1
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
2
|
Markandran K, Clemente KNM, Tan E, Attal K, Chee QZ, Cheung C, Chen CK. The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. Int J Mol Sci 2024; 25:8062. [PMID: 39125631 PMCID: PMC11311979 DOI: 10.3390/ijms25158062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Kawasaki disease (KD) is a febrile illness characterised by systemic inflammation of small- and medium-sized blood vessels, which commonly occurs in young children. Although self-limiting, there is a risk of developing coronary artery lesions as the disease progresses, with delay in diagnosis and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, this article not only summarises the key research gaps associated with KD, but also evaluates the possibility of using circulating endothelial injury biomarkers, such as circulating endothelial cells, endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tools for KD: a "liquid biopsy" approach. The challenges of translating liquid biopsies to use in KD and the opportunities for improvement in its diagnosis and management that such translation may provide are discussed. The use of endothelial damage markers, which are easily obtained via blood collection, as diagnostic tools is promising, and we hope this will be translated to clinical applications in the near future.
Collapse
Affiliation(s)
- Kasturi Markandran
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Kristine Nicole Mendoza Clemente
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Elena Tan
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Karan Attal
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Qiao Zhi Chee
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Experimental Medicine Building, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
3
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Wei K, Chen T, Fang H, Shen X, Tang Z, Zhao J. Mitochondrial DNA release via the mitochondrial permeability transition pore activates the cGAS-STING pathway, exacerbating inflammation in acute Kawasaki disease. Cell Commun Signal 2024; 22:328. [PMID: 38872145 PMCID: PMC11177463 DOI: 10.1186/s12964-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an immune vasculitis of unknown origin, characterized by transient inflammation. The activation of the cGAS-STING pathway, triggered by mitochondrial DNA (mtDNA) release, has been implicated in the onset of KD. However, its specific role in the progression of inflammation during KD's acute phase remains unclear. METHODS We measured mtDNA and 2'3'-cGAMP expression in KD patient serum using RT-qPCR and ELISA. A murine model of KD was induced by injecting Lactobacillus casei cell wall extract (LCWE), after which cGAS-STING pathway activation and inflammatory markers were assessed via immunohistochemistry, western blot, and RT-qPCR. Human umbilical vein endothelial cells (HUVECs) were treated with KD serum and modulators of the cGAS-STING pathway for comparative analysis. Mitochondrial function was evaluated using Mitosox staining, mPTP opening was quantified by fluorescence microscopy, and mitochondrial membrane potential (MMP) was determined with JC-1 staining. RESULTS KD patient serum exhibited increased mtDNA and 2'3'-cGAMP expression, with elevated levels of pathway-related proteins and inflammatory markers observed in both in vivo and in vitro models. TEM confirmed mitochondrial damage, and further studies demonstrated that inhibition of mPTP opening reduced mtDNA release, abrogated cGAS-STING pathway activation, and mitigated inflammation. CONCLUSION These findings indicate that mtDNA released through the mPTP is a critical activator of the cGAS-STING pathway, contributing significantly to KD-associated inflammation. Targeting mtDNA release or the cGAS-STING pathway may offer novel therapeutic approaches for KD management.
Collapse
Affiliation(s)
- Ke Wei
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
- Research Institute of Comparative Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tao Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Fang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xianjuan Shen
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
5
|
Xu T, Chen T, Fang H, Shen X, Shen X, Tang Z, Zhao J. Human Umbilical Cord Mesenchymal Stem Cells Repair Endothelial Injury and Dysfunction by Regulating NLRP3 to Inhibit Endothelial Cell Pyroptosis in Kawasaki Disease. Inflammation 2024; 47:483-502. [PMID: 37948033 DOI: 10.1007/s10753-023-01921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Vascular endothelial inflammation and endothelial dysfunction are the main causes of endothelial injury in Kawasaki disease (KD). Human umbilical cord-derived mesenchymal stem cells (Huc-MSCs) have multiple functions in immune regulation. This study examined whether Huc-MSCs inhibited endothelial inflammation and improved endothelial function in KD through constructing cell and in vivo animal KD vasculitis models. The pyroptosis factor NOD-like receptor protein 3 (NLRP3) was involved in the inflammatory process in the acute phase of KD. After tail vein injection of Huc-MSCs, inflammatory cell infiltration and the expression of pyroptosis-related proteins in the LCWE-induced KD mouse vasculitis model were significantly reduced. In vitro, NLRP3-dependent pyroptosis successfully induced human umbilical vein endothelial cell (HUVEC) damage. Huc-MSCs effectively increased the abilities of impaired HUVECs to proliferate, migrate, invade, and form vessel-like tubes, while inhibiting their apoptosis, suggesting that Huc-MSCs can reduce inflammation and improve vascular endothelial function by inhibiting the NLRP3-dependent pyroptosis pathway in KD, providing a possibility and novel target for KD endothelial injury and dysfunction.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Tao Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
| | - Hao Fang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Xiwei Shen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
- Research Institute of Comparative Medicine, Nantong University, Nantong Jiangsu Province, 226001, China
| | - Xianjuan Shen
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong Jiangsu Province, 226001, China.
| |
Collapse
|
6
|
Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med 2022; 9:981010. [PMID: 36003919 PMCID: PMC9393387 DOI: 10.3389/fcvm.2022.981010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Kawasaki disease (KD) is an acute, inflammation mediated vasculitis, mainly affecting in children under five, which is consider as the most common coronary artery disease in children. The injuries of coronary arteries would result in dilation or thrombus formation, bringing great threaten to patients. Endothelium, located in the inner surface of coronary artery, serves as the interface between the circulating inflammatory cells and vascular media or adventitia, which is the first target of inflammatory attacks during early stage of KD. A series of studies have determined vascular endothelial cells damages and dysfunction in KD patients. However, current therapeutic strategy is still challenging. So that it is critical to underline the mechanisms of endothelium injuries. In this review, the role of endothelial cells in the pathogenesis of KD and the therapeutic methods for endothelial cells were systematically described.
Collapse
|