xue Y. A novel long noncoding RNA, TMEM92-AS1, promotes gastric cancer progression by binding to YBX1 to mediate CCL5. Mol Oncol 2021; 15:1256-1273. [PMID: 33247987 PMCID: PMC8024739 DOI: 10.1002/1878-0261.12863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/04/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have revealed that long noncoding RNAs (lncRNAs) with oncogene properties play vital roles in gastric cancer (GC). In this study, we aimed to elucidate the function of TMEM92-AS1 in GC progression and to investigate its underlying mechanisms. TMEM92-AS1 was filtered from the Gene Expression Omnibus database. GC tissues and adjacent normal tissues were used to detect the expression level of TMEM92-AS1. MTT, colony-formation assays, Edu, cell cycle, apoptosis and subcutaneous tumour formation assays were used to detect the role of TMEM92-AS1 in cell function. RNA transcriptome sequencing was used to seek downstream target genes. Reverse transcription (RT)-qPCR, western blot, RNA and chromatin immunoprecipitation assays were used to investigate the mechanisms involved. TMEM92-AS1 was significantly overexpressed in GC tissues and correlated with poor overall survival and disease-free survival. Furthermore, TMEM92-AS1 promoted GC cell proliferation and migration in vitro and tumorigenic ability in vivo. RNA transcriptome sequence analysis revealed a potential downstream target gene, C-C motif chemokine ligand 5 (CCL5), and a mechanistic study found that TMEM92-AS1 regulated CCL5 by binding to the transcription factor Y-box binding protein 1(YBX1), which has oncogene properties. In addition, TMEM92-AS1 was found to be associated with peripheral blood leukocyte counts, especially neutrophils. Further investigation found that TMEM92-AS1 may affect leukocytes via regulation of the expression of granulocyte colony-stimulating factor in GC tissues. Our data provide an in-depth insight into the mechanism behind the lncRNA TMEM92-AS1, how it promotes GC progression and the possible mechanism in affecting peripheral leukocyte counts. Therefore, TMEM92-AS1 is a potential target for GC individualized therapy and prognostic assessment.
Collapse
Affiliation(s)
- Shubin Song
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuezhi He
- Department of Anatomy, Histology and EmbryologyThe Research Centre for Bone and Stem CellsNanjing Medical UniversityChina
| | - Jing Wang
- Department of Anatomy, Histology and EmbryologyState Key Laboratory of Reproductive MedicineThe Research Centre for Bone and Stem CellsNanjing Medical UniversityChina
| | - Hongtao Song
- Department of PathologyHarbin Medical University Cancer HospitalChina
| | - Yimin Wang
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
| | - Yansong Liu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhengbo Zhou
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhiyong Yu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dengshun Miao
- The Research Centre for AgeingFriendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityChina
| | - Yingwei Xue
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
| |
Collapse
|
12
|
Yang J, Feng E, Ren Y, Qiu S, Zhao L, Li X. Long non-coding (lnc)RNA profiling and the role of a key regulator lnc-PNRC2-1 in the transforming growth factor- β1-induced epithelial-mesenchymal transition of CNE1 nasopharyngeal carcinoma cells. J Int Med Res 2021; 49:300060521996515. [PMID: 33752469 PMCID: PMC7995461 DOI: 10.1177/0300060521996515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.
Collapse
Affiliation(s)
- Jie Yang
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| | - Enzi Feng
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| | - Yanxin Ren
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| | - Shun Qiu
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| | - Liufang Zhao
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| | - Xiaojiang Li
- Head and Neck Tumor Research Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province & Yunnan Cancer Center), Kunming, Yunnan, China
| |
Collapse
|
13
|
Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 22:ijms22010224. [PMID: 33379356 PMCID: PMC7795419 DOI: 10.3390/ijms22010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Collapse
|
14
|
LncRNA LINC00472 regulates cell stiffness and inhibits the migration and invasion of lung adenocarcinoma by binding to YBX1. Cell Death Dis 2020; 11:945. [PMID: 33144579 PMCID: PMC7609609 DOI: 10.1038/s41419-020-03147-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) play important roles in human tumorigenesis. By using publicly available expression profiling data from lung adenocarcinoma and integrating bioinformatics analysis, we screened a lncRNA, LINC00472. LINC00472 expression in lung adenocarcinoma tissues was significantly lower and tightly associated with patient prognosis and TNM clinical stages in lung adenocarcinoma. LINC00472 also inhibited lung adenocarcinoma cell migration and invasion and increased cell stiffness and adhesion. RNA pull down and RIP assays identified that LINC00472 interacted with the transcription factor Y-box binding protein 1 (YBX1), which partially reversed the inhibition of cell migration and invasion and increased LINC00472-induced cell stiffness and adhesion. LINC00472 also regulated the density and integrity of F-actin in A549 and PC-9 cells possibly via YBX1. LINC00472 inhibited the cell epithelial-mesenchymal transition (EMT) processes via the modulation of YBX1. These results indicated that LINC00472 inhibited the cell EMT process by binding to YBX1, and affected the mechanical properties of the cell, ultimately inhibited its ability to invade and metastasize. Collectively, the present study provides the first evidence that LINC00472 changes the mechanical properties and inhibits the invasion and metastasis of lung adenocarcinoma cells.
Collapse
|
15
|
Comprehensive Study of Different Expressed Genes and Their Functional Modules in Anesthesia for Off-Pump Coronary Artery Bypass Grafting. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8062902. [PMID: 32695821 PMCID: PMC7361873 DOI: 10.1155/2020/8062902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
Abstract
Purpose The effect of preoperative anesthesia on coronary artery bypass grafting without extracorporeal circulation is not apparent. We want to investigate the effects and molecular mechanisms of two anesthesia methods on the treatment of coronary artery bypass grafting (OPCABG) under extracorporeal circulation. Patients and Methods. The data of inhaled anesthesia and intravenous anesthesia before coronary artery bypass grafting were downloaded from the GEO database, and the differences were analyzed with the control group. The combination of multiple analytical methods can decipher the mechanism of anesthesia on surgery, including protein interaction network analysis, enrichment analysis, and regulatory subprediction. Results This study obtained 6699 differential genes under two kinds of anesthesia before OPCABG. By constructing a protein interaction network of differentially expressed genes, we obtained 14 functional module networks. By predicting regulators of functional module genes, we revealed a series of ncRNAs (miR-129-5p, miR-340-5p, and miR-410-3p) and transcription factors (VHL and YBX1). Conclusion Based on functional module network analysis, we identified the effects of preoperative inhalation anesthesia and intravenous anesthesia on OPCABG, which provides a valuable theoretical reference for subsequent clinical studies.
Collapse
|
16
|
Cui G, Zhao H, Li L. Long noncoding RNA PRKCQ-AS1 promotes CRC cell proliferation and migration via modulating miR-1287-5p/YBX1 axis. J Cell Biochem 2020; 121:4166-4175. [PMID: 32619070 DOI: 10.1002/jcb.29712] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) brings more than 600 000 deaths every year around the globe, making itself the third most frequently occurred carcinoma. The great progress human achieved in diagnosis and treatment of various cancers has failed to reverse this trend. Fortunately, growing evidence has implied the relationship between lncRNAs and cancer progression. Long noncoding RNA (lncRNA) PRKCQ-AS1 was heightened in CRC cells and tissues and related with dismal prognosis of CRC patients. Knockdown of PRKCQ-AS1 would induce a decrease in proliferative and migrating ability of CRC cells. Also, PRKCQ-AS1 enriched in cytoplasm of CRC cells and negatively regulated miR-1287-5p level. More important, PRKCQ-AS1 could bind to argonaute 2 and function in the RNA-induced silencing complex with miR-1287-5p. Therefore, PRKCQ-AS1 was a competing endogenous RNA for miR-1287-5p. Subsequently, it was validated that miR-1287-5p could suppress the proliferative and migratory functions in CRC. Furthermore, PRKCQ-AS1 could upregulate the mRNA and protein level of YBX1 targeted by miR-1287-5p. And YBX1 expression was elevated in CRC cells and tissues. Rescue assays in vitro and in vivo showed that overexpression of YBX1 could partly offset the effect of CRC progression induced by knocking down PRKCQ-AS1, demonstrating PRKCQ-AS1 mediating CRC progression via miR-1287-5p/YBX1 pathway.
Collapse
Affiliation(s)
- Guoce Cui
- Department of Colorectal Surgery, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - HongLi Zhao
- Department of Digestive System, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Lina Li
- Department of Internal Medicine, Shaanxi Tumour Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Zhang F, Duan C, Yin S, Tian Y. MicroRNA-379-5p/YBX1 Axis Regulates Cellular EMT to Suppress Migration and Invasion of Nasopharyngeal Carcinoma Cells. Cancer Manag Res 2020; 12:4335-4346. [PMID: 32606929 PMCID: PMC7293412 DOI: 10.2147/cmar.s253504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Epithelial–mesenchymal transition (EMT) is a major actor modulating the metastasis of nasopharyngeal carcinoma (NPC). Increasing evidence indicates that microRNAs (miRs) are the important regulators of EMT program. However, the potential roles and underlying mechanisms of miR‑379-5p in regulating EMT of NPC cells remain unclear. Methods miR-379-5p expression levels in human NPC tissues and cell lines were detected via quantitative real-time PCR (qRT-PCR). Then, the correlations between miR-379-5p expression in NPC tissues and clinicopathologic features and patients’ prognosis were analyzed. The effect of miR-379-5p on the expression of EMT markers in NPC cells was evaluated by Western blot and qRT-PCR. NPC cells’ migration and invasion were evaluated in vitro by Transwell migration and invasion assays, respectively. The target of miR-379-5p was predicted with three publicly available databases and further validated with dual-luciferase reporter assay, qRT-PCR, and Western blot. Results The expression of miR-379-5p was significantly decreased in NPC tissues, and its low expression was significantly associated with multiple unfavorable clinicopathological factors and poor prognosis of NPC patients. Meanwhile, miR-379-5p was downregulated in NPC cell lines, and its exotic expression inhibited EMT to reduce the migration and invasion of NPC cells. Furthermore, Y-box binding protein 1 (YBX1) was identified and validated as a direct target of miR-379-5p, and restoring YBX1 expression could reverse the inhibitive effect of miR-379-5p on NPC cell EMT, migration and invasion. Conclusion Taken together, our findings indicate that miR-379-5p inhibits the EMT of NPC cells to reduce their migration and invasion abilities by post-transcriptionally suppressing YBX1 expression, providing a novel potential treatment target for NPC patients.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Otolaryngology, Maternal and Child Health Care Hospital of Hubei Province and Women and Children's Hospital of Hubei Province, Wuhan 430070, People's Republic of China
| | - Chuanxin Duan
- Department of Otolaryngology, Maternal and Child Health Care Hospital of Hubei Province and Women and Children's Hospital of Hubei Province, Wuhan 430070, People's Republic of China
| | - Shucheng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Ying Tian
- Department of Otolaryngology, Maternal and Child Health Care Hospital of Hubei Province and Women and Children's Hospital of Hubei Province, Wuhan 430070, People's Republic of China
| |
Collapse
|
18
|
Ling Z, Long X, Li J, Feng M. Homeodomain protein DLX4 facilitates nasopharyngeal carcinoma progression via up-regulation of YB-1. Genes Cells 2020; 25:466-474. [PMID: 32281175 DOI: 10.1111/gtc.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor in nasopharynx tissues and lacks effective treatment strategies. Dysregulation of distal-less homeobox 4 (DLX4) participates in the development of tumors. Understanding the regulatory mechanism of DLX4 in NPC progression may address this issue. Here, we first identified an up-regulation of DLX4 in NPC cell lines compared to normal epithelial cells. Data from colony formation and transwell assays showed that knockdown of DLX4 inhibited cell proliferation and invasion of NPC, respectively. Moreover, DLX4 knockdown blocked the cell cycle of NPC at G1 phase, suggesting the antitumor effect of DLX4 knockdown on NPC. The downstream target of DLX4 was identified as Y-box binding protein 1 (YB-1), whose expression was increased by over-expression of DLX4, while decreased by knockdown of DLX4. The binding capacity between DLX4 and YB-1 was verified by chromatin immunoprecipitation (ChIP), and the result showed that DLX4 could not directly bind to the promoter of YB-1. Mechanically, YB-1 over-expression reversed the effects of DLX4 knockdown on cell proliferation, cell cycle arrest and cell invasion of NPC. In conclusion, our findings indicated that DLX4 promoted NPC progression via up-regulation of YB-1, which would shed light on therapeutic schedule in NPC.
Collapse
Affiliation(s)
- Zeyi Ling
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Xiaoli Long
- Department of Geriatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Jie Li
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| | - Mingliang Feng
- Department of Otolaryngology Head and neck surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
19
|
Xiao Y, Qing J, Li B, Chen L, Nong S, Yang W, Tang X, Chen Z. TIM-3 Participates in the Invasion and Metastasis of Nasopharyngeal Carcinoma via SMAD7/SMAD2/SNAIL1 Axis-Mediated Epithelial-Mesenchymal Transition. Onco Targets Ther 2020; 13:1993-2006. [PMID: 32184631 PMCID: PMC7064287 DOI: 10.2147/ott.s237222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3) was originally found to negatively regulate immune response and mediate immune escape in tumors. Subsequently, an increasing body of evidence has shown that TIM-3 exerts positive functions in the development and progression of several tumors. However, the role of TIM-3 in nasopharyngeal carcinoma (NPC) remains unknown. Methods Data from the Cancer Genome Atlas-head and neck squamous cell carcinoma and immunohistochemistry were analyzed to compare the expression of TIM-3 in NPC and non-cancerous nasopharyngitis tissues. Cell proliferation was evaluated using the Cell counting kit-8 in vitro and xenograft experiment in nude mice in vivo. Flow cytometry was used to evaluate the cell cycle. The migration and invasion of NPC cells were assessed through wound healing and Transwell assays. In addition, Western blotting was used to analyze the expression of specific proteins. Results Higher expression of TIM-3 was detected in NPC tissues than normal nasopharyngeal tissues and positively correlated with the clinical stage and T classification; however, it was not correlated with gender, age, and N classification. Furthermore, overexpression of TIM-3 using lentiviral vectors increased the malignancy of 6-10B and CNE-2 cell lines that lowly express TIM-3, by promoting cell proliferation, migration, and invasion in vitro and in vivo. In addition, overexpression of TIM-3 was associated with upregulation of matrix metalloproteinase 9 (MMP9) and MMP2, and led to epithelial-mesenchymal transition (EMT) by increasing the levels of mesenchymal markers (ie, N-cadherin, Vimentin) and decreasing those of the epithelial marker E-cadherin. Further study showed that SMAD7 was downregulated in the TIM-3 overexpression group. Relatively, phosphorylated SMAD2 and downstream molecule SNAIL1 were also upregulated in this group. Conclusion TIM-3 exerts a tumor-promoting function in NPC by mediating changes in the SMAD7/SMAD2/SNAIL1 axis. These findings provide a new idea for the study of invasion, metastasis, and treatment of NPC.
Collapse
Affiliation(s)
- Yangyang Xiao
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Baoxuan Li
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, People's Republic of China
| | - Liuyan Chen
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Shengzhou Nong
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Wenhui Yang
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaogang Tang
- Department of Intensive Care Unit, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Zhizhong Chen
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
20
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Zheng H, Zhan Y, Zhang Y, Liu S, Lu J, Yang Y, Wen Q, Fan S. Elevated expression of G3BP1 associates with YB1 and p-AKT and predicts poor prognosis in nonsmall cell lung cancer patients after surgical resection. Cancer Med 2019; 8:6894-6903. [PMID: 31560169 PMCID: PMC6853815 DOI: 10.1002/cam4.2579] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose G3BP1 is an RNA‐binding protein and plays roles in regulating signaling pathway. YB‐1 is a DNA/RNA binding protein encoded by YBX1 gene. Phosphorylated AKT (p‐AKT) acts as a pivotal molecule in PI3K/AKT pathway. YB‐1 drives stress granules (SGs) formation by activating G3BP1 translation under diverse conditions. SGs are involved in many different metabolic and signaling pathways which may include PI3K/AKT/mTOR. So far, there has been no report on the relationship between expression of G3BP1, p‐AKT, and YB1 and clinicopathological features/prognosis in surgically resected nonsmall cell lung cancer (NSCLC) patients. Methods In this study, data from TCGA (The Cancer Genome Atlas) were downloaded to investigate the mRNA expression of G3BP1 and YB1 (YBX1) and their correlation in NSCLC. Also, expression of G3BP1, YB1, and p‐AKT proteins was studied using immunohistochemistry in tissue microarrays of NSCLC and in noncancerous lung tissues. Results We found that the mRNA expression of G3BP1 and YB1 was higher in NSCLC tissues (both P < .05), and G3BP1 was positively correlated with YB1 in mRNA level (r = .399, P < .001). Also, expression of G3BP1, YB1, and p‐AKT proteins was higher in NSCLC tissues (all P < .05). And higher expression of G3BP1 and YB1 proteins was seen in patients with clinical stage II and III compared with stage I (both P < .05). Besides, expression of G3BP1 protein had a positive correlation with YB1 and p‐AKT (both P < .05). Moreover, overall survival was shorter in patients with overexpression of G3BP1, YB1, and p‐AKT proteins (all P < .05). Multivariate analysis confirmed that overexpression of G3BP1 protein was an independent poorer prognostic factor for NSCLC patients (P = .039). Conclusion G3BP1 may play a crucial role in activating PI3K/AKT/mTOR pathway. G3BP1 might be served as a novel prognostic biomarker for surgically resected NSCLC patients, which afforded new insights into the study on the mechanism and therapy of NSCLC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, Cui Q, Wang C, Chen R, Yu Y, Niu Y, Yue D. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019; 38:386. [PMID: 31481087 PMCID: PMC6720408 DOI: 10.1186/s13046-019-1347-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a deadly urological tumor that remains largely incurable. Our limited understanding of key molecular mechanisms underlying RCC invasion and metastasis has hampered efforts to identify molecular drivers with therapeutic potential. With evidence from our previous study revealing that nuclear overexpression of YBX1 is associated with RCC T stage and metastasis, we investigated the effects of YBX1 in RCC migration, invasion, and adhesion, and then characterized its interaction with RCC-associated proteins G3BP1 and SPP1. Methods Renal cancer cell lines, human embryonic kidney cells, and clinical samples were analyzed to investigate the functional role of YBX1 in RCC metastasis. YBX1 knockdown cells were established via lentiviral infection and subjected to adhesion, transwell migration, and invasion assay. Microarray, immunoprecipitation, dual-luciferase reporter assay, and classical biochemical assays were applied to characterize the mechanism of YBX1 interaction with RCC-associated proteins G3BP1 and SPP1. Results Knockdown of YBX1 in RCC cells dramatically inhibited cell adhesion, migration, and invasion. Mechanistic investigations revealed that YBX1 interaction with G3BP1 upregulated their downstream target SPP1 in vitro and in vivo, which led to an activated NF-κB signaling pathway. Meanwhile, knockdown of SPP1 rescued the YBX1/G3BP1-mediated activation of NF-κB signaling pathway, and RCC cell migration and invasion. We further showed that YBX1 expression was positively correlated with G3BP1 and SPP1 expression levels in clinical RCC samples. Conclusions YBX1 interacts with G3BP1 to promote metastasis of RCC by activating the YBX1/G3BP1–SPP1–NF-κB signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1347-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Su
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.,Department of Laboratory Medicine, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China
| | - Yiting Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Donghe Fu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Justin E Ideozu
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Chicago, IL, 60614, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Department of Pediatrics, Feinberg School of Medicine at Northwestern University Chicago, Chicago, IL, 60611, USA
| | - Qiqi Cui
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yixi Yu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China. .,Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
23
|
Zhang C, Yin T, Tao R, Xiao B, Chen J, Li Z, Miao X, Peng Q, Sun L, Zhang W, Ren J, Zhang Z, Zhang Y, Li X, Zhang W. Elevated nuclear YBX1 expression and the clinicopathological characteristics of patients with solid tumors: a meta-analysis. Cancer Manag Res 2019; 11:4391-4402. [PMID: 31191002 PMCID: PMC6526190 DOI: 10.2147/cmar.s195243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 01/11/2023] Open
Abstract
Purpose: Y-box binding protein 1 (YBX1) is a multifunctional protein linked to tumor progression and its elevated expression is an indicator of poor prognosis in various cancers. This meta-analysis aimed to investigate the prognostic value and clinical significance of YBX1 in malignant cancer. Methods: Relevant articles published through September 12, 2018 were identified from a comprehensive electronic and manual search in PubMed, Web of Science and Embase databases. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to estimate the relationship among clinicopathological characteristics, overall survival and disease-free-survival of patients with solid tumor and YBX1 expression. Results: The study included 27 studies and 5,996 patients. Our analysis revealed significant association between increased YBX1 expression and tumor differentiation status, tumor size and lymph node metastasis; moreover, the pooled HR values demonstrated that high nuclear YBX1 expression was significantly associated with worse overall survival (HR=2.14; 95% CI: 1.72–2.67, P<0.001). Conclusion: The evidence supports YBX1 as a tumor biomarker to guide clinical management and indicate prognosis.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Tingting Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ran Tao
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Bo Xiao
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zixuan Li
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xueyuan Miao
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Liu Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Weihua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Junxu Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Ying Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, People's Republic of China
| | - Wei Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
24
|
Betancourt LH, Pawłowski K, Eriksson J, Szasz AM, Mitra S, Pla I, Welinder C, Ekedahl H, Broberg P, Appelqvist R, Yakovleva M, Sugihara Y, Miharada K, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Wieslander E, Horvatovich P, Malm J, Jönsson G, Marko-Varga G. Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Sci Rep 2019; 9:5154. [PMID: 30914758 PMCID: PMC6435712 DOI: 10.1038/s41598-019-41625-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.
Collapse
Affiliation(s)
| | - Krzysztof Pawłowski
- Lund University, Lund, Sweden.
- Warsaw University of Life Sciences SGGW, Warszawa, Poland.
| | | | - A Marcell Szasz
- Lund University, Lund, Sweden
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Horvatovich
- Lund University, Lund, Sweden
- University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Jing C, Ma R, Cao H, Wang Z, Liu S, Chen D, Wu Y, Zhang J, Wu J. Long noncoding RNA and mRNA profiling in cetuximab-resistant colorectal cancer cells by RNA sequencing analysis. Cancer Med 2019; 8:1641-1651. [PMID: 30848094 PMCID: PMC6488152 DOI: 10.1002/cam4.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
To gain an insight into the molecular mechanisms of cetuximab resistance in colorectal cancer, we generated a cetuximab-resistant cell line (H508/CR) and performed RNA sequencing to identify the differential expression patterns of noncoding RNAs (ncRNAs) and mRNAs between cetuximab-sensitive and resistant cells. A total of 278 ncRNA transcripts and 1,059 mRNA transcripts were dysregulated in the cetuximab-resistant cells. The expression levels of nine selected long noncoding RNAs (lncRNAs) were validated using quantitative real-time PCR. Functional analysis revealed that several groups of lncRNAs might be involved in pathways associated with cetuximab resistance. Increased glucose consumption and lactate secretion in cetuximab-resistant cells suggested that glucose metabolism might be involved in cetuximab resistance. In addition, lncRNA LINC00973 was upregulated in the H508/CR cell line and cells transfected with a LINC00973 short interfering RNA exhibited reduced cell viability, increased apoptosis, and decreased glucose consumption and lactate secretion. Our results provide essential data regarding differentially expressed lncRNAs and mRNAs in cetuximab-resistant cells, which may provide new potential candidates for cetuximab therapy.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siwen Liu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dan Chen
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
26
|
Lu W, Luo JY, Wu MH, Hou JY, Yang X, Chen G, Feng ZB. Expression of vimentin in nasopharyngeal carcinoma and its possible molecular mechanism: A study based on immunohistochemistry and bioinformatics analysis. Pathol Res Pract 2019; 215:1020-1032. [PMID: 30833029 DOI: 10.1016/j.prp.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although previous researchers have analyzed the expression level of vimentin in nasopharyngeal carcinoma (NPC), the sample size of each study was too small, and there was no further in-depth study utilizing microarray and RNA-sequencing data. More importantly, the role and molecular mechanism of vimentin in NPC have not yet been addressed comprehensively. Accordingly, the aim of the present research was to conduct a full exploration of the clinical significance of vimentin in NPC in a large sample size. MATERIALS AND METHODS Immunohistochemistry was used to test the expression of vimentin in clinical samples. Data from relevant microarray and RNA-sequencing datasets were screened and extracted to explore the clinical role of vimentin in NPC. Subsequently, vimentin-related signaling pathways were investigated via in-silico approaches. RESULTS The clinical immunohistochemistry detection showed the positive expression ratio of vimentin was 24.6% (14/57) of the NPC specimens, whereas vimentin expression was negative in nasopharyngitis (NPG) tissues (0/20, P = 0.016). The mRNA and protein levels of vimentin were both remarkably up-regulated in NPC based on 196 and 1566 cases, respectively. The protein level of vimentin was also a risky factor for the prognosis prediction of NPC with the hazard ratios (HR) being 3.831. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses, the localization of vimentin was in both the cytoplasm and the cytoskeleton, and vimentin was involved in the regulation of molecular function, the execution phase of apoptosis, and the regulation of cellular component organization. CONCLUSION The high expression of vimentin plays a pivotal role in the development and poor progression of NPC, which indicates that vimentin may be an effective predictive indicator for NPC.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pathology, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Mei-Hua Wu
- Department of Pathology, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jia-Yin Hou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
27
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Ni J, Zhou LL, Ding L, Zhang XQ, Zhao X, Li H, Cao H, Liu S, Wang Z, Ma R, Wu J, Feng J. Efatutazone and T0901317 exert synergistically therapeutic effects in acquired gefitinib-resistant lung adenocarcinoma cells. Cancer Med 2018; 7:1955-1966. [PMID: 29573196 PMCID: PMC5943475 DOI: 10.1002/cam4.1440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/17/2022] Open
Abstract
The development of acquired EGFR‐TKI therapeutic resistance is still a serious clinical problem in the management of lung adenocarcinoma. Peroxisome proliferator activated receptor gamma (PPARγ) agonists may exhibit anti‐tumor activity by transactivating genes which are closely associated with cell proliferation, apoptosis, and differentiation. However, it remains not clear whether efatutazone has similar roles in lung adenocarcinoma cells of gefitinib resistant such as HCC827‐GR and PC9‐GR. It has been demonstrated by us that efatutazone prominently increased the mRNA and protein expression of PPARγ, liver X receptor alpha (LXRα),as well as ATP binding cassette subfamily A member 1 (ABCA1). In the presence of GW9662 (a specific antagonist of PPARγ) or GGPP (a specific antagonist of LXRα), efatutazone (40 μmol/L) restored the proliferation of both HCC827‐GR and PC9‐GR cells and obviously inhibited the increased protein and mRNA expression of PPAR‐gamma, LXR‐alpha, and ABCA1 induced by efatutazone. LXRα knockdown by siRNA (si‐LXRα) significantly promoted the HCC827‐GR and PC9‐GR cells proliferation, whereas incubation efatutazone with si‐LXRα restored the proliferation ability compared with the control group. In addition, combination of efatutazone and LXRα agonist T0901317 showed a synergistic therapeutic effect on lung adenocarcinoma cell proliferation and PPAR gamma, LXR A and ABCA1 protein expression. These results indicate that efatutazone could inhibit the cells proliferation of HCC827‐GR and PC9‐GR through PPARγ/LXRα/ABCA1 pathway, and synergistic therapeutic effect is achieved when combined with T0901317.
Collapse
Affiliation(s)
- Jie Ni
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Lei-Lei Zhou
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Li Ding
- The Jiangsu Province Research Institute for Clinical Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | | | - Xia Zhao
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, 224001, China
| | - Huizi Li
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Haixia Cao
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Siwen Liu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Zhuo Wang
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Rong Ma
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Jianzhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| | - Jifeng Feng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China
| |
Collapse
|