1
|
Yu ZP, Sun KX, Zhang D, Yu ZQ, Chen DY, Zhu H, Si H, Dai PF. Development and preclinical evaluation of a gallium-68 labeled novel diagnostic tracer for visualizing ALK expression in tumor. Eur J Pharm Sci 2025; 209:107087. [PMID: 40169071 DOI: 10.1016/j.ejps.2025.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is prominently expressed in numerous malignant tumors, which lead to aberrant tumor proliferation, invasion and metastasis. Ceritinib (LDK378), as second-generation targeted drugs, has been used to treat advanced ALK-positive non-small cell lung cancer (NSCLC). Herein, we sought to develop a novel ALK-positron emission tomography/magnetic resonance (PET/MR) tracer 68Ga-DOTA-CTB (68Ga labeled ceritinib) based on ceritinib scaffold to monitor the ALK expression levels during targeted therapy with ceritinib. The 68Ga-DOTA-CTB radiotracer, obtained via a simple labeling procedure, exhibits favorable radiochemical purity, stability, and pharmacokinetic properties. Subsequently, cellular uptake experiments have demonstrated that 68Ga-DOTA-CTB could be accumulated in H2228 cells. Imaging and biodistribution experiments have revealed significant uptake of the radiotracer in the tumors of the experimental group, while tumors in the blocking group, which were saturated with an excess of precursor, exhibited a markedly reduced level of radioactivity. These empirical findings suggest that 68Ga-DOTA-CTB holds substantial potential as a novel PET/MR imaging tracer for ALK-positive tumors.
Collapse
Affiliation(s)
- Zhen-Peng Yu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke-Xin Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zhi-Qiang Yu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Deng-Yun Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Hong Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Hongwei Si
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Peng-Fei Dai
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; Anhui province key laboratory of tumor immune microenvironment and immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
2
|
Chen Y, Zhuo R, Sun L, Tao Y, Li G, Zhu F, Xu Y, Wang J, Li Z, Yu J, Yin H, Wu D, Li X, Fang F, Xie Y, Hu Y, Wang H, Yang C, Shi L, Wang X, Zhang Z, Pan J. Super-enhancer-driven IRF2BP2 enhances ALK activity and promotes neuroblastoma cell proliferation. Neuro Oncol 2024; 26:1878-1894. [PMID: 38864832 PMCID: PMC11449008 DOI: 10.1093/neuonc/noae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2, and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSIONS Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of the NB susceptibility gene ALK.
Collapse
Affiliation(s)
- Yanling Chen
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lichao Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yunyun Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Di Wu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hairong Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lei Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Wang
- Department of Orthopedics, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Phan TDA, Nguyen TQ, To NT, Thanh TL, Ngo DQ. Immunohistochemical expression of anaplastic lymphoma kinase in neuroblastoma and its relations with some clinical and histopathological features. J Pathol Transl Med 2024; 58:29-34. [PMID: 38229432 DOI: 10.4132/jptm.2023.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) mutations have been identified as a prominent cause of some familial and sporadic neuroblastoma (NB). ALK expression in NB and its relationship with clinical and histopathological features remains controversial. This study investigated ALK expression and its potential relations with these features in NB. METHODS Ninety cases of NB at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam from 01/01/2018 to 12/31/2021, were immunohistochemically stained with ALK (D5F3) antibody. The ALK expression and its relations with some clinical and histopathological features were investigated. RESULTS The rate of ALK expression in NB was 91.1%. High ALK expression (over 50% of tumor cells were positive with moderate-strong intensity) accounted for 65.6%, and low ALK expression accounted for 34.4%. All the MYCN-amplified NB patients had ALK immunohistochemistry positivity, most cases had high ALK protein expression. The undifferentiated subtype of NB had a lower ALK-positive rate than the poorly differentiated and differentiated subtype. The percentages of ALK positivity were significantly higher in more differentiated histological types of NB (p = .024). There was no relation between ALK expression and: age group, sex, primary tumor location, tumor stage, MYCN status, clinical risk, Mitotic-Karyorrhectic Index, prognostic group, necrosis, and calcification. CONCLUSIONS ALK was highly expressed in NB. ALK expression was not related to several clinical and histopathological features. More studies are needed to elucidate the association between ALK expression and ALK gene status and to investigate disease progression, especially the oncogenesis of ALK-positive NB.
Collapse
Affiliation(s)
- Thu Dang Anh Phan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Quyen Nguyen
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nhi Thuy To
- Department of Oncology-Hematology, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Thien Ly Thanh
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dat Quoc Ngo
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Shreenivas A, Janku F, Gouda MA, Chen HZ, George B, Kato S, Kurzrock R. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis Oncol 2023; 7:101. [PMID: 37773318 PMCID: PMC10542332 DOI: 10.1038/s41698-023-00449-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations (activating mutations, amplifications, and fusions/rearrangements) occur in ~3.3% of cancers. ALK fusions/rearrangements are discerned in >50% of inflammatory myofibroblastic tumors (IMTs) and anaplastic large cell lymphomas (ALCLs), but only in ~0.2% of other cancers outside of non-small cell lung cancer (NSCLC), a rate that may be below the viability threshold of even large-scale treatment trials. Five ALK inhibitors -alectinib, brigatinib, ceritinb, crizotinib, and lorlatinib-are FDA approved for ALK-aberrant NSCLCs, and crizotinib is also approved for ALK-aberrant IMTs and ALCL, including in children. Herein, we review the pharmacologic tractability of ALK alterations, focusing beyond NSCLC. Importantly, the hallmark of approved indications is the presence of ALK fusions/rearrangements, and response rates of ~50-85%. Moreover, there are numerous reports of ALK inhibitor activity in multiple solid and hematologic tumors (e.g., histiocytosis, leiomyosarcoma, lymphoma, myeloma, and colorectal, neuroendocrine, ovarian, pancreatic, renal, and thyroid cancer) bearing ALK fusions/rearrangements. Many reports used crizotinib or alectinib, but each of the approved ALK inhibitors have shown activity. ALK inhibitor activity is also seen in neuroblastoma, which bear ALK mutations (rather than fusions/rearrangements), but response rates are lower (~10-20%). Current data suggests that ALK inhibitors have tissue-agnostic activity in neoplasms bearing ALK fusions/rearrangements.
Collapse
Affiliation(s)
- Aditya Shreenivas
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
| | | | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Zi Chen
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Ben George
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
- University of Nebraska, Omaha, NE, USA.
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France.
| |
Collapse
|
5
|
Sa JK, Kim J, Kang S, Kim SW, Song T, Shim SH, Choi MC, No JH, Song JY, Kim D, Kim YM, Kim JH, Lee JW. Somatic genomic landscape of East Asian epithelial ovarian carcinoma and its clinical implications from prospective clinical sequencing; A Korean Gynecologic Oncology Group study (KGOG 3047). Int J Cancer 2022; 151:1086-1097. [PMID: 35666535 DOI: 10.1002/ijc.34150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
Abstract
Through the wide adaptation of next-generation sequencing (NGS) technology within clinical practice, molecular profiling of the tumor has been the principal component of personalized treatment. In this study, we have generated a large collection of cancer genomes on East Asian epithelial ovarian carcinoma (EOC) patients and demonstrate the feasibility and utility of NGS platforms to explore the dynamic interrelations of major cancer driver alterations and their impacts on clinical prognosis and management. A total of 652 EOC patients have undergone clinical NGS panels to determine the prevalence of germline and somatic mutations. Notably, TP53 was the most frequently altered event (73%), followed by both BRCA1 and BRCA2 (22% each) and MYC (19%) through pan-EOC analysis. When analyzed based on individual histopathological levels, TP53 mutation was highly dominant in high-grade serous and mucinous histology, whereas mutations in PIK3CA and ARID1A were mostly observed in clear cell carcinoma, and KRAS, BRAF, and CDKN2A mutations were enriched in endometrioid, low-grade serous, and mucinous tumors, respectively. The network-based probabilistic model showed significant co-occurrences of TP53 with BRCA1 and ALK with BRCA2, NOTCH1, and ROS1, whereas mutual exclusivity of TP53 with KRAS and PIK3CA was evident. Furthermore, we utilized machine-learning algorithms to identify molecular correlates that conferred increased sensitivity to platinum and olaparib treatments including somatic mutations in BRCA1, ATM, and MYC. Conversely, patients with ALK mutation were considerably resistant to both treatment modalities. Collectively, our results demonstrate the clinical feasibility of prospective genetic sequencing to facilitate personalized treatment opportunities for patients with EOC.
Collapse
Affiliation(s)
- Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- Departments of Obstetrics and Gynecology, Chung-ang University Gwang-myeong Hospital, Gwang-myeong, Republic of Korea
| | - Sokbom Kang
- Gynecologic Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Women's Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Taejong Song
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Min Chul Choi
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Doculara L, Trahair TN, Bayat N, Lock RB. Circulating Tumor DNA in Pediatric Cancer. Front Mol Biosci 2022; 9:885597. [PMID: 35647029 PMCID: PMC9133724 DOI: 10.3389/fmolb.2022.885597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.
Collapse
Affiliation(s)
- Louise Doculara
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Narges Bayat
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Richard B. Lock,
| |
Collapse
|
7
|
Somasundaram DB, Aravindan S, Gupta N, Yu Z, Baker A, Aravindan N. ALK expression, prognostic significance, and its association with MYCN expression in MYCN non-amplified neuroblastoma. World J Pediatr 2022; 18:285-293. [PMID: 35132576 DOI: 10.1007/s12519-022-00517-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | | | - Zhongxin Yu
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Ashley Baker
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Liquid biomarkers for the management of paediatric neuroblastoma: an approach to personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground:Neuroblastoma is the most common extracranial solid tumour of infancy and accounts for about 6–10% of paediatric cancers. It has a biologically and clinically heterogeneous behaviour that ranges from spontaneous regression to cases of highly aggressive metastatic disease that could be unresponsive to standard therapy. In recent years, there have been several investigations into the development of various diagnostic, predictive and prognostic biomarkers towards personalised and targeted management of the disease.Materials and Methods:This paper reports on the review of current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, prognostication and monitoring of the response of treatment of neuroblastoma in paediatric patients.Conclusions:Tumour markers can significantly improve diagnosis; however, the invasive, unpleasant and inconvenient nature of current tissue biopsies limits their applications, especially in paediatric patients. Therefore, the development of a non-invasive, reliable high accurate and personalised diagnostic tool capable of early detection and rapid response is the most promising step towards advanced cancer management from tumour diagnosis, therapy to patient monitoring and represents an important step towards the promise of precision, personalised and targeted medicine. Liquid biopsy assay with wide ranges of clinical applications is emerging to hold incredible potential for advancing cancer treatment and has greater promise for diagnostic purposes, identification and tracking of tumour-specific alterations during the course of the disease and to guide therapeutic decisions.
Collapse
|
10
|
Borenäs M, Umapathy G, Lai W, Lind DE, Witek B, Guan J, Mendoza‐Garcia P, Masudi T, Claeys A, Chuang T, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J 2021; 40:e105784. [PMID: 33411331 PMCID: PMC7849294 DOI: 10.15252/embj.2020105784] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wei‐Yun Lai
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Barbara Witek
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Patricia Mendoza‐Garcia
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Tzu‐Po Chuang
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Abeer El Wakil
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Present address:
Department of Biological SciencesAlexandria UniversityAlexandriaEgypt
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Susanne Fransson
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Koster
- Department of OncogenomicsAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mathias Johansson
- Clinical GenomicsScience for life laboratoryUniversity of GothenburgGothenburgSweden
| | - Jennie Gaarder
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Javanmardi N, Fransson S, Djos A, Umapathy G, Östensson M, Milosevic J, Borenäs M, Hallberg B, Kogner P, Martinsson T, Palmer RH. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 2020; 59:50-57. [PMID: 31340081 DOI: 10.1002/gcc.22790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.
Collapse
Affiliation(s)
- Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Duan K, Dickson BC, Marrano P, Thorner PS, Chung CT. Adult‐onset neuroblastoma: Report of seven cases with molecular genetic characterization. Genes Chromosomes Cancer 2019; 59:240-248. [DOI: 10.1002/gcc.22826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kai Duan
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Pathology and Laboratory Medicine Mount Sinai Hospital Toronto Ontario Canada
| | - Paula Marrano
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Paul S. Thorner
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Catherine T. Chung
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| |
Collapse
|
15
|
Aygün Z, Batur Ş, Emre Ş, Celkan T, Özman O, Comunoglu N. Frequency of ALK and GD2 Expression in Neuroblastoma. Fetal Pediatr Pathol 2019; 38:326-334. [PMID: 30955398 DOI: 10.1080/15513815.2019.1588439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: The aim of this study was to elucidate the significance of immunohistochemical staining patterns of ALK and GD2 in peripheral neuroblastic tumors with different stages and favorable/unfavorable features. Materials and methods: 32 neuroblastomas, 7 ganglioneuroblastomas, and 1 ganglioneuroma cases were immunohistochemically stained with ALK and GD2, and the expressions were graded and correlated with differentiation, size, and favorable/unfavorable histology. Results: There was no statistically significant correlation between ALK immunopositivity and tumor differentiation or stage. Although there was no statistically significant correlation between GD2 immunopositivity and stage, the intensity and prevalence of GD2 immunostaining were statistically significantly higher in the well differentiated group and in tumors which were smaller than 10 cm. Conclusion: GD2 immunostaining levels correlated with tumor differentiation and size. ALK immunostaining was not related to tumor differentiation or stage.
Collapse
Affiliation(s)
- Zeynep Aygün
- a Kastamonu Goverment Hospital, Pathology Unit , Kastamonu , Turkey
| | - Şebnem Batur
- b Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pathology , Istanbul , Turkey
| | - Şenol Emre
- c Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pediatric Surgery , Istanbul , Turkey
| | - Tiraje Celkan
- d Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pediatric Hematooncology , Istanbul , Turkey
| | - Oktay Özman
- e Health Sciences University, Urology Clinic, Gaziosmanpa ş a Taksim Education and Research Hospital, Urology Clinic
| | - Nil Comunoglu
- f Istanbul University Cerrahpa ş a-Cerrahpa ş a Faculty of Medicine, Pathology , Istanbul , Turkey
| |
Collapse
|
16
|
Trigg RM, Shaw JA, Turner SD. Opportunities and challenges of circulating biomarkers in neuroblastoma. Open Biol 2019; 9:190056. [PMID: 31088252 PMCID: PMC6544987 DOI: 10.1098/rsob.190056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular analysis of nucleic acid and protein biomarkers is becoming increasingly common in paediatric oncology for diagnosis, risk stratification and molecularly targeted therapeutics. However, many current and emerging biomarkers are based on analysis of tumour tissue, which is obtained through invasive surgical procedures and in some cases may not be accessible. Over the past decade, there has been growing interest in the utility of circulating biomarkers such as cell-free nucleic acids, circulating tumour cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here, we review the potential of emerging circulating biomarkers in the management of neuroblastoma and highlight challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacqui A. Shaw
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
17
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
18
|
ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel) 2018; 10:cancers10040113. [PMID: 29642598 PMCID: PMC5923368 DOI: 10.3390/cancers10040113] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40-50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related 'bypass' mechanisms and concomitant oncogenic pathways.
Collapse
|
19
|
Alshareef A, Irwin MS, Gupta N, Zhang HF, Haque M, Findlay SD, Seong BKA, Lai J, Rayis M, Al-Dandan S, Lai R. The absence of a novel intron 19-retaining ALK transcript ( ALK-I19) and MYCN amplification correlates with an excellent clinical outcome in neuroblastoma patients. Oncotarget 2018. [PMID: 29535836 PMCID: PMC5828214 DOI: 10.18632/oncotarget.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ALK missense mutations are detected in 8% of neuroblastoma (NB) tumors at diagnosis and confer gain-of-function oncogenic effects. The mechanisms by which the expression of wild-type or mutant ALK, which is detectable in the majority of cases, is regulated are not well understood. We have identified a novel ALK transcript characterized by the retention of intron 19 (ALK-I19). ALK-I19 was detected in 4/4 NB cell lines, but not other non-NB cells with ALK aberrations. The functional significance of ALK-I19 was determined by specific siRNA knockdown of this transcript, which resulted in substantially decreased expression of the fully-spliced ALK transcripts (FS-ALK) and a significant reduction in cell growth. We also demonstrate that ALK-I19 is a precursor of FS-ALK. ALK-I19 was detected in 14/37 (38%) tumors from patients with newly diagnosed NB. ALK-I19 expression correlated with undifferentiated histology and strong ALK protein expression detectable by immunohistochemistry. Importantly, patients with tumors that did not express ALK-I19 and lacked MYCN amplification had an excellent clinical outcome, with 19/19 patients survived at 5-years. In conclusion, ALK-I19 is a novel ALK transcript that likely represents a marker of undifferentiated NB cells. The absence of ALK-I19 and MYCN amplification is a useful prognostic marker for NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Meredith S Irwin
- Division of Haematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Scott D Findlay
- Department of Oncology, University of Alberta, Edmonton, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | | - Justine Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Mohammed Rayis
- Department of Pediatric Oncology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sadeq Al-Dandan
- Department of Anatomical Pathology, King Fahad Medical City, King Saud bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.,Department of Oncology, University of Alberta, Edmonton, Canada.,DynaLIFE Medical Laboratories, Edmonton, Canada
| |
Collapse
|
20
|
Alshareef A, Gupta N, Zhang HF, Wu C, Haque M, Lai R. High expression of β-catenin contributes to the crizotinib resistant phenotype in the stem-like cell population in neuroblastoma. Sci Rep 2017; 7:16863. [PMID: 29203817 PMCID: PMC5715105 DOI: 10.1038/s41598-017-17319-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
ALK has been identified as a novel therapeutic target in neuroblastoma (NB), but resistance to ALK inhibitors (such as crizotinib) is well recognized. We recently published that the crizotinib sensitivity in NB cells strongly correlates with the crizotinib—ALK binding, and β-catenin effectively hinders this interaction and confers crizotinib resistance. Here, we asked if these observations hold true for the stem-like cells in NB cells, which were purified based on their responsiveness to a Sox2 reporter. Compared to bulk, reporter unresponsive (RU) cells, reporter responsive (RR) cells had significantly higher neurosphere formation ability, expression of CD133/nestin and chemo-resistance. Using the cellular thermal shift assay, we found that RR cells exhibited significantly weaker crizotinib—ALK binding and higher crizotinib resistance than RU cells. The suboptimal crizotinib—ALK binding in RR cells can be attributed to their high β-catenin expression, since siRNA knockdown of β-catenin restored the crizotinib—ALK binding and lowered the crizotinib resistance to the level of RU cells. Enforced expression of β-catenin in RU cells resulted in the opposite effects. To conclude, high expression of β-catenin in the stem-like NB cells contributes to their crizotinib resistance. Combining β-catenin inhibitors and ALK inhibitors may be useful in treating NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada. .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,DynaLIFE Medical Laboratories, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Lodrini M, Sprüssel A, Astrahantseff K, Tiburtius D, Konschak R, Lode HN, Fischer M, Keilholz U, Eggert A, Deubzer HE. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma. Oncotarget 2017; 8:85234-85251. [PMID: 29156716 PMCID: PMC5689606 DOI: 10.18632/oncotarget.19076] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/20/2017] [Indexed: 01/28/2023] Open
Abstract
The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Marco Lodrini
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Sprüssel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Tiburtius
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Konschak
- Translational Radiation Oncology Research Laboratory, Department of Radiooncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Holger N Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Germany
| | - Matthias Fischer
- Department of Pediatric Hematology and Oncology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Junior Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| |
Collapse
|
22
|
ALK Expression Is a Novel Marker for the WNT-activated Type of Pediatric Medulloblastoma and an Indicator of Good Prognosis for Patients. Am J Surg Pathol 2017; 41:781-787. [DOI: 10.1097/pas.0000000000000847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Ahmed AA, Zhang L, Reddivalla N, Hetherington M. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol 2017; 34:165-185. [PMID: 28662353 DOI: 10.1080/08880018.2017.1330375] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood accounting for 8-10% of all childhood malignancies. The tumor is characterized by a spectrum of histopathologic features and a heterogeneous clinical phenotype. Modern multimodality therapy results in variable clinical response ranging from cure in localized tumors to limited response in aggressive metastatic disease. Accurate clinical staging and risk assessment based on clinical, surgical, biologic and pathologic criteria are of pivotal importance in assigning prognosis and planning effective treatment approaches. Numerous studies have analyzed the presence of several clinicopathologic and biologic factors in association with the patient's prognosis and outcome. Although patient's age, tumor stage, histopathologic classification, and MYCN amplification are the most commonly validated prognostic markers, several new gene mutations have been identified in sporadic and familial neuroblastoma cases that show association with an adverse outcome. Novel molecular studies have also added data on chromosomal segmental aberrations in MYCN nonamplified tumors. In this review, we provide an updated summary of the clinical, serologic and genetic prognostic indicators in neuroblastoma including classic factors that have consistently played a role in risk stratification of patients as well as newly discovered biomarkers that may show a potential significance in patients' management.
Collapse
Affiliation(s)
- Atif A Ahmed
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Lei Zhang
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Naresh Reddivalla
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Maxine Hetherington
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| |
Collapse
|
24
|
Kim EK, Kim S. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma. Pediatr Dev Pathol 2017; 20:133-141. [PMID: 28326957 DOI: 10.1177/1093526616686445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.
Collapse
Affiliation(s)
- Eun Kyung Kim
- 1 Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sewha Kim
- 1 Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,2 Department of Pathology, CHA Bundang Medical Center, CHA University, Gyeonggi-do, Korea
| |
Collapse
|
25
|
Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA, Shaw KR, Mendelsohn J, Mills GB, Meric-Bernstam F, Simon GR. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud 2017; 3:a001115. [PMID: 28050598 PMCID: PMC5171696 DOI: 10.1101/mcs.a001115] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations.
Collapse
Affiliation(s)
- Vijaykumar R Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ann Marie Bailey
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yekaterina B Khotskaya
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nora S Sanchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jia Zeng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Md Abu Shufean
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenna R Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Mendelsohn
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Funda Meric-Bernstam
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - George R Simon
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Peretti U, Ferrara R, Pilotto S, Kinspergher S, Caccese M, Santo A, Brunelli M, Caliò A, Carbognin L, Sperduti I, Garassino M, Chilosi M, Scarpa A, Tortora G, Bria E. ALK gene copy number gains in non-small-cell lung cancer: prognostic impact and clinico-pathological correlations. Respir Res 2016; 17:105. [PMID: 27561692 PMCID: PMC5000438 DOI: 10.1186/s12931-016-0422-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 11/15/2022] Open
Abstract
Background The correlation between ALK gene copy number gain (ALK-CNG) and prognosis in the context of advanced non-small-cell lung cancer (NSCLC) remains a controversial issue. This study aimed to evaluate the association among ALK-CNG according to Fluorescent In Situ Hybridization (FISH), clinical characteristics and survival in resectable and advanced NSCLC. Methods Clinical and pathological data of patients with resectable and advanced NSCLC were retrospectively collected. Tumor tissues were analyzed for ALK-CNG by FISH, and patients were divided in 3 groups/patterns on the basis of ALK signals: disomic [Pattern A], 3–7 signals [Pattern B], >7 signals [Pattern C]. The association between clinical and pathological features and ALK-CNG patterns was evaluated. Disease/progression-free and overall survival (DFS/PFS and OS) were estimated using the Kaplan-Meyer method. Results A number of 128 (76.6 %) out of the 167 eligible patients were evaluable for ALK-CNG, displaying pattern A, B and C in 71 (42.5 %), 42 (25.1 %) and 15 (9 %) patients, respectively. Gains in ALK-CNG appear to be more frequent in smokers/former smokers than in non-smokers (74.2 % versus 20.4 %, respectively, p = 0.03). Pattern A and C seem more frequently associated with higher T-stage (T3-4), while pattern B appears more represented in lower T-stage (T 1-2) (p = 0.06). No significant differences in survival rate were observed among the above groups. Conclusions A high ALK-CNG pattern might be associated with smoking status and theoretically it might mirror genomic instability. The implications for prognosis should be prospectively investigated and validated in larger patients’ series. Trial registration We confirm that all the study was performed in accordance with relevant guidelines and regulations and that all the protocol (part of a larger project MFAG 2013 N.14282) was approved by the local Ethics Committee of the Azienda Ospedaliera Universitaria Integrata of Verona on November 11st, 2014.
Collapse
Affiliation(s)
- U Peretti
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - R Ferrara
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - S Pilotto
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy.
| | - S Kinspergher
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - M Caccese
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - A Santo
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - M Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - A Caliò
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - L Carbognin
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - I Sperduti
- Biostatistics, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | | | - M Chilosi
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - A Scarpa
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - G Tortora
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - E Bria
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, P.le L.A. Scuro 10, 37124, Verona, Italy
| |
Collapse
|
27
|
Zito Marino F, Rocco G, Morabito A, Mignogna C, Intartaglia M, Liguori G, Botti G, Franco R. A new look at the ALK gene in cancer: copy number gain and amplification. Expert Rev Anticancer Ther 2016; 16:493-502. [PMID: 26943457 DOI: 10.1586/14737140.2016.1162098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date, ALK-rearrangement is a molecular target in several cancers, i.e. NSCLC. The dramatic benefits of crizotinib have prompted research into identifying other possible patients carrying ALK gene alterations with possible clinical significance. The ALK gene is involved not only in several rearrangements but also in other alterations such as amplification. ALK-amplification (ALK-A) is a common genetic event in several cancers, generally associated with poor outcome and more aggressive behaviour. Here we review the role of ALK-A in cancer as a prognostic and predictive biomarker. Furthermore, several critical issues regarding ALK-A in relation to; methods of detection, acquired resistance and ALK second generation inhibitors are analyzed. We conclude that ALK-A could be an intriguing alteration in the context of targeted therapy.
Collapse
Affiliation(s)
- Federica Zito Marino
- a Pathology Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Gaetano Rocco
- b Division of Thoracic Surgery, Department of Thoracic Surgical and Medical Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Alessandro Morabito
- c Medical Oncology Unit, Department of Thoracic Surgical and Medical Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Chiara Mignogna
- d Department of Heath Science, Pathology Unit , University 'Magna Graecia' of Catanzaro , Catanzaro , Italy
| | - Martina Intartaglia
- a Pathology Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Giuseppina Liguori
- a Pathology Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Gerardo Botti
- a Pathology Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy
| | - Renato Franco
- a Pathology Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy.,e Pathology Unit , Second University of Naples - SUN , Naples , Italy
| |
Collapse
|
28
|
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015; 5:1210-23. [PMID: 26482930 DOI: 10.1158/2159-8290.cd-15-0235] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.
Collapse
Affiliation(s)
| | - Matthew G Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Jaime H Cheah
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Edmund V Price
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Matthew E Coletti
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Victor Jones
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nicole E Bodycombe
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Christian K Soule
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua Gould
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Alexander
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ava Li
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Philip Montgomery
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Mathias J Wawer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joanne D Kotz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - C Suk-Yee Hon
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ted Liefeld
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua A Bittker
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Michelle Palmer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts. Cancer Biology and Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Alykhan F Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
29
|
Mazzocco K, Defferrari R, Sementa AR, Garaventa A, Longo L, De Mariano M, Esposito MR, Negri F, Ircolò D, Viscardi E, Luksch R, D'Angelo P, Prete A, Castellano A, Massirio P, Erminio G, Gigliotti AR, Tonini GP, Conte M. Genetic abnormalities in adolescents and young adults with neuroblastoma: A report from the Italian Neuroblastoma group. Pediatr Blood Cancer 2015; 62:1725-32. [PMID: 25925003 DOI: 10.1002/pbc.25552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Less than 5% of neuroblastomas (NB) occur in adolescents and young adults (AYA), in whom the disease has an indolent and fatal course. PROCEDURE We studied the genomic profile and histological characteristics of 34 NBs from AYA patients enrolled in the Italian Neuroblastoma Registry (INBR) between 1979 and 2009. RESULTS Disease was disseminated in 20 patients and localized in 14; 30/34 tumors were classified as NB and 4/34 as nodular ganglioneuroblastoma (nGNB). Segmental Chromosome Aberrations (SCAs) were observed in 29 tumors (85%) namely 1p imbalance (58%), 17q gain (52%), 9p loss (32%), 11q loss (30%), 1q gain (17%), 7q gain (17%), 2p gain (14%), 3p loss (14%), and 4p loss (7%). MYCN amplification and MYCN gain were detected in 3 (10%) and 2 cases (7%) respectively. An anaplastic lymphoma receptor tyrosine kinase (ALK) gene mutation study on the available cases from this cohort revealed 4/25 (16%) mutated cases. In parallel, alpha thalassaemia/mental retardation syndrome X linked (ATRX) gene mutations were also sought, a novel mutation being detected in 1/21 (4,7%) cases. CONCLUSION This study confirmed the low incidence of MYCN amplification in AYA and recorded a high frequency of 17q gain and 9p and 11q loss independently from the stage of the disease. The presence of 1q gain, which identifies patients with particularly aggressive disease, relapse and poor survival, was also detected. Furthermore, the frequency of ALK mutations suggests that a target-based therapy with ALK inhibitors might be effective in this subset of patients.
Collapse
Affiliation(s)
- Katia Mazzocco
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Alberto Garaventa
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Luca Longo
- U.O.C. Bioterapie IRCSS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Marilena De Mariano
- U.O.C. Bioterapie IRCSS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Maria Rosaria Esposito
- Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padova, Pediatric Research Institute, Fondazione Città della Speranza, Padova, Italy
| | - Francesca Negri
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | - Davide Ircolò
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Roberto Luksch
- Department of Pediatric Oncology, National Cancer Institute, Milano, Italy
| | - Paolo D'Angelo
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Aurora Castellano
- Department of Pediatric Hematology-Oncology, IRCCS, Ospedale Bambino Gesù, Rome, Italy
| | - Paolo Massirio
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Erminio
- Department of Epidemiology and Biostatistics, Istituto Giannina Gaslini, Genova, Italy
| | | | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padova, Pediatric Research Institute, Fondazione Città della Speranza, Padova, Italy
| | - Massimo Conte
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
30
|
Karakuş E, Emir S, Kaçar A, Karakuş R, Demir HA, Özyörük D. Anaplastic lymphoma kinase gene expression in small round cell tumors of childhood—a comparative ımmunohistochemical study. Ann Diagn Pathol 2015; 19:239-42. [DOI: 10.1016/j.anndiagpath.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
|
31
|
Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, Yan P, Delattre O, Sommer L, Joseph JM, Janoueix-Lerosey I, Gross N, Mühlethaler-Mottet A. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget 2015; 5:4452-66. [PMID: 24947326 PMCID: PMC4147337 DOI: 10.18632/oncotarget.2036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC-1 parental cells in nude mice generated various tumor types, such as NB, osteo/chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.
Collapse
|
32
|
Abstract
Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Neuroblastoma is the primary cause of death from pediatric cancer for children between the ages of one and five years and accounts for ∼13% of all pediatric cancer mortality. Its clinical impact and unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas. Novel targeted therapeutic approaches include small-molecule inhibitors as well as epigenetic, noncoding-RNA, and cell-based immunologic therapies. In this review, recent insights regarding the pathogenesis and biology of neuroblastoma are placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy.
Collapse
Affiliation(s)
- Chrystal U Louis
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030; ,
| | | |
Collapse
|
33
|
Yan B, Kuick CH, Lim M, Venkataraman K, Tennakoon C, Loh E, Lian D, Leong MY, Lakshmanan M, Tergaonkar V, Sung WK, Soh SY, Chang KTE. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas. PLoS One 2014; 9:e106575. [PMID: 25188507 PMCID: PMC4154751 DOI: 10.1371/journal.pone.0106575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/30/2014] [Indexed: 01/17/2023] Open
Abstract
ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC) protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones), ALK genomic status using single-color chromogenic in situ hybridization (CISH), and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM)), in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.
Collapse
Affiliation(s)
- Benedict Yan
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- * E-mail: (BY); (KTEC)
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Malcolm Lim
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kavita Venkataraman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - May Ying Leong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Manikandan Lakshmanan
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Vinay Tergaonkar
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wing-Kin Sung
- Genome Institute of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Shui Yen Soh
- Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kenneth T. E. Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- * E-mail: (BY); (KTEC)
| |
Collapse
|
34
|
Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer 2014; 5:1-14. [PMID: 24955213 PMCID: PMC4063252 DOI: 10.18632/genesandcancer.3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/22/2014] [Indexed: 01/25/2023] Open
Abstract
The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC.
Collapse
Affiliation(s)
| | - Moiz Vora
- LSU Health Shreveport, Department of Pathology, Shreveport, LA, USA
| | - Kim Mayhall
- Tulane University School of Medicine, New Orleans, LA, USA
| | - James Cotelingam
- LSU Health Shreveport, Department of Pathology, Shreveport, LA, USA
| |
Collapse
|
35
|
Murga-Zamalloa C, Lim MS. ALK-driven tumors and targeted therapy: focus on crizotinib. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:87-94. [PMID: 24715763 PMCID: PMC3977456 DOI: 10.2147/pgpm.s37504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinases have emerged as promising therapeutic targets for a diverse set of tumors. Overactivation of the tyrosine kinase anaplastic lymphoma kinase (ALK) has been reported in several types of malignancies such as anaplastic large cell lymphoma, inflammatory myofibroblastic tumor, neuroblastoma, and non-small-cell lung carcinoma. Further characterization of the molecular role of ALK has revealed an oncogenic signaling signature that results in tumor dependence on ALK. ALK-positive tumors display a different behavior than their ALK-negative counterparts; however, the specific role of ALK in some of these tumors remains to be elucidated. Although more studies are required to establish selective targeting of ALK as a definitive therapeutic option, initial trials have shown extraordinary results in the majority of cases.
Collapse
Affiliation(s)
| | - Megan S Lim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Wang M, Yang W, Li M, Li Y. Low expression of miR-150 in pediatric intestinal Burkitt lymphoma. Exp Mol Pathol 2014; 96:261-6. [PMID: 24613688 DOI: 10.1016/j.yexmp.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma with rapid proliferation. It has become evident that miRNAs are involved in hematopoietic malignancies. This study was undertaken to investigate the miRNA expression patterns of pediatric intestinal BL tissues. METHODS We collected 28 BL and 8 reactive lymphoid hyperplasia (RLH) samples. miRNA expression profiling was performed in BL and RLH tissues to identify BL-related miRNAs, which were further analyzed by qRT-PCR and miRNA-ISH. In addition, immunohistochemistry (IHC) and western blot were used to define the protein targets of the BL-related miRNAs. Furthermore, we evaluated cell growth status by using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in Raji cell line, which was transected with the BL-related miRNA mimics or inhibitors. RESULTS miRNA expression profiling showed that miR-150 had extremely decreased expression levels in BL patients. In both ISH and qRT-PCR analyses, BL had reduced levels of miR-150 expression compared with RLH. However, there is no significant correlation of miR-150 expression and EBV status in BL. Moreover, IHC and western blotting defined that c-Myb and Survivin are the protein targets of miR-150. Re-expression of miR-150 reduced the proliferation of Raji cells. CONCLUSIONS Deregulation of miR-150 may be useful as a diagnostic tool in BL, based on miRNA profile screening, qRT-PCR and miRNA-ISH. miR-150 plays an important role in BL by targeting c-Myb and Survivin. Re-expression of miR-150 reduced the proliferation of Raji cells, which suggests it to be a promising novel candidate for tumor treatment.
Collapse
Affiliation(s)
- Miao Wang
- Department of Pathology, Basic Medical College, Capital Medical University, Beijing, China.
| | - Wenping Yang
- Department of Pathology, Jiangxi Children's Hospital, Jiangxi, China
| | - Min Li
- Department of Pathology, Basic Medical College, Peking University Health Science Center, Beijing, China
| | - Yong Li
- Department of Pathology, Basic Medical College, Capital Medical University, Beijing, China
| |
Collapse
|