1
|
Rivi V, Batabyal A, Lukowiak K. The multifaceted effects of flavonoids on neuroplasticity. Restor Neurol Neurosci 2024; 42:93-111. [PMID: 38995810 DOI: 10.3233/rnn-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the human population with life expectancy increasing in the current times. This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids, found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids being used complementarily rather than as replacements to classical drugs bringing about a healthier future.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, India
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
3
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Singh P, Paramanik V. Neuromodulating roles of estrogen and phytoestrogens in cognitive therapeutics through epigenetic modifications during aging. Front Aging Neurosci 2022; 14:945076. [PMID: 35992599 PMCID: PMC9381870 DOI: 10.3389/fnagi.2022.945076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen (E2) plays important role in regulating hippocampal learning and memory. The decline of E2 after menopause affects learning and memory and increases the risk of neurodegenerative diseases like Alzheimer's disease (AD). Additionally, from the estrogen receptor (ER) mediated gene regulation; E2 also regulates gene expression at the transcriptional and posttranscriptional levels through epigenetic modifications. E2 recruits a number of proteins called co-regulators at the promoter region of genes. These co-regulators act as chromatin modifiers, alter DNA and histone modifications and regulate gene expression. Several studies show that E2 regulates learning and memory by altering chromatin at the promoters of memory-linked genes. Due to structural similarities with E2 and low side effects, phytoestrogens are now used as neuroprotective agents to recover learning and memory in animal models as well as human subjects during aging and different neurological disorders. Growing evidence suggests that apart from anti-oxidative and anti-inflammatory properties, phytoestrogens also act as epigenetic modifiers and regulate gene expression through epigenetic modifications. The epigenetic modifying properties of phytoestrogens are mostly studied in cancer cells but very little is known regarding the regulation of synaptic plasticity genes, learning and memory, and neurological disorders. In this article, we discuss the epigenetic modifying properties of E2 and the roles of phytoestrogens as epigenetic modifiers in the brain to recover and maintain cognitive functions.
Collapse
|
5
|
Bjune JI, Strømland PP, Jersin RÅ, Mellgren G, Dankel SN. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes. Front Endocrinol (Lausanne) 2022; 13:828780. [PMID: 35273571 PMCID: PMC8901598 DOI: 10.3389/fendo.2022.828780] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pouda Panahandeh Strømland
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Regine Åsen Jersin
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Nitter Dankel
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Simon Nitter Dankel,
| |
Collapse
|
6
|
Lu Z, Xu X, Li D, Sun N, Lin S. Comprehensive Analysis of Mouse Hippocampal Lysine Acetylome Mediated by Sea Cucumber Peptides Preventing Memory Impairment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12333-12343. [PMID: 34633809 DOI: 10.1021/acs.jafc.1c05155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Memory impairment is becoming a potential health issue with the delicacy of diet and social stress. Sea cucumber peptides (SCP) prevent memory impairment, as previously reported. In this study, further research was performed using hippocampal lysine-acetylome to explore molecular regulation mechanisms. C57BL/6 mice were treated with scopolamine via intraperitoneal injection to simulate memory impairment. To determine the influence of SCP on the total acetylated-protein level of the hippocampus, acetylated-proteomics was performed. SCP increased the acetylation level of histone (H3 and H4). Meanwhile, for non-histones, the differentially acetylated proteins were involved in multiple memory-related pathways, as shown by KEGG enrichment analysis. Additionally, long-term potentiation was confirmed by western blotting. Finally, a combined analysis of proteome and lysine acetylome revealed that SCP contributed to synaptic vesicle cycle regulation and dopamine metabolism. Consequently, our findings revealed that SCP was potentially neuroprotective by regulating post-transcriptional hippocampal protein acetylation.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Dongmei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
7
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Cortes LR, Cisternas CD, Cabahug INKV, Mason D, Ramlall EK, Castillo-Ruiz A, Forger NG. DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology 2021; 112:636-648. [PMID: 34547753 PMCID: PMC8934748 DOI: 10.1159/000519671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurons expressing estrogen receptor (ER) ɑ in the arcuate (ARC) and ventromedial (VMH) nuclei of the hypothalamus sex-specifically control energy homeostasis, sexual behavior, and bone density. Females have more ERɑ neurons in the VMH and ARC than males, and the sex difference in the VMH is eliminated by neonatal treatment with testosterone or a DNA methylation inhibitor. OBJECTIVE Here, we tested the roles of testosterone and DNA methylation/demethylation in development of ERɑ in the ARC. METHODS ERɑ was examined at birth and weaning in mice that received vehicle or testosterone subcutaneously, and vehicle or DNA methyltransferase inhibitor intracerebroventricularly, as neonates. To examine effects of DNA demethylation on the ERɑ cell number in the ARC, mice were treated neonatally with small interfering RNAs against ten-eleven translocase enzymes. The methylation status of the ERɑ gene (Esr1) was determined in the ARC and VMH using pyrosequencing of bisulfite-converted DNA. RESULTS A sex difference in ERɑ in the ARC, favoring females, developed between birth and weaning and was due to programming effects of testosterone. Neonatal inhibition of DNA methylation decreased ERɑ in the ARC of females, and an inhibition of demethylation increased ERɑ in the ARC of males. The promoter region of Esr1 exhibited a small sex difference in percent of total methylation in the ARC (females > males) that was opposite to that in the VMH (males > females). CONCLUSION DNA methylation and demethylation regulate ERɑ cell number in the ARC, and methylation correlates with activation of Esr1 in this region.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferrreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | | | - Damian Mason
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Taylor CM, Pritschet L, Jacobs EG. The scientific body of knowledge - Whose body does it serve? A spotlight on oral contraceptives and women's health factors in neuroimaging. Front Neuroendocrinol 2021; 60:100874. [PMID: 33002517 PMCID: PMC7882021 DOI: 10.1016/j.yfrne.2020.100874] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Women constitute half of the world's population, yet neuroscience research does not serve the sexes equally. Fifty years of preclinical animal evidence documents the tightly-coupled relationship between our endocrine and nervous systems, yet human neuroimaging studies rarely consider how endocrine factors shape the structural and functional architecture of the human brain. Here, we quantify several blind spots in neuroimaging research, which overlooks aspects of the human condition that impact women's health (e.g. the menstrual cycle, hormonal contraceptives, pregnancy, menopause). Next, we illuminate potential consequences of this oversight: today over 100 million women use oral hormonal contraceptives, yet relatively few investigations have systematically examined whether disrupting endogenous hormone production impacts the brain. We close by presenting a roadmap for progress, highlighting the University of California Women's Brain Initiative which is addressing unmet needs in women's health research.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States.
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States; Neuroscience Research Institute, University of California, Santa Barbara, United States.
| |
Collapse
|
10
|
Taylor CM, Pritschet L, Olsen RK, Layher E, Santander T, Grafton ST, Jacobs EG. Progesterone shapes medial temporal lobe volume across the human menstrual cycle. Neuroimage 2020; 220:117125. [DOI: 10.1016/j.neuroimage.2020.117125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023] Open
|
11
|
Barth C, de Lange AMG. Towards an understanding of women's brain aging: the immunology of pregnancy and menopause. Front Neuroendocrinol 2020; 58:100850. [PMID: 32504632 DOI: 10.1016/j.yfrne.2020.100850] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Women are at significantly greater risk of developing Alzheimer's disease and show higher prevalence of autoimmune conditions relative to men. Women's brain health is historically understudied, and little is therefore known about the mechanisms underlying epidemiological sex differences in neurodegenerative diseases, and how female-specific factors may influence women's brain health across the lifespan. In this review, we summarize recent studies on the immunology of pregnancy and menopause, emphasizing that these major immunoendocrine transition phases may play a critical part in women's brain aging trajectories.
Collapse
Affiliation(s)
- Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
| |
Collapse
|
12
|
Abstract
This review highlights fifty years of progress in research on estradiol's role in regulating behavior(s). It was initially thought that estradiol was only involved in regulating estrus/menstrual cycles and concomitant sexual behavior, but it is now clear that estradiol also influences the higher order neural function of cognition. We provide a brief overview of estradiol's regulation of memory and some mechanisms which underlie its effects. Given systemically or directly into the hippocampus, to ovariectomized female rodents, estradiol or specific agonists, enhance learning and/or memory in a variety of rodent cognitive tasks. Acute (within minutes) or chronic (days) treatments enhance cognitive functions. Under the same treatment conditions, dendritic spine density on pyramidal neurons in the CA1 area of the hippocampus and medial prefrontal cortex increase which suggests that these changes are an important component of estrogen's ability to impact memory processes. Noradrenergic, dopaminergic and serotoninergic activity are also altered in these areas following estrogen treatments. Memory enhancements and increased spine density by estrogens are not limited to females but are also present in castrate males. In the next fifty years, neuroscientists need to determine how currently described neural changes mediate improved memory, how interactions among areas important for memory promote memory and the potential significance of neurally derived estrogens in normal cognitive processing. Answering these questions may provide significant advances for treatment of dementias as well as age and neuro-degenerative disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
13
|
Lu X, Yang B, Yu H, Hu X, Nie J, Wan B, Zhang M, Lü C. Epigenetic mechanisms underlying the effects of triptolide and tripchlorolide on the expression of neuroligin-1 in the hippocampus of APP/PS1 transgenic mice. PHARMACEUTICAL BIOLOGY 2019; 57:453-459. [PMID: 31311385 PMCID: PMC6691810 DOI: 10.1080/13880209.2019.1629463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/06/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Context: Neuroligin-1 (NLGN1) is a cell adhesion protein located on the excitatory postsynaptic membrane. β-Amyloid (Aβ)-induced neuroinflammation decreases NLGN1 expression through epigenetic mechanisms. Triptolide (T10) and tripchlorolide (T4) exert protective effects on synapses in Alzheimer's disease (AD) mice, but the mechanisms remain unclear. Objective: The effects of T10 and T4 on hippocampal NLGN1 expression in AD mice and the epigenetic mechanisms were assessed using chromatin immunoprecipitation and methylated DNA immunoprecipitation. Materials and methods: Sixty APP/PS1 transgenic mice were randomly divided into an AD model group, a T10-treated group and a T4-treated group (n = 20); 20 wild-type littermates served as the control group. APP/PS1 transgenic mice were intraperitoneally injected with T10 (0.1 mg/kg) and T4 (25 μg/kg) once per day for 60 days. NLGN1 expression was examined using western blotting and quantitative PCR. Results: T10 and T4 increased the levels of the NLGN1 protein and mRNA in hippocampus of AD mice. T10 and T4 inhibited the binding of HDAC2 (p< 0.01) and MeCP2 (p< 0.01 and p< 0.05, respectively) to the NLGN1 promoter, and cytosine methylation (1.2305 ± 0.1482/1.2554 ± 0.3570 vs. 1.6578 ± 0.1818, p< 0.01) at the NLGN1 promoter in the hippocampus of AD mice. T10 and T4 increased the level of acetylated histone H3 (0.7733 ± 0.1611/0.8241 ± 0.0964 vs. 0.5587 ± 0.0925, p< 0.01) at the NLGN1 promoter in the hippocampus of AD mice. Conclusions: T10 and T4 may increase hippocampal NLGN1 expression in AD mice through epigenetic mechanisms, providing a new explanation for the mechanism underlying the protective effects of T10 and T4 on synapses.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Baolin Yang
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
| | - Hao Yu
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xiaoling Hu
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
| | - Jing Nie
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
| | - Bin Wan
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
| | - Ming Zhang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng Lü
- Department of Anatomy, Basic Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Xu W, An X, Zhang N, Li L, Zhang X, Wang Y, Wang L, Sun Y. Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. Biosci Trends 2019; 13:334-341. [PMID: 31434815 DOI: 10.5582/bst.2019.01162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Histone acetylation has recently been implicated in gene transcription and estradiol (E2) actions in the hypothalamus. This study aims to determine the involvement of histone acetylation in mediating E2-induced luteinizing hormone (LH) surge to understand the mechanism underlying LH surge dysfunction in female reproductive aging. Young and middle-aged female rats were ovariectomized (OVX) and treated with hormone or oil once per day for two days. At the time of the expected LH surge, blood samples were taken for LH assay. The anterior and posterior hypothalami were dissected, histone H3/H4 acetylation and histone deacetylases (HDACs) 4, -5, -10 and -11 protein expressions were measured using Western blotting. Our results show that in the young females, E2 markedly increased histone H3 acetylation while significantly reducing HDAC10 protein expression in the anterior hypothalamus. Notably, E2-induced alterations of histone H3 acetylation and HDAC10 in the anterior hypothalamus were absent in middle-aged females, associated with a reduced LH release. However, age alters histone H4 acetylation in both the anterior and posterior hypothalamus and significantly increased HDAC 4 and -5 protein expression in the anterior hypothalamus. Taken together, these data suggest that histone H3 acetylation in the anterior hypothalamus may mediate E2 regulation of LH surge and the process possibly through decreasing HDAC10. The missed responsiveness of histone H3 acetylation and HDAC10 expression to E2 in the anterior hypothalamus may contribute to LH surge failure that occurs in female reproductive aging.
Collapse
Affiliation(s)
- Wen Xu
- Hospital of Obstetrics and Gynecology, Fudan University
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Na Zhang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Lisha Li
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Xinyan Zhang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Yan Wang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Ling Wang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease.,The Academy of Integrative Medicine of Fudan University
| | - Yan Sun
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease.,The Academy of Integrative Medicine of Fudan University
| |
Collapse
|
15
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
16
|
Jacobs EG, Goldstein JM. The Middle-Aged Brain: Biological sex and sex hormones shape memory circuitry. Curr Opin Behav Sci 2018; 23:84-91. [PMID: 30271832 PMCID: PMC6157917 DOI: 10.1016/j.cobeha.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Neuroscience Research Institute, University of California, Santa Barbara
| | - Jill M. Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital
- Athinoula A. Martinos Brain Imaging Center, Massachusetts General Hospital
| |
Collapse
|
17
|
Sellers KJ, Watson IA, Gresz RE, Raval P, Srivastava DP. Cyto-nuclear shuttling of afadin is required for rapid estradiol-mediated modifications of histone H3. Neuropharmacology 2018; 143:153-162. [PMID: 30268521 PMCID: PMC6277849 DOI: 10.1016/j.neuropharm.2018.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Estrogens have been shown to rapidly regulate local signalling at synapses and within the nucleus. The result of these signalling events is to rapidly modulate synapse structure and function, as well as epigenetic mechanisms including histone modifications. Ultimately these mechanisms are thought to contribute to long-lasting changes in neural circuitry, and thus influence cognitive functions such as learning and memory. However, the mechanisms by which estrogen-mediated local synaptic and nuclear signalling events are coordinated are not well understood. In this study we have found that the scaffold protein afadin, (also known as AF-6), undergoes a bi-directional trafficking to both synaptic and nuclear compartment in response to acute 17β-estradiol (estradiol) treatment, in mixed sex neuronal cultures derived from fetal cortex. Interestingly, nuclear accumulation of afadin was coincidental with an increase in the phosphorylation of histone H3 at serine 10 (H3S10p). This epigenetic modification is associated with the remodeling of chromatin into an open euchromatin state, allowing for transcriptional activation and related learning and memory processes. Critically, the cyto-nuclear trafficking of afadin was required for estradiol-dependent H3S10p. We further determined that nuclear accumulation of afadin is sufficient to induce phosphorylation of the mitogentic kinases ERK1/2 (pERK1/2) within the nucleus. Moreover, nuclear pERK1/2 was required for estradiol-dependent H3S10p. Taken together, we propose a model whereby estradiol induces the bi-directional trafficking of afadin to synaptic and nuclear sub-compartments. Within the nucleus, afadin is required for increased pERK1/2 which in turn is required for H3S10p. Therefore this represents a mechanism through which estrogens may be able to coordinate both synaptic and nucleosomal events within the same neuronal population. 17β-estradiol targets afadin to membrane and nuclear subcompartments. Histone H3 is rapidly phosphorylated by 17β-estradiol. Histone H3 phosphorylation by 17β-estradiol requires afadin nuclear accumulation. 17β-estradiol-mediated ERK1/2 activation is required for histone H3 phosphorylation.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Rahel E Gresz
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
18
|
Cornil CA, Ball GF, Balthazart J. Differential control of appetitive and consummatory sexual behavior by neuroestrogens in male quail. Horm Behav 2018; 104:15-31. [PMID: 29452074 PMCID: PMC6103895 DOI: 10.1016/j.yhbeh.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogens exert pleiotropic effects on multiple physiological and behavioral traits including sexual behavior. These effects are classically mediated via binding to nuclear receptors and subsequent regulation of target gene transcription. Estrogens also affect neuronal activity and cell-signaling pathways via faster, membrane-initiated events. Although the distinction between appetitive and consummatory aspects of sexual behavior has been criticized, this distinction remains valuable in that it facilitates the causal analysis of certain behavioral systems. Effects of neuroestrogens produced by neuronal aromatization of testosterone on copulatory performance (consummatory aspect) and on sexual motivation (appetitive aspect) are described in male quail. The central administration of estradiol rapidly increases expression of sexual motivation, as assessed by two measures of sexual motivation produced in response to the visual presentation of a female but not sexual performance in male Japanese quail. This effect is mimicked by membrane-impermeable analogs of estradiol, indicating that it is initiated at the cell membrane. Conversely, blocking the action of estrogens or their synthesis by a single intracerebroventricular injection of estrogen receptor antagonists or aromatase inhibitors, respectively, decreases sexual motivation within minutes without affecting performance. The same steroid has thus evolved complementary mechanisms to regulate different behavioral components (motivation vs. performance) in distinct temporal domains (long- vs. short-term) so that diverse reproductive activities can be properly coordinated. Changes in preoptic aromatase activity and estradiol as well as glutamate concentrations are observed during or immediately after copulation. The interaction between these neuroendocrine/neurochemical changes and their functional significance is discussed.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, United States
| | | |
Collapse
|
19
|
Van der Linden A, Balthazart J. Rapid changes in auditory processing in songbirds following acute aromatase inhibition as assessed by fMRI. Horm Behav 2018; 104:63-76. [PMID: 29605635 DOI: 10.1016/j.yhbeh.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This review introduces functional MRI (fMRI) as an outstanding tool to assess rapid effects of sex steroids on auditory processing in seasonal songbirds. We emphasize specific advantages of this method as compared to other more conventional and invasive methods used for this purpose and summarize an exemplary auditory fMRI study performed on male starlings exposed to different types of starling song before and immediately after the inhibition of aromatase activity by an i.p. injection of Vorozole™. We describe how most challenges that relate to the necessity to anesthetize subjects and minimize image- and sound-artifacts can be overcome in order to obtain a voxel-based 3D-representation of changes in auditory brain activity to various sound stimuli before and immediately after a pharmacologically-induced depletion of endogenous estrogens. Analysis of the fMRI data by assumption-free statistical methods identified fast specific changes in activity in the auditory brain regions that were stimulus-specific, varying over different seasons, and in several instances lateralized to the left side of the brain. This set of results illustrates the unique features of fMRI that provides opportunities to localize and quantify the brain responses to rapid changes in hormonal status. fMRI offers a new image-guided research strategy in which the spatio-temporal profile of fast neuromodulations can be identified and linked to specific behavioral inputs or outputs. This approach can also be combined with more localized invasive methods to investigate the mechanisms underlying the observed neural changes.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, University of Antwerp, CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
20
|
Abstract
Estrogens influence nearly every aspect of hippocampal function, including memory formation. Although this research has traditionally focused on ovariectomized females, more recent work is providing insights into the ways in which estrogens regulate hippocampal function in both sexes. This review provides an overview of estrogenic regulation of hippocampal function in female and male rodents, with a particular emphasis on memory formation. Where applicable, we discuss the involvement of specific estrogen receptors and molecular mechanisms that mediate these effects. The review concludes by suggesting gaps in the literature that need to be filled to provide greater insights into potential sex differences in the effects of estrogens on hippocampal function.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
21
|
Frick KM, Tuscher JJ, Koss WA, Kim J, Taxier LR. Estrogenic regulation of memory consolidation: A look beyond the hippocampus, ovaries, and females. Physiol Behav 2018; 187:57-66. [PMID: 28755863 PMCID: PMC5787049 DOI: 10.1016/j.physbeh.2017.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
The potent estrogen 17β-estradiol (E2) has long been known to regulate the hippocampus and hippocampal-dependent memories in females, and research from the past decade has begun to shed light on the molecular mechanisms through which E2 mediates memory formation in females. Although E2 can also regulate hippocampal function in males, relatively little is known about how E2 influences memory formation in males, or whether sex differences in underlying mechanisms exist. This review, based on a talk given in April 2017 at the American University symposium entitled, "Sex Differences: From Neuroscience to the Clinic and Beyond", first provides an overview of the molecular mechanisms in the dorsal hippocampus through which E2 enhances memory consolidation in ovariectomized female mice. Next, newer research is described demonstrating key roles for the prefrontal cortex and de novo hippocampal E2 synthesis to the memory-enhancing effects of E2 in females. The review then discusses the effects of de novo and exogenous E2 on hippocampal memory consolidation in both sexes, and putative sex differences in the underlying molecular mechanisms through which E2 enhances memory formation. The review concludes by discussing the importance and implications of sex differences in the molecular mechanisms underlying E2-induced memory consolidation for human health.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
22
|
Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol 2018; 30. [PMID: 28585265 DOI: 10.1111/jne.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Sexual differentiation has long been considered "epigenetic", although the meaning of that word has shifted over time. Here, we track the evolution of ideas about epigenetics in sexual differentiation, and identify principles that have emerged from recent studies. Experiments manipulating a particular epigenetic mechanism during neonatal life demonstrate a role for both histone acetylation and DNA methylation in the development of sex differences in the brain and behaviour of rodents. In addition, hormone-dependent sex differences in the number of neurones of a particular phenotype may be programmed by differences in DNA methylation early in life. Genome-wide studies suggest that many effects of neonatal testosterone on the brain methylome do not emerge until adulthood, and there may be sex biases in the use of epigenetic marks that do not correlate with differences in gene expression. In other words, even when the transcription of a gene does not differ between males and females, the epigenetic underpinnings of that expression may differ. Finally, recent evidence suggests that sex differences in epigenetic marks may primarily serve to make gene expression more similar in males and females. We discuss the implications of these findings for understanding sex differences in susceptibility to disease, and point to recent conceptual and technical advances likely to influence the field going forward.
Collapse
Affiliation(s)
- N G Forger
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
24
|
Sheppard PAS, Koss WA, Frick KM, Choleris E. Rapid actions of oestrogens and their receptors on memory acquisition and consolidation in females. J Neuroendocrinol 2018; 30. [PMID: 28489296 PMCID: PMC6543823 DOI: 10.1111/jne.12485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022]
Abstract
Increased attention has been paid in recent years to the ways in which oestrogens and oestrogen receptors rapidly affect learning and memory. These rapid effects occur within a timeframe that is too narrow for the classical genomic mode of action of oestrogen, thus suggesting nonclassical effects as underlying mechanisms. The present review examines recent developments in the study of the rapid effects of 17β-oestradiol and oestrogen receptor (ER) agonists on learning and memory tasks in female rodents, including social recognition, object recognition, object placement (spatial memory) and social learning. By comparing studies utilising systemic or intracranial treatments, as well as pre- and post-acquisition administration of oestradiol or ER agonists, the respective contributions of individual ERs within specific brain regions to various forms of learning and memory can be determined. The first part of this review explores the effects of systemic administration of 17β-oestradiol and ER agonists on memory when administered either pre- or post-acquisition. The second part not only focuses on the effects of pre- and post-acquisition infusions of 17β-oestradiol or ER agonists into the dorsal hippocampus on memory, but also discusses the contributions of other brain regions, including the medial amygdala, medial prefrontal cortex and paraventricular nucleus of the hypothalamus. The cellular mechanisms mediating the rapid effects of 17β-oestradiol on memory, including activation of intracellular signalling cascades and epigenetic processes, are discussed. Finally, the review concludes by comparing pre- and post-acquisition findings and effects of 17β-oestradiol and ER agonists in different brain regions.
Collapse
Affiliation(s)
- P A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - W A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - K M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - E Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Elvir L, Duclot F, Wang Z, Kabbaj M. Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors. Neurosci Biobehav Rev 2017; 105:305-317. [PMID: 29020607 DOI: 10.1016/j.neubiorev.2017.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence has begun to elucidate the contribution of epigenetic mechanisms in the modulation and maintenance of gene expression and behavior. Histone acetylation is one such epigenetic mechanism, which has been shown to profoundly alter gene expression and behaviors. In this review, we begin with an overview of the major epigenetic mechanisms including histones acetylation. We next focus on recent evidence about the influence of environmental stimuli on various motivated behaviors through histone acetylation and highlight how histone deacetylase inhibitors can correct some of the pathologies linked to motivated behaviors including substance abuse, feeding and social attachments. Particularly, we emphasize that the effects of histone deacetylase inhibitors on motivated behaviors are time and context-dependent.
Collapse
Affiliation(s)
- Lindsay Elvir
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| |
Collapse
|
26
|
Impact of Sex and Menopausal Status on Episodic Memory Circuitry in Early Midlife. J Neurosci 2016; 36:10163-73. [PMID: 27683911 DOI: 10.1523/jneurosci.0951-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Cognitive neuroscience of aging studies traditionally target participants age 65 and older. However, epidemiological surveys show that many women report increased forgetfulness earlier in the aging process, as they transition to menopause. In this population-based fMRI study, we stepped back by over a decade to characterize the changes in memory circuitry that occur in early midlife, as a function of sex and women's reproductive stage. Participants (N = 200; age range, 45-55) performed a verbal encoding task during fMRI scanning. Reproductive histories and serologic evaluations were used to determine menopausal status. Results revealed a pronounced impact of reproductive stage on task-evoked hippocampal responses, despite minimal difference in chronological age. Next, we examined the impact of sex and reproductive stage on functional connectivity across task-related brain regions. Postmenopausal women showed enhanced bilateral hippocampal connectivity relative to premenopausal and perimenopausal women. Across women, lower 17β-estradiol concentrations were related to more pronounced alterations in hippocampal connectivity and poorer performance on a subsequent memory retrieval task, strongly implicating sex steroids in the regulation of this circuitry. Finally, subgroup analyses revealed that high-performing postmenopausal women (relative to low and middle performers) exhibited a pattern of brain activity akin to premenopausal women. Together, these findings underscore the importance of considering reproductive stage, not simply chronological age, to identify neuronal and cognitive changes that unfold in the middle decades of life. In keeping with preclinical studies, these human findings suggest that the decline in ovarian estradiol production during menopause plays a significant role in shaping memory circuitry. SIGNIFICANCE STATEMENT Maintaining intact memory function with age is one of the greatest public health challenges of our time, and women have an increased risk for memory disorders relative to men later in life. We studied adults early in the aging process, as women transition into menopause, to identify neuronal and cognitive changes that unfold in the middle decades of life. Results demonstrate regional and network-level differences in memory encoding-related activity as a function of women's reproductive stage, independent of chronological age. Analyzing data without regard to sex or menopausal status obscured group differences in circuit-level neural strategies associated with successful memory retrieval. These findings suggest that early changes in memory circuitry are evident decades before the age range traditionally targeted by cognitive neuroscience of aging studies.
Collapse
|
27
|
Li C, Zhou C, Li R. Can Exercise Ameliorate Aromatase Inhibitor-Induced Cognitive Decline in Breast Cancer Patients? Mol Neurobiol 2016; 53:4238-4246. [PMID: 26223800 PMCID: PMC5651179 DOI: 10.1007/s12035-015-9341-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Aromatase inhibitors (AIs) have been commonly used as an effective adjuvant therapy in treatment of breast cancer, especially for menopausal women with estrogen receptor-positive breast cancer. Due to the nature of aromatase, the key enzyme for endogenous estrogen synthesis, inhibitory of aromatase-induced side effects, such as cognitive impairment has been reported in both human and animal studies. While extensive evidence suggested that physical exercises can improve learning and memory activity and even prevent age-related cognitive decline, basic research revealed some common pathways between exercise and estrogen signaling that affected cognitive function. This review draws on clinical and basic studies to assess the potential impact of exercise in cognitive function from women treated with AIs for breast cancer and explore the potential mechanism and effects of exercise on estrogen-related cognition.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Chenglin Zhou
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China.
| | - Rena Li
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100012, China.
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, 34243, USA.
| |
Collapse
|
28
|
Tuscher JJ, Szinte JS, Starrett JR, Krentzel AA, Fortress AM, Remage-Healey L, Frick KM. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice. Horm Behav 2016; 83:60-67. [PMID: 27178577 PMCID: PMC4915975 DOI: 10.1016/j.yhbeh.2016.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023]
Abstract
The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Julia S Szinte
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Joseph R Starrett
- Department of Psychological and Brain Sciences and Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, United States
| | - Amanda A Krentzel
- Department of Psychological and Brain Sciences and Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Luke Remage-Healey
- Department of Psychological and Brain Sciences and Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
29
|
Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol 2016; 160:189-95. [PMID: 26241030 PMCID: PMC4734902 DOI: 10.1016/j.jsbmb.2015.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Estradiol rapidly activates, within minutes, various physiological functions and behaviors including cognition in rodents. This review describes rapid effects of estradiol on hippocampal dependent learning and memory tasks in rodents. Mechanisms underlying the memory enhancements including the activation of signaling molecules and the enhancement of dendritic spinogenesis are briefly reviewed. In addition, the role of estradiol in the cognitive resilience to chronic stress exhibited only in females is discussed including contributions of ovarian as well as intra-hippocampally derived estrogens to this sex difference. Finally, speculations on possible physiologic functions for rapid mnemonic changes mediated by estrogens are made. Overall, the emergence of a novel and powerful mechanism for regulation of cognition by estradiol is described.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, 695 Park Ave., Rm 611 HN, New York, NY 10065, United States.
| |
Collapse
|
30
|
Abstract
Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, WI, USA
| |
Collapse
|
31
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
32
|
Zheng Y, Fan W, Zhang X, Dong E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 2016; 11:150-62. [PMID: 26890656 DOI: 10.1080/15592294.2016.1146850] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression.
Collapse
Affiliation(s)
- Yu Zheng
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Weidong Fan
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Xianquan Zhang
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China
| | - Erbo Dong
- a Oncology Department , The second affiliated hospital, Chongqing Medical University , No.76 Linjiang Road, Yuzhong District, Chongqing , China.,b The Psychiatric Institute , Department of Psychiatry , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
33
|
Forger NG. Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150114. [PMID: 26833835 DOI: 10.1098/rstb.2015.0114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
Abstract
Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30307, USA
| |
Collapse
|
34
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
35
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
36
|
Arevalo MA, Azcoitia I, Gonzalez-Burgos I, Garcia-Segura LM. Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm Behav 2015; 74:19-27. [PMID: 25921586 DOI: 10.1016/j.yhbeh.2015.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 01/29/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Estradiol participates in the regulation of the function and plasticity of synaptic circuits in key cognitive brain regions, such as the prefrontal cortex and the hippocampus. The mechanisms elicited by estradiol are mediated by the regulation of transcriptional activity by nuclear estrogen receptors and by intracellular signaling cascades activated by estrogen receptors associated with the plasma membrane. In addition, the mechanisms include the interaction of estradiol with the signaling of other factors involved in the regulation of cognition, such as brain derived neurotrophic factor, insulin-like growth factor-1 and Wnt. Modifications in these signaling pathways by aging or by a long-lasting ovarian hormone deprivation after menopause may impair the enhancing effects of estradiol on synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Calle José Antonio Novais 12, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Ignacio Gonzalez-Burgos
- Laboratorio de Psicobiología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal. Mexico
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain.
| |
Collapse
|
37
|
Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 2015; 74:4-18. [PMID: 25960081 PMCID: PMC4573242 DOI: 10.1016/j.yhbeh.2015.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Since the publication of the 1998 special issue of Hormones and Behavior on estrogens and cognition, substantial progress has been made towards understanding the molecular mechanisms through which 17β-estradiol (E2) regulates hippocampal plasticity and memory. Recent research has demonstrated that rapid effects of E2 on hippocampal cell signaling, epigenetic processes, and local protein synthesis are necessary for E2 to facilitate the consolidation of object recognition and spatial memories in ovariectomized female rodents. These effects appear to be mediated by non-classical actions of the intracellular estrogen receptors ERα and ERβ, and possibly by membrane-bound ERs such as the G-protein-coupled estrogen receptor (GPER). New findings also suggest a key role of hippocampally-synthesized E2 in regulating hippocampal memory formation. The present review discusses these findings in detail and suggests avenues for future study.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
38
|
Abstract
Perimenopause is a midlife transition state experienced by women that occurs in the context of a fully functioning neurological system and results in reproductive senescence. Although primarily viewed as a reproductive transition, the symptoms of perimenopause are largely neurological in nature. Neurological symptoms that emerge during perimenopause are indicative of disruption in multiple estrogen-regulated systems (including thermoregulation, sleep, circadian rhythms and sensory processing) and affect multiple domains of cognitive function. Estrogen is a master regulator that functions through a network of estrogen receptors to ensure that the brain effectively responds at rapid, intermediate and long timescales to regulate energy metabolism in the brain via coordinated signalling and transcriptional pathways. The estrogen receptor network becomes uncoupled from the bioenergetic system during the perimenopausal transition and, as a corollary, a hypometabolic state associated with neurological dysfunction can develop. For some women, this hypometabolic state might increase the risk of developing neurodegenerative diseases later in life. The perimenopausal transition might also represent a window of opportunity to prevent age-related neurological diseases. This Review considers the importance of neurological symptoms in perimenopause in the context of their relationship to the network of estrogen receptors that control metabolism in the brain.
Collapse
Affiliation(s)
- Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Fei Yin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
39
|
Cornil CA, Ball GF, Balthazart J. The dual action of estrogen hypothesis. Trends Neurosci 2015; 38:408-16. [PMID: 26089224 DOI: 10.1016/j.tins.2015.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 11/25/2022]
Abstract
Estradiol (E2) can act in the brain in a relatively fast manner (i.e., seconds to minutes) usually through signaling initiated at the cell membrane. Brain-derived E2 has thus been considered as another type of neurotransmitter. Recent work found that behaviors indicative of male sexual motivation are activated by estrogenic metabolites of testosterone (T) in a fast manner, while sexual performance (copulatory behavior per se) is regulated by brain E2 in a slower manner via nucleus-initiated actions. This functional division between these two types of action appears to generalize to other behavioral systems regulated by E2. We propose the dual action of estrogen hypothesis to explain this functional distinction between these two different modes of action.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, 2141 Tydings Hall, University of Maryland, College Park, MD 20742-7201, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium.
| |
Collapse
|
40
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
41
|
Fortress AM, Heisler JD, Frick KM. The mTOR and canonical Wnt signaling pathways mediate the mnemonic effects of progesterone in the dorsal hippocampus. Hippocampus 2014; 25:616-29. [DOI: 10.1002/hipo.22398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Ashley M. Fortress
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - John D. Heisler
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
42
|
Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav Brain Res 2014; 281:1-8. [PMID: 25496779 DOI: 10.1016/j.bbr.2014.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 02/08/2023]
Abstract
Stress during pregnancy has a wide variety of negative effects in both human [1] and animal offspring [2]. These effects are especially apparent in various forms of learning and memory such as object recognition [3] and spatial memory [4]. The cognitive effects of prenatal stress (PNS) may be mediated through epigenetic changes such as histone acetylation and DNA methylation [5]. As such, the present study investigated the effects of chronic unpredictable PNS on memory and epigenetic measures in adult offspring. Mice that underwent PNS exhibited impaired spatial memory in the Morris water maze, as well as sex-specific changes in levels of DNA methyltransferase (DNMT) 1 protein, and acetylated histone H3 (AcH3) in the hippocampus, and serum corticosterone. Male mice exposed to PNS exhibited decreased hippocampal AcH3, whereas female PNS mice displayed a further reduction in AcH3, as well as heightened hippocampal DNMT1 protein levels and corticosterone levels. These data suggest that PNS may epigenetically reduce transcription in the hippocampus, particularly in females in whom this effect may be related to increased baseline stress hormone levels, and which may underlie the sexual dimorphism in rates of mental illness in humans.
Collapse
|
43
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
44
|
Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res 2014; 285:140-57. [PMID: 25131507 DOI: 10.1016/j.bbr.2014.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/26/2022]
Abstract
The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that effects are highly dependent on factors such as dose and timing of administration. In addition to providing more detail on these general conclusions, this review will discuss directions for future avenues of research into the hormonal regulation of object memory.
Collapse
|