1
|
Zhang Y, Zhao Y, Zhang BA. Machine Learning-Based Identification of Survival-Associated CpG Biomarkers in Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646090. [PMID: 40236182 PMCID: PMC11996429 DOI: 10.1101/2025.03.29.646090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an exceptionally aggressive cancer with a 5-year survival rate of less than 10%, driven by late-stage diagnosis, limited treatment options, and a lack of reliable biomarkers for early detection and prognosis. In this study, we integrated DNA methylation data from TCGA and ICGC cohorts, categorizing samples based on survival time, and identified 684 differentially methylated CpG sites, along with 224 CpG biomarkers significantly associated with patient survival through statistical and machine learning-based analyses. We developed a random forest model to predict patient survival, achieving 85.2% accuracy for short-survival patients and 70.0% for long-survival patients in the validation set. External dataset validation further confirmed the model's robustness and accuracy. De novo motif analysis of genomic regions surrounding the 224 CpG biomarkers identified TWIST1 and FOXA2 as key transcriptional regulators enriched in survival-associated CpG sites, linking their activity to patient survival outcomes. Collectively, our findings highlight valuable epigenetic biomarkers and provide a predictive model to assess PDAC risk levels post-surgery, offering the potential for improved patient stratification and personalized therapeutic strategies.
Collapse
|
2
|
Lu Y, Ma H, Xiong X, Du Y, Liu L, Wang J, Zhao W. Deletion of ENO1 sensitizes pancreatic cancer cells to gemcitabine via MYC/RRM1-mediated glycolysis. Sci Rep 2025; 15:9941. [PMID: 40121292 PMCID: PMC11929750 DOI: 10.1038/s41598-025-94319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Glycolysis is a critical metabolic pathway in cancer cells, fulfilling their energy requirements, supporting biosynthesis, maintaining redox balance, and enabling survival in hostile environments. Alpha-enolase (ENO1) has been identified as a key promoter of tumor progression through its involvement in glycolysis. This study aims to elucidate the relationship between ENO1, glycolysis, and gemcitabine sensitivity in pancreatic cancer (PC). The expression levels of ENO1 in PC were analyzed using the GEPIA2 database, Kaplan-Meier survival plots, and immunohistochemistry (IHC). To assess the impact of ENO1 on gemcitabine sensitivity, we manipulated ENO1 expression in PC cell lines through overexpression and silencing techniques. Subsequent analyses included flow cytometry assays, glucose uptake and lactate production measurements, and cytotoxicity assays. The underlying mechanisms by which ENO1 modulates gemcitabine sensitivity were explored using Western blotting (WB). ENO1 was found to be significantly overexpressed in PC tissues, and elevated ENO1 levels were associated with poorer prognosis in PC patients. Overexpression of ENO1 reduced the sensitivity of PC cells to gemcitabine, enhancing cell proliferation, migration, and invasion by altering the cell cycle and inhibiting apoptosis. Conversely, silencing ENO1 decreased glycolysis in PC cells and heightened their sensitivity to gemcitabine. Furthermore, glycolysis inhibition-achieved through ENO1 knockdown, glucose deprivation, or treatment with 2-Deoxy-D-glucose (2-DG)-further enhanced the susceptibility of PC cells to gemcitabine. Mechanistically, ENO1 was found to regulate the expression of gemcitabine resistance-related genes, particularly ribonucleotide reductase catalytic subunit M1 (RRM1), via MYC through the glycolytic pathway, thereby contributing to gemcitabine resistance. This study demonstrates that ENO1 plays a crucial role in PC progression and is closely linked to gemcitabine resistance through its regulation of the glycolytic pathway.
Collapse
Affiliation(s)
- Yingpeng Lu
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 77, Chang'an South Rd, Zhangjiagang, 215600, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Xiaoxiao Xiong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No 138, Huanghe South Rd, Suqian, 223800, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
3
|
Bayindir-Bilgic M, Duman E, Turgut D, Kadikoylu AN, Ekimci-Gurcan N, Ozbey U, Kuskucu A, Bayrak OF. Investigation of the synergistic effect of metformin and FX11 on PANC-1 cell lines. Biol Res 2025; 58:15. [PMID: 40091035 PMCID: PMC11912783 DOI: 10.1186/s40659-025-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Pancreatic cancer is among the most aggressive and malignant tumors and is a leading cause of cancer-related mortality. It is characterized by its metabolic Warburg effect and glucose dependence. Aerobic glycolysis is a key feature of metabolic reprogramming in cancer cells. This study investigates the combined effect of metformin and FX11, hypothesizing that disrupting cancer cell energetics through complementary mechanisms may result in a synergistic therapeutic effect. The combination of metformin and FX11 affects the axis that regulates vital functions in cancer cells; thus, the uncontrolled growth of tumor cells, especially those that use a lactose-dependent energy pathway, can be controlled. Several in vitro experiments were conducted to evaluate this hypothesis. PANC-1 cell proliferation was assessed using an MTS assay, lactate levels were measured via an LDH assay, and apoptosis was determined using a flow cytometry-based PE-annexin V assay. The downstream effects of metformin and FX11 treatment were evaluated via western blot analysis. RESULTS The findings of this study revealed that metformin and FX11 significantly decreased the viability of PANC-1 cells when used in combination, and this effect was achieved by significantly affecting the energy mechanism of the cells through the AMPKα axis. Furthermore, the lactate levels in PANC1 cells co-treated with metformin and FX11 were significantly decreased, while the increased cellular stress led the cells to apoptosis. CONCLUSIONS Compared with metformin treatment alone, the combination treatment of metformin and FX11 stimulates cellular stress in pancreatic cancer and targets various energy processes that encourage cancer cells to undergo apoptosis. This study provides a novel therapeutic strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Melike Bayindir-Bilgic
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
| | - Ezgi Duman
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Deniz Turgut
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ayse Naz Kadikoylu
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nur Ekimci-Gurcan
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Omer F Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey.
| |
Collapse
|
4
|
Wang X, Ma M, Shao S, Xu X, Qin C, Gao R, Zhang Z. TWIST1 regulates HK2 ubiquitination degradation to promote pancreatic cancer invasion and metastasis. Cancer Cell Int 2025; 25:37. [PMID: 39920765 PMCID: PMC11806722 DOI: 10.1186/s12935-024-03583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE TWIST1 is known to promote glycolysis and contribute to pancreatic cancer development; however, its underlying mechanisms remain poorly understood. This study aims to elucidate the molecular mechanisms by which TWIST1 influences aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC). METHODS The expression levels of TWIST1, MMP9, MT1-MMP, and FDX1 in clinical tissues and cancer cell lines were assessed using quantitative reverse transcription PCR (QRT-PCR). Cell treatments with Elesclomol-Cu and 2-deoxyglucose (2DG) were conducted. Immunofluorescence staining and immunoprecipitation analyses were performed to investigate the binding relationship between TWIST1 and HK2. Colony formation and Transwell assays were utilized to evaluate the effects of TWIST1 on cell proliferation, migration, and invasion. Western blotting was employed to detect proteins related to cuproptosis and apoptosis, while ubiquitination assays assessed TWIST1's regulation of HK2 ubiquitination. RESULTS TWIST1 expression was significantly elevated in PDAC tissues, and over-expression of TWIST1 in PDAC cells enhanced colony formation and cell proliferation. Notably, HK2 levels were markedly higher in pancreatic cancer tissues compared to adjacent normal tissues. TWIST1 was found to directly bind and interact with HK2, showing co-localization in the cytoplasm of PDAC cells. Furthermore, TWIST1 was shown to stabilize HK2 by inhibiting its ubiquitin-mediated degradation. Knockdown of TWIST1 or HK2 enhanced the inhibitory effects of 2DG on cell migration and invasion. Treatment with Elesclomol-Cu and 2DG significantly reduced the expression of the cuproptosis-related factor FDX1 with no impact on other cell death factors. CONCLUSION This study demonstrates that TWIST1 regulates the ubiquitination and degradation of HK2, thereby promoting glycolysis-induced cuproptosis and facilitating pancreatic cancer invasion and metastasis. Understanding the underlying mechanisms of PDAC, including the regulation of key proteins such as HK2 by TWIST1, is crucial for developing more effective treatment strategies. Findings highlight the importance of targeting these molecular pathways, which could lead to improved diagnostic and therapeutic approaches, ultimately enhancing patient outcomes and prognosis.
Collapse
Affiliation(s)
- Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mingze Ma
- Departments of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shuai Shao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xianwen Xu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chuan Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Ruxin Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
5
|
Fan Y, Jialiken D, Zheng Z, Zhang W, Zhang S, Zheng Y, Sun Z, Zhang H, Yan X, Liu M, Fang Z. Qianyang Yuyin granules alleviate hypertension-induced vascular remodeling by inhibiting the phenotypic switch of vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118896. [PMID: 39393558 DOI: 10.1016/j.jep.2024.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qianyang Yuyin granules (QYYY) have been used clinically to treat hypertension for over two decades. Previous clinical trials have shown that QYYY can improve vascular elastic function in hypertensive patients. However, the underlying pharmacological mechanism is unclear. AIM OF THE STUDY To elucidate the effects and mechanisms of QYYY on vascular remodeling using a multidisciplinary approach that includes network pharmacology, proteomics, and both in vitro and in vivo experiments. MATERIALS AND METHODS The main components of QYYY were identified using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Network pharmacology and molecular docking were employed to predict QYYY's primary active ingredients, potential therapeutic targets and intervention pathways in hypertensive vascular remodeling. We induced hypertension in male C57BL/6 mice by infusing angiotensin II (Ang II) via osmotic minipumps, and performed pre-treatment with QYYY or Sacubitril/valsartan (Entresto). Blood pressure was monitored in vivo, followed by the extraction of aortas to examine pathological structural changes and alterations in protein expression patterns. The expression and location of proteins involved in the HIF-1α/TWIST1/P-p65 signaling pathway were investigated, as well as markers of vascular smooth muscle cells (VSMCs) phenotypic switch. In vitro, we studied the effects of QYYY water extract on Ang II-stimulated human aortic VSMCs. We investigated whether QYYY could affect the HIF-1α/TWIST1/P-p65 signaling pathway, thereby ameliorating apoptosis, autophagy, and phenotype switch in VSMCs. RESULTS We identified 62 main compounds in QYYY, combined with network pharmacology, speculated 827 potentially active substances, and explored 1021 therapeutic targets. The KEGG pathway analysis revealed that the mechanisms of action associated with QYYY therapy potentially encompass various biological processes, including metabolic pathways, TNF signaling pathways, apoptosis, Ras signaling pathways, HIF-1 signaling pathways, autophagy-animal pathways. In hypertensive mice, QYYY restored abnormally elevated blood pressure, vascular remodeling, and inflammation with a dose-response relationship while altering abnormal protein patterns. In vitro, QYYY could inhibit abnormal proliferation, migration, intracellular Ca2+ accumulation and cytoskeletal changes of VSMCs. It improved mitochondrial function, reduced ROS levels, stabilized membrane potential, prevented cell death, and reduced overproduction of TGF-β1, TNF-a, and IL-1β. CONCLUSION QYYY may be able to inhibit the overactivation of the HIF-1α/TWIST1/P-p65 signaling pathway, improve the phenotypic switch, and balance apoptosis and autophagy in VSMCs, thereby effectively improving vascular remodeling caused by hypertension.
Collapse
Affiliation(s)
- Yadong Fan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Dinala Jialiken
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziwen Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiting Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Siqi Zhang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Yawei Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zeqi Sun
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiwu Yan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Ming Liu
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhuyuan Fang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
6
|
Wang W, Chen G, Zhang W, Zhang X, Huang M, Li C, Wang L, Lu Z, Xia J. The crucial prognostic signaling pathways of pancreatic ductal adenocarcinoma were identified by single-cell and bulk RNA sequencing data. Hum Genet 2024; 143:1109-1129. [PMID: 38526745 PMCID: PMC11485037 DOI: 10.1007/s00439-024-02663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis and high mortality. Although a large number of studies have explored its potential prognostic markers using traditional RNA sequencing (RNA-Seq) data, they have not achieved good prediction effect. In order to explore the possible prognostic signaling pathways leading to the difference in prognosis, we identified differentially expressed genes from one scRNA-seq cohort and four GEO cohorts, respectively. Then Cox and Lasso regression analysis showed that 12 genes were independent prognostic factors for PDAC. AUC and calibration curve analysis showed that the prognostic model had good discrimination and calibration. Compared with the low-risk group, the high-risk group had a higher proportion of gene mutations than the low-risk group. Immune infiltration analysis revealed differences in macrophages and monocytes between the two groups. Prognosis related genes were mainly distributed in fibroblasts, macrophages and type 2 ducts. The results of cell communication analysis showed that there was a strong communication between cancer-associated fibroblasts (CAF) and type 2 ductal cells, and collagen formation was the main interaction pathway.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Guo Chen
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi Province, China
| | - Wenli Zhang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi Province, China
| | - Xihua Zhang
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Manli Huang
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chen Li
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ling Wang
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zifan Lu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi Province, China
| | - Jielai Xia
- Department of Health Statistics, School of Military Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
7
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
9
|
Huang L, Xing Y, Ning X, Yu Z, Bai X, Liu L, Sun S. Roles of Twist1 in lipid and glucose metabolism. Cell Commun Signal 2023; 21:270. [PMID: 37784111 PMCID: PMC10544448 DOI: 10.1186/s12964-023-01262-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023] Open
Abstract
The abnormal lipid and glucose metabolisms are linked to the metabolic disorders, tumorigenesis, and fibrotic diseases, which attracts the increasing attention to find out the key molecules involved in the lipid and glucose metabolism as the possible therapeutic targets on these diseases. A transcriptional factor Twist1 has been associated with not only the embryonic development, cancer, and fibrotic diseases, but also the regulation of lipid and glucose metabolism. In this review, we will discuss the roles and mechanisms of Twist1 in the obesity-associated white adipose tissue inflammation and insulin resistance, brown adipose tissue metabolism, fatty acid oxidation, and glucose metabolism in skeletal muscle to provide a rational perspective to consider Twist1 as a potential treatment target in clinic. Video Abstract.
Collapse
Affiliation(s)
- Liuyifei Huang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Zhixiang Yu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiao Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Limin Liu
- School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710032, Shaanxi, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Changle Road, No. 127 Changle West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Qin L, Sun K, Shi L, Xu Y, Zhang R. High-Fat Mouse Model to Explore the Relationship between Abnormal Lipid Metabolism and Enolase in Pancreatic Cancer. Mediators Inflamm 2023; 2023:4965223. [PMID: 37731842 PMCID: PMC10509005 DOI: 10.1155/2023/4965223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 09/22/2023] Open
Abstract
Malignant tumors have become a major social health problem that seriously threatens human health, among which pancreatic cancer has a high degree of malignancy, difficult diagnosis and treatment, short survival time, and high mortality. More and more attention has been paid to abnormal lipid metabolism as a momentous carcinogenesis mechanism. Here, we explored the relationship between abnormal lipid metabolism, enolase, and pancreatic cancer by clinical data analysis. A high-fat mouse model was constructed, and then, a subcutaneous tumorigenesis mouse model of carcinoma of pancreatic cells and a metastatic neoplasm mouse pattern of pancreatic carcinoma cells injected through the tail vein were constructed to explore whether abnormal lipid metabolism affects the progression of pancreatic cancer in mice. We constructed a high-lipid model of pancreatic carcinoma cell lines and knockdown and overexpressed enolase in pancreatic carcinoma cell lines and investigated whether high lipid regulates epithelial-mesenchymal transition (EMT) by upregulating enolase (ENO), thereby promoting the cells of pancreatic carcinoma to invade and migrate. Triglycerides, total cholesterol, free cholesterin, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and neuron-specific enolase (NSE) from pancreatic cancer patients and nonpancreatic cancer patients were tested. The differences in blood lipids between patients with and without pancreatic carcinoma were compared, and the correlation between blood lipids and neuron-specific enolase was analyzed. We confirmed that the serum triglyceride level of pancreatic cancer patients at initial diagnosis is overtopping nonpancreatic cancer patients, and the neuron-specific enolase level of patients with pancreatic carcinoma is better than nonpancreatic carcinoma sufferers. Triglyceride level is positively correlated with neuron-specific enolase level, and serum triglyceride level has predictive value for pancreatic cancer. Hyperlipidemia can promote tumor growth and increase the expression levels of ENO1, ENO2, and ENO3 in subcutaneous tumor formation of pancreatic cancer in mice. Additional hyperlipidemia promoted pancreatic carcinoma metastasis in the lung in mice injected through the tail vein, which confirmed that hyperlipidemia accelerated the process of EMT by increasing the expression of ENO1, ENO2, and ENO3, therefore promoting the pancreatic cancer cell metastasis.
Collapse
Affiliation(s)
- Lin Qin
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- School of Pharmaceutical Science, Kunming Medical University, Kunming, Yunnan 650500, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Kai Sun
- Affiliated Hospital of Yunnan University, Qingnian Road, Kunming, Yunnan 650000, China
| | - Li Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Rongping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
11
|
Zhu J, Jiang Q. Twist1‑mediated transcriptional activation of Claudin‑4 promotes cervical cancer cell migration and invasion. Oncol Lett 2023; 26:335. [PMID: 37427351 PMCID: PMC10326656 DOI: 10.3892/ol.2023.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Claudin-4, a member of the claudin multigene family, participates in events associated with mesenchymal-like activity of cancerous cells. Claudin-4 expression is upregulated in cervical cancer tissue compared with that in adjoining non-neoplastic tissue. However, the mechanisms that regulate Claudin-4 expression in cervical cancer are poorly understood. Moreover, whether Claudin-4 contributes to the migration and invasion of cervical cancer cells remains unclear. By western blotting, reverse transcription-qPCR, bioinformatics analysis, dual-luciferase reporter assay, chromatin immunoprecipitation assay, wound healing assay and Transwell migration/invasion assay, the present study confirmed that Claudin-4 was a downstream target of Twist1, a helix-loop-helix transcriptional factor, the activity of which has a positive correlation with Claudin-4 expression. Mechanistically, Twist1 directly binds to Claudin-4 promoter, resulting in the transactivation of expression. The depletion of the Twist1-binding E-Box1 domain on Claudin-4 promoter via CRISPR-Cas9 knockout system downregulates Claudin-4 expression and suppresses the ability of cervical cancer cells to migrate and invade by elevating E-cadherin levels and lowering N-cadherin levels. Following activation by transforming growth factor-β, Twist1 induces Claudin-4 expression, thus enhancing migration and invasion of cervical cancer cells. In summary, the present data suggested that Claudin-4 was a direct downstream target of Twist1 and served a critical role in promoting Twist1-mediated cervical cancer cell migration and invasion.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Gynecology, Beilun People's Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang 315826, P.R. China
| | - Qi Jiang
- Department of Obstetrics, Beilun People's Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang 315826, P.R. China
| |
Collapse
|
12
|
Huang M, Wu Y, Cheng L, Fu L, Yan H, Ru H, Mo X, Yan L, Su Z. Multi-omics analyses of glucose metabolic reprogramming in colorectal cancer. Front Immunol 2023; 14:1179699. [PMID: 37475862 PMCID: PMC10354426 DOI: 10.3389/fimmu.2023.1179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Glucose metabolic reprogramming (GMR) is a cardinal feature of carcinogenesis and metastasis. However, the underlying mechanisms have not been fully elucidated. The aim of this study was to profile the metabolic signature of primary tumor and circulating tumor cells from metastatic colorectal cancer (mCRC) patients using integrated omics analysis. METHODS PET-CT imaging, serum metabolomics, genomics and proteomics data of 325 high 18F-fluorinated deoxyglucose (FDGhigh) mCRC patients were analyzed. The para-tumor, primary tumor and liver metastatic tissues of mCRC patients were used for proteomics analysis. RESULTS The glucose uptake in tumor tissues as per the PET/CT images was correlated to serum levels of glutamic-pyruvic transaminase (ALT), total bilirubin (TBIL), creatinine (CRE). Proteomics analysis indicated that several differentially expressed proteins were enriched in both GMR and epithelial-mesenchymal transition (EMT)-related pathways. Using a tissue-optimized proteomic workflow, we identified novel proteomic markers (e.g. CCND1, EPCAM, RPS6), a novel PCK1-CDK6-INSR protein axis, and a potential role for FOLR (FR) in GMR/EMT of CRC cells. Finally, CEA/blood glucose (CSR) was defined as a new index, which can be used to jointly diagnose liver metastasis of colorectal cancer. CONCLUSIONS GMR in CRC cells is closely associated with the EMT pathway, and this network is a promising source of potential therapeutic targets.
Collapse
Affiliation(s)
- Maosen Huang
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yancen Wu
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Linyao Cheng
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lihua Fu
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haochao Yan
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haiming Ru
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianwei Mo
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Linhai Yan
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijie Su
- Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Wu H, Li A, Zheng Q, Gu J, Zhou W. LncRNA LZTS1-AS1 induces proliferation, metastasis and inhibits autophagy of pancreatic cancer cells through the miR-532 /TWIST1 signaling pathway. Cancer Cell Int 2023; 23:130. [PMID: 37403096 DOI: 10.1186/s12935-023-02979-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
The 5 year survival rate after diagnosis of pancreatic cancer (PANC) is less than 5%, and it is one of the malignant tumors with the worst prognosis. Identification of novel oncogenes involved in the occurrence of pancreatic cancer is of great significance to improve the overall survival of PANC patients. Our previous study found that miR-532 is a key factor in PANC occurrence and development, and this study further explored its mechanism. We found that the expression of lncRNA LZTS1-AS1 was elevated in PANC tumor tissues and cells, and correlated with poor prognosis. In vitro experiments confirmed that LZTS1-AS1 could promote proliferation, oncogenicity, migration, and invasion of PANC cells, and inhibit apoptosis and autophagy. However, miR-532 had the completely opposite effect, and inhibition of miR-532 counteracted the effect of LZTS1-AS1 on PANC cells. Dual luciferase gene reporter assay and RNA immunoprecipitation assay confirmed the targeting relationship between LZTS1-AS1 and miR-532, and their expression levels were negatively correlated in PANC tissues. Overexpression of TWIST1 could counteract the effect of miR-532 in PANC cells, and the expression levels of both were negatively changed in PANC tissues and cells. Our results suggest that lncRNA LZTS1-AS1 acts as an oncogene to promote the metastasis of PANC and inhibit autophagy, and its mechanism may be to regulate TWIST1 through sponge miR-532. This study provides novel biomarkers and therapeutic targets for PANC.
Collapse
Affiliation(s)
- Hui Wu
- Research Center, Shanghai Healink Medical Information Consulting Co., LTD, Shanghai, 201102, China.
| | - Anshu Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyang Gu
- Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Wuhan No.1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430022, Hubei, China.
| |
Collapse
|
14
|
Gong A, Wang X, Wang X, Zhao Y, Cui Y. Twist1 Promoter Methylation Regulates the Proliferation and Apoptosis of Acute Myeloid Leukemia Cells via PI3K/AKT Pathway. Indian J Hematol Blood Transfus 2023; 39:25-32. [PMID: 36699440 PMCID: PMC9868029 DOI: 10.1007/s12288-022-01540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/11/2022] [Indexed: 01/28/2023] Open
Abstract
Twist-related protein 1 (Twist1) is a widely recognized oncogene in acute myeloid leukemia (AML), and its promoter methylation is related with the progression of solid tumors. However, the association between Twist1 promoter methylation and AML has not been well studied. Twist1 mRNA expression was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of Twist1 and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signal were measured via western blotting. Methylation-specific PCR was performed to detect the methylation status of Twist1 promoter. CCK-8 assay and flow cytometry were used to reveal cellular biological effects. Twist1 expression and promoter methylation level were significantly upregulated in AML tissues and cell lines and were further downregulated in demethylating agent 5'-azacitidine (5-Aza)-treated cells. Ectopic expression of Twist1 increased AML cell viability, while reducing apoptosis, and attenuated the effects of 5-Aza on the proliferation and apoptosis. We also found that the PI3K/AKT signaling pathway was positively regulated by Twist1. Our findings revealed that Twist1 accelerates the tumorigenesis of AML cells by promoting its promoter methylation via the activation of PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Aihong Gong
- Department of Medical Records Statistics Room, General Hospital of Ningxia Medical University, No. 692, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaojia Wang
- Department of Medical Records Statistics Room, General Hospital of Ningxia Medical University, No. 692, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xuewei Wang
- Department of Medical Records Statistics Room, General Hospital of Ningxia Medical University, No. 692, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Ying Zhao
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, 750003 Ningxia China
| | - Yanan Cui
- Department of Medical Records Statistics Room, General Hospital of Ningxia Medical University, No. 692, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
15
|
Huang X, Feng Y, Ma D, Ding H, Dong G, Chen Y, Huang X, Zhang J, Xu X, Chen C. The molecular, immune features, and risk score construction of intraductal papillary mucinous neoplasm patients. Front Mol Biosci 2022; 9:887887. [PMID: 36090038 PMCID: PMC9459388 DOI: 10.3389/fmolb.2022.887887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic precancerous lesion, with increasing incidence in recent years. However, the mechanisms of IPMN progression into invasive cancer remain unclear. The mRNA expression data of IPMN/PAAD patients were extracted from the TCGA and GEO databases. First, based on GSE19650, we analyzed the molecular alterations, tumor stemness, immune landscape, and transcriptional regulation of IPMN progression. The results indicated that gene expression changed dramatically, specifically at the intraductal papillary-mucinous adenoma (IPMA) stage. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Kyoto Encyclopedia of Genes and Genomes (GSEA) pathway analyses showed that glycoprotein-related, cell cycle, and P53 pathways displayed the most significant changes during progression. With IPMN progression, tumor stemness increased continuously, and KRAS, ERBB3, RUNX1, and ELF3 are essential driver genes affecting tumor stemness. Motif analysis suggested that KLF4 may be a specific transcription factor that regulates gene expression in the IPMA stage, while MYB and MYBL1 control gene expression in the IPMC and invasive stages, respectively. Then, GSE19650 and GSE71729 transcriptome data were combined to perform the least absolute shrinkage and selection operator (LASSO) method and Cox regression analysis to develop an 11-gene prediction model (KCNK1, FHL2, LAMC2, CDCA7, GPX3, C7, VIP, HBA1, BTG2, MT1E, and LYVE1) to predict the prognosis of pancreatic cancer patients. The reliability of the model was validated in the GSE71729 and TCGA databases. Finally, 11 additional IPMN patients treated in our hospital were included, and the immune microenvironment changes during IPMN progression were analyzed by immunohistochemistry (IHC). IHC results suggest that Myeloid-derived suppressor cells (MDSCs) and macrophages may be key in the formation of immunosuppressive microenvironment of IPMN progression. Our study deepens our understanding of IPMN progression, especially the changes in the immune microenvironment. The findings of this work may contribute to the development of new therapeutic strategies for IPMN.
Collapse
Affiliation(s)
- Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Dawei Ma
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hanlin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Zhang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| | - Chen Chen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| |
Collapse
|
16
|
Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol 2022; 24:1844-1855. [PMID: 35751743 DOI: 10.1007/s12094-022-02851-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) confers the most lethal characteristics to cancer cells i.e., metastasis and resistance to chemo-and-radio-therapy, and therefore exhibit an appealing target in the field of oncology. Research in the past decade has demonstrated the crucial role of aerobic glycolysis in EMT, which is generally credited as the glucose metabolism for the creation of biomass such as fatty acids, amino acids, and nucleotides thereby providing building blocks for limitless proliferation. In the present review, apart from discussing EMT's evident role in the metastatic process and cancer stemness, we also talked about the vital role of glycolytic enzymes viz. GLUTs, HKs, PGI, PFK-1, aldolase, enolase, PK, LDHA, etc. in the induction of the EMT process in cancerous cells.
Collapse
|
17
|
Ji JJ, Qian LL, Zhu Y, Jiang Y, Guo JQ, Wu Y, Yang ZW, Yao YY, Ma GS. Kallistatin/Serpina3c inhibits cardiac fibrosis after myocardial infarction by regulating glycolysis via Nr4a1 activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166441. [PMID: 35577178 DOI: 10.1016/j.bbadis.2022.166441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown. METHODS A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA. Serpina3c-/- and C57BL/6 mice were used to construct the MI model. TGF-β1 or a hypoxic condition was established to interfere with the functioning of cardiac fibroblasts (CFs). RNA-seq was performed to assess the effect of Serpina3c on the transcriptome. FINDINGS The levels of KS were used as a predictor of readmission among the HFPs. Serpina3c expression decreased in MI hearts and CFs. Serpina3c-/- led to the aggravation of MI fibrosis, and increased the proliferation of CFs. The overexpression of Serpina3c in CFs had the opposite effect. Glycolysis-related genes were significantly increased in Serpina3c-/- group by RNA-seq. Enolase (ENO1), which is a key enzyme in glycolysis, increased most significantly. Inhibition of ENO1 could antagonize the promotion of Serpina3c-/- on the proliferation of CFs. Co-IP was performed to verify the interaction between Serpina3c and Nr4a1. Serpina3c-/- inhibited the acetylation of Nr4a1 and increased the degradation of Nr4a1. Activation of Nr4a1 could negatively regulate the expression of ENO1 and inhibited the proliferation of Serpina3c-/- CFs in Serpina3c-/- MI mice. INTERPRETATION Serpina3c inhibits the transcriptional activation of ENO1 by regulating the acetylation of Nr4a1, thereby reducing the fibrosis after MI by inhibiting glycolysis. Serpina3c is a potential target for prevention and treatment of heart failure after MI.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu Jiang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Zi-Wei Yang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
18
|
Cao HJ, Zhou W, Xian XL, Sun SJ, Ding PJ, Tian CY, Tian FL, Jiang CH, Fu TT, Zhao S, Dai JY. A Mixture of Baicalein, Wogonin, and Oroxylin-A Inhibits EMT in the A549 Cell Line via the PI3K/AKT-TWIST1-Glycolysis Pathway. Front Pharmacol 2022; 12:821485. [PMID: 35222014 PMCID: PMC8864075 DOI: 10.3389/fphar.2021.821485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a worldwide disease with a high morbidity and mortality rate, which is most derived from its metastasis. Some studies show that the epithelial-mesenchymal transition (EMT) process promotes lung cancer cell migration and invasion, leading to NSCLC metastasis. Total flavonoid aglycones extract (TFAE) isolated from Scutellaria baicalensis was reported to inhibit tumor growth and induce apoptosis. In this study, we found that baicalein, wogonin, and oroxylin-A were the active compounds of TFAE. After reconstructing with these three compounds [baicalein (65.8%), wogonin (21.2%), and oroxylin-A (13.0%)], the reconstructed TFAE (reTFAE) inhibited the EMT process of A549 cells. Then, bioinformatic technology was employed to elucidate the potential pharmacodynamic mechanism network of reTFAE. We identified the relationship between reTFAE and PI3K/Akt signaling pathways, with TWIST1 as the key protein. LY294002, the inhibitor of the PI3K/Akt signaling pathway, and knock-down TWIST1 could significantly enhance the efficacy of reTFAE, with increasing expression of epithelial markers and decreasing expression of mesenchymal markers in A549 cells at the same time. Furthermore, stable isotope dimethyl-labeled proteomics technology was conducted to complement the follow-up mechanism that the EMT-inhibition process may be realized through the glycolysis pathway. In conclusion, we claim that TWIST1-targeted flavonoids could provide a new strategy to inhibit EMT progress for the treatment of NSCLC.
Collapse
Affiliation(s)
- Hui-Juan Cao
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Wei Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiao-Le Xian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Shu-Jun Sun
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Pei-Jie Ding
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Chun-Yu Tian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Fu-Ling Tian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Chun-Hua Jiang
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Ting-Ting Fu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Shu Zhao
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Wu Y, Kröller L, Miao B, Boekhoff H, Bauer AS, Büchler MW, Hackert T, Giese NA, Taipale J, Hoheisel JD. Promoter Hypermethylation Promotes the Binding of Transcription Factor NFATc1, Triggering Oncogenic Gene Activation in Pancreatic Cancer. Cancers (Basel) 2021; 13:4569. [PMID: 34572796 PMCID: PMC8471171 DOI: 10.3390/cancers13184569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Studies have indicated that some genes involved in carcinogenesis are highly methylated in their promoter regions but nevertheless strongly transcribed. It has been proposed that transcription factors could bind specifically to methylated promoters and trigger transcription. We looked at this rather comprehensively for pancreatic ductal adenocarcinoma (PDAC) and studied some cases in more detail. Some 2% of regulated genes in PDAC exhibited higher transcription coupled to promoter hypermethylation in comparison to healthy tissue. Screening 661 transcription factors, several were found to bind specifically to methylated promoters, in particular molecules of the NFAT family. One of them-NFATc1-was substantially more strongly expressed in PDAC than control tissue and exhibited a strong oncogenic role. Functional studies combined with computational analyses allowed determining affected genes. A prominent one was gene ALDH1A3, which accelerates PDAC metastasis and correlates with a bad prognosis. Further studies confirmed the direct up-regulation of ALDH1A3 transcription by NFATc1 promoter binding in a methylation-dependent process, providing insights into the oncogenic role of transcription activation in PDAC that is promoted by DNA methylation.
Collapse
Affiliation(s)
- Yenan Wu
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Lea Kröller
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Beiping Miao
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| | - Markus W. Büchler
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Nathalia A. Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Jussi Taipale
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Solna, Sweden;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| |
Collapse
|
20
|
Zhang B, Chan SH, Liu XQ, Shi YY, Dong ZX, Shao XR, Zheng LY, Mai ZY, Fang TL, Deng LZ, Zhou DS, Chen SN, Li M, Zhang XD. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J Cell Mol Med 2021; 25:8836-8849. [PMID: 34378321 PMCID: PMC8435428 DOI: 10.1111/jcmm.16842] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most malignant tumour worldwide, with high mortality and recurrence. Chemoresistance is one of the main factors leading to metastasis and poor prognosis in advanced CRC patients. By analysing the Gene Expression Omnibus data set, we found higher hexokinase 2 (HK2) expression levels in patients with metastatic CRC than in those with primary CRC. Moreover, we observed higher enrichment in oxaliplatin resistance‐related gene sets in metastatic CRC than in primary CRC. However, the underlying relationship has not yet been elucidated. In our study, HK2 expression was significantly elevated in CRC patients. Gene set enrichment analysis (GSEA) revealed multi‐drug resistance and epithelial‐mesenchymal transition (EMT) pathways related to high HK2 expression. Our results showed that knockdown of HK2 significantly inhibited vimentin and Twist1 expression and promoted TJP1 and E‐cadherin expression in CRC cells. Additionally, transcriptional and enzymatic inhibition of HK2 by 3‐bromopyruvate (3‐bp) impaired oxaliplatin resistance in vitro and in vivo. Mechanistically, HK2 interacts with and stabilized Twist1 by preventing its ubiquitin‐mediated degradation, which is related to oxaliplatin resistance, in CRC cells. Overexpression of Twist1 reduced the apoptosis rate by HK2 knockdown in CRC cells. Collectively, we discovered that HK2 is a crucial regulator that mediates oxaliplatin resistance through Twist1. These findings identify HK2 and Twist1 as promising drug targets for CRC chemoresistance.
Collapse
Affiliation(s)
- Bo Zhang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sze-Hoi Chan
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue-Qi Liu
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Shi
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Xia Dong
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin-Rong Shao
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Yuan Zheng
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Ying Mai
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tian-Liang Fang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Zhi Deng
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di-Sheng Zhou
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shu-Na Chen
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xing-Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Liu A, Zhou Y, Zhao T, Tang X, Zhou B, Xu J. MiRNA-3662 reverses the gemcitabine resistance in pancreatic cancer through regulating the tumor metabolism. Cancer Chemother Pharmacol 2021; 88:343-357. [PMID: 33993382 DOI: 10.1007/s00280-021-04289-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Gemcitabine (Gem) is one of the most commonly used chemotherapeutic drugs in treating patients with pancreatic ductal adenocarcinoma (PDAC). Acquired drug resistance against Gem presents a major clinical challenge in the chemotherapy of PDAC. It has been shown that miRNA-3662 is lowly expressed and implicated with quantities of biological processes in cancer. However, whether miRNA-3662 regulates chemoresistance in PDAC remains largely unknown. MATERIALS AND METHODS The level of miRNA-3662 in PDAC tissues was determined by real-time qPCR (RT-qPCR). Functional experiments were used to investigate the biological role of miRNA-3662 on Gem resistance of PDAC in vitro and in vivo. Fluorescence in situ hybridization (FISH), RT-qPCR, western blotting, bioinformatics analysis and luciferase reporter assay were employed to determine the precise regulation mechanisms. RESULTS In this study, it was investigated that miRNA-3662 was down-regulated in PDAC clinical samples as well as cell lines. Functional assays revealed that miRNA-3662 was sufficient to inhibit Gem resistance in PDAC cells both in vitro and in vivo. Mechanistically, hypoxia-inducible factor 1ɑ (HIF-1ɑ) was one of the transcriptional target of miRNA-3662 and was up-regulated in PDAC samples. Importantly, genetic promoting of HIF-1ɑ largely compromised miR-3662-mediated chemosensitive effects. In addition, miR-3662 could impair the aerobic glycolysis in PDAC cells. CONCLUSIONS This study sheds light on miRNA-3662 inhibits PDAC cell chemoresistance and aerobic glycolysis through a negative feedback loop with HIF-1ɑ. Therefore, the co-delivery of miR-3662 and Gem could be served as a promising therapeutic regimen for PDAC patients.
Collapse
Affiliation(s)
- An Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Yonggui Zhou
- Department of Gastrointestinal Surgery, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Tian Zhao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Xu Tang
- Department of Intensive Care, The Second People's Hospital of Yueyang, Yueyang, 414006, People's Republic of China.
| | - Binbin Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China.
| | - Jia Xu
- Department of Gastrointestinal Surgery, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Chen Q, Liu Q, Wang Y, Wang F, Zhao Z, Zhao G, Lau WY, Gao Y, Liu R. Development and validation of glycolysis-related prognostic score for prediction of prognosis and chemosensitivity of pancreatic ductal adenocarcinoma. J Cell Mol Med 2021; 25:5615-5627. [PMID: 33942483 PMCID: PMC8184720 DOI: 10.1111/jcmm.16573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with aggressive biological behaviour. Its rapid proliferation and tumour growth require reprogramming of glucose metabolism or the Warburg effect. However, the association between glycolysis-related genes with clinical features and prognosis of PDAC is still unknown. Here, we used the meta-analysis to correlate the hazard ratios (HR) of 106 glycolysis genes from MSigDB by the cox proportional hazards regression analysis in 6 clinical data sets of PDAC patients to form a training cohort, and a single group of PDAC patients from the TCGA, ICGC, Arrayexpress and GEO databases to form the validation cohort. Then, a glycolysis-related prognosis (GRP) score based on 29 glycolysis prognostic genes was established in 757 PDAC patients from the training composite cohort and validated in 267 ICGC-CA validation cohort (all P < .05). In addition, including PADC, the prognostic value was also confirmed in other 7 out of 30 pan-cancer cohorts. The GRP score was significantly related to specific metabolism pathways, immune genes and immune cells in the patients with PADC (all P < .05). Finally, by combining with immune cells, the GRP score also well-predicted the chemosensitivity of patients with PADC in the TCGA cohort (AUC = 0.709). In conclusion, this study developed a GRP score for patients with PDAC in predicting prognosis and chemosensitivity for PDAC.
Collapse
Affiliation(s)
- Xiu‐Ping Zhang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Qinjunjie Chen
- Department of Hepatic Surgery IVThe Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Qu Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Yang Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Fei Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Zhi‐Ming Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Guo‐Dong Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Wan Yee Lau
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
- Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Yu‐Zhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Rong Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| |
Collapse
|
23
|
Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin Transl Oncol 2021; 23:1905-1914. [PMID: 33864618 DOI: 10.1007/s12094-021-02599-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Former studies found that circRNAs play an important part in the occurrence of a variety of malignant biological characteristics that are critical for cancer progression. It has been shown that circ_03955 is highly expressed and implicated with quantities of biological processes in solid tumor. However, whether circ_03955 regulates the tumorigenesis and Warburg effect of pancreatic cancer (PC) remains largely unknown. MATERIALS AND METHODS The level of circ_03955 in PC tissues and cell lines was determined by real-time qPCR (RT-qPCR). Loss-of-function and gain-of-function assays were employed to investigate the biological role of circ_03955 in cell proliferation, apoptosis, and glycolysis. RT-qPCR, western blotting, bioinformatics analysis, luciferase reporter assay, and in vivo tumorigenicity assay were employed to determine the underlying mechanisms. RESULTS In this study, it was investigated that circ_03955 was up-regulated in PC clinical samples as well as PC cell lines and associated with poor clinical outcomes of PC patients. Functional assays revealed that circ_03955 exerts a certain stimulative effect on the growth of PC cells in vitro and in vivo. Circ_03955 also inhibited apoptosis and promotes Warburg effect in PC cells. Mechanistically, bioinformatics analysis indicated that circ_03955 acts as a sponge for microRNA (miR)-3662, and hypoxia-inducible factor 1ɑ (HIF-1ɑ) was one of the transcriptional targets of miR-3662. Importantly, genetic promoting of HIF-1ɑ or downregulation of miR-3662 largely compromised circ_03955 depletion mediated tumor-inhibiting effects. CONCLUSIONS Taken together, circ_03955 functions as a tumor promoter through miR-3662/HIF-1α axis, which might provide a novel sight for PC treatment.
Collapse
|
24
|
Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021; 26:1642. [PMID: 33804240 PMCID: PMC7998946 DOI: 10.3390/molecules26061642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Laura Follia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Computer Science Department, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
25
|
Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers (Basel) 2020; 12:cancers12113244. [PMID: 33153193 PMCID: PMC7693872 DOI: 10.3390/cancers12113244] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The role of lactate in cancer described by Otto Warburg in 1927 states that cancer cells uptake high amount of glucose with a marked increase in lactate production, this is known as the “Warburg effect”. Since then lactate turn out to be a major signaling molecule in cancer progression. Its release from tumor cells is accompanied by acidification ranging from 6.3 to 6.9 in the tumor microenvironment (TME) which favors processes such as tumor promotion, angiogenesis, metastasis, tumor resistance and more importantly, immunosuppression which has been associated with a poor outcome. The goal of this review is to examine and discuss in deep detail the recent studies that address the role of lactate in all these cancerous processes. Lastly, we explore the efforts to target the lactate production and its transport as a promising approach for cancer therapeutics. Abstract Cancer is a complex disease that includes the reprogramming of metabolic pathways by malignant proliferating cells, including those affecting the tumor microenvironment (TME). The “TME concept” was introduced in recognition of the roles played by factors other than tumor cells in cancer progression. In response to the hypoxic or semi-hypoxic characteristic of the TME, cancer cells generate a large amount of lactate via the metabolism of glucose and glutamine. Export of this newly generated lactate by the tumor cells together with H+ prevents intracellular acidification but acidifies the TME. In recent years, the importance of lactate and acidosis in carcinogenesis has gained increasing attention, including the role of lactate as a tumor-promoting metabolite. Here we review the existing literature on lactate metabolism in tumor cells and the ability of extracellular lactate to direct the metabolic reprogramming of those cells. Studies demonstrating the roles of lactate in biological processes that drive or sustain carcinogenesis (tumor promotion, angiogenesis, metastasis and tumor resistance) and lactate’s role as an immunosuppressor that contributes to tumor evasion are also considered. Finally, we consider recent therapeutic efforts using available drugs directed at and interfering with lactate production and transport in cancer treatment.
Collapse
|
26
|
Razzaque MS, Atfi A. TGIF1-Twist1 axis in pancreatic ductal adenocarcinoma. Comput Struct Biotechnol J 2020; 18:2568-2572. [PMID: 33005315 PMCID: PMC7520386 DOI: 10.1016/j.csbj.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
TG-interacting factor 1 (TGIF1) exerts inhibitory effects on transforming growth factor-beta (TGF-β) signaling by suppressing Smad signaling pathway at multiple levels. TGIF1 activity is important for normal embryogenesis and organogenesis, yet its dysregulation can culminate in tumorigenesis. For instance, increased expression of TGIF1 correlates with poor prognosis in triple-negative breast cancer patients, and enforced expression of TGIF1 facilitates Wnt-driven mammary tumorigenesis, suggesting that TGIF1 might function as an oncoprotein. Quite surprisingly, TGIF1 has recently been shown to function as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC), possibly owing to its ability to antagonize the pro-malignant transcription factor Twist1. In this article, we will briefly elaborate on the biological and clinical significance of the unique tumor-suppressive function of TGIF1 and its functional interaction with Twist1 in the context of PDAC pathogenesis and progression.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Azeddine Atfi
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Huang X, Yang X, Sun C, Huang S, Cheng M, Han Y. Biophysical signal transduction in cancer cells: Understanding its role in cancer pathogenesis and treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188402. [PMID: 32771535 DOI: 10.1016/j.bbcan.2020.188402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Signaling between cells can promote both the development and progression of cancer. It has been found that chemical and physical signals, together with extracellular factors, can influence cancer progression. In this review, we focus on the physical microenvironment of cancer cells and examine the action of mechanical, electromagnetic, thermal, and acoustic signals on cancer cells, which may provide new directions for cancer research and treatment.
Collapse
Affiliation(s)
- XiaoLei Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - XiaoXu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - ShuXia Huang
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
28
|
Jia C, Li H, Fu D, Lan Y. GFAT1/HBP/O-GlcNAcylation Axis Regulates β-Catenin Activity to Promote Pancreatic Cancer Aggressiveness. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1921609. [PMID: 32149084 PMCID: PMC7048922 DOI: 10.1155/2020/1921609] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reprogrammed glucose and glutamine metabolism are essential for tumor initiation and development. As a branch of glucose and metabolism, the hexosamine biosynthesis pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and contributes to the O-GlcNAcylation process. However, the spectrum of HBP-dependent tumors and the mechanisms by which the HBP promotes tumor aggressiveness remain areas of active investigation. In this study, we analyzed the activity of the HBP and its prognostic value across 33 types of human cancers. Increased HBP activity was observed in pancreatic ductal adenocarcinoma (PDAC), and higher HBP activity predicted a poor prognosis in PDAC patients. Genetic silencing or pharmacological inhibition of the first and rate-limiting enzyme of the HBP, glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1), inhibited PDAC cell proliferation, invasive capacity, and triggered cell apoptosis. Notably, these effects can be restored by addition of UDP-GlcNAc. Moreover, similar antitumor effects were noticed by pharmacological inhibition of GFAT1 with 6-diazo-5-oxo-l-norleucine (DON) or Azaserine. PDAC is maintained by oncogenic Wnt/β-catenin transcriptional activity. Our data showed that GFAT1 can regulate β-catenin expression via modulation of the O-GlcNAcylation process. TOP/FOP-Flash and real-time qPCR analysis showed that GFAT1 knockdown inhibited β-catenin activity and the transcription of its downstream target genes CCND1 and MYC. Ectopic expression of a stabilized form of β-catenin restored the suppressive roles of GFAT1 knockdown on PDAC cell proliferation and invasion. Collectively, our findings indicate that higher GFAT1/HBP/O-GlcNAcylation exhibits tumor-promoting roles by maintaining β-catenin activity in PDAC.
Collapse
Affiliation(s)
- Chunzeng Jia
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Lan
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|