1
|
Cao J, Qin X, Yang H, Liu C, Cheng T. Dimm targets GDAP2 to regulate larval development in the silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40205793 DOI: 10.1111/1744-7917.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The basic helix-loop-helix (bHLH) domain transcription factors precisely regulate various developmental processes in insects. Dimm, a specific bHLH transcription factor, integrates the insulin/insulin-like growth factor signaling (IIS) and juvenile hormone signaling (JHS) pathways to modulate larval development in silkworms. However, the molecular mechanisms underlying this regulation are not yet fully understood. This study aimed to determine the targets of Dimm through which it regulates larval development. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed ganglioside-induced differentiation-associated protein 2 (GDAP2) as a direct downstream target gene of Dimm. Further study showed that Dimm directly binds to an enhancer element located in the second intron of the GDAP2 gene to promote its transcription. GDAP2 exhibited widespread expression across different stages and tissues of silkworms, regulated by both the IIS and the JHS pathways. The systemic knockout of GDAP2 leads to delayed larval development with a significant reduction in body weight; moreover, larval development was arrested at the 4th-instar stage. Further investigation unveiled that the inhibition of the ecdysone and innate immune signaling pathways in the mutant line led to abnormal larval development. A systematic investigation of the biological functions of GDAP2 offers valuable insights into the mechanism by which Dimm integrates IIS and JHS pathways to regulate the larval development of silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
3
|
Ma X, Zhang X, Qiao Y, Zhong S, Xing Y, Chen X. Weighted gene co-expression network analysis of embryos and first instar larvae of the horseshoe crab Tachypleus tridentatus uncovers development gene networks. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100980. [PMID: 35303535 DOI: 10.1016/j.cbd.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Horseshoe crabs are marine chelicerates that have existed on Earth for about 450 million years, and they are often used as an experimental model for studying marine invertebrate embryology. In this study, we performed transcriptome gene expression profiling of four continuous embryonic stages (Stages 18-21) and first instar larvae of Tachypleus tridentatus. A mean of 50,742,995 high-quality clean reads was obtained from each library. We then conducted weighted gene co-expression network analysis (WGCNA) for 13,698 genes with fragments per kilobase of exon per million mapped fragments values >5. We identified 17 modules, six of which likely play critical roles in development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes was performed on the biologically significant modules. We found that several pathways, such as hedgehog signaling pathway, VEGF signaling pathway, dorso-ventral axis formation, may be involved in the embryonic development process of T. tridentatus. We also identified hub genes that were highly connected in the six critical modules. This is the first study to apply WGCNA to horseshoe crabs to identify hub genes that may play critical roles in development, and our results provide new insight into the mechanisms underlying early development in horseshoe crabs.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xingzhi Zhang
- Guangxi Institute of Fisheries, Nanning 530000, People's Republic of China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China.
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| |
Collapse
|
4
|
Stratmann J, Ekman H, Thor S. Branching gene regulatory network dictating different aspects of a neuronal cell identity. Development 2019; 146:dev.174300. [DOI: 10.1242/dev.174300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
The nervous system displays a daunting cellular diversity. Neuronal sub-types differ from each other in several aspects, including their neurotransmitter expression and axon projection. These aspects can converge, but can also diverge, such that neurons expressing the same neurotransmitter may project axons to different targets. It is not well understood how regulatory programs converge/diverge to associate/dissociate different cell fate features. Studies of the Drosophila Tv1 neurons have identified a regulatory cascade; ladybird early -> collier -> apterous/eyes absent -> dimmed, which specifies Tv1 neurotransmitter expression. Here, we conduct genetic and transcriptome analysis to address how other aspects of Tv1 cell fate is governed. We find that an initiator terminal selector gene triggers a feedforward loop which branches into different subroutines, each of which establishes different features of this one unique neuronal cell fate.
Collapse
Affiliation(s)
- Johannes Stratmann
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
5
|
Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity. eNeuro 2018; 5:eN-NWR-0212-18. [PMID: 30294668 PMCID: PMC6171738 DOI: 10.1523/eneuro.0212-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Broad neuronal classes are surprisingly heterogeneous across many parameters, and subclasses often exhibit partially overlapping traits including transmitter coexpression. However, the extent to which transmitter coexpression occurs in predictable, consistent patterns is unknown. Here, we demonstrate that pairwise coexpression of GABA and multiple neuropeptide families by olfactory local interneurons (LNs) of the moth Manduca sexta is highly heterogeneous, with a single LN capable of expressing neuropeptides from at least four peptide families and few instances in which neuropeptides are consistently coexpressed. Using computational modeling, we demonstrate that observed coexpression patterns cannot be explained by independent probabilities of expression of each neuropeptide. Our analyses point to three organizing principles that, once taken into consideration, allow replication of overall coexpression structure: (1) peptidergic neurons are highly likely to coexpress GABA; (2) expression probability of allatotropin depends on myoinhibitory peptide expression; and (3) the all-or-none coexpression patterns of tachykinin neurons with several other neuropeptides. For other peptide pairs, the presence of one peptide was not predictive of the presence of the other, and coexpression probability could be replicated by independent probabilities. The stochastic nature of these coexpression patterns highlights the heterogeneity of transmitter content among LNs and argues against clear-cut definition of subpopulation types based on the presence of single neuropeptides. Furthermore, the receptors for all neuropeptides and GABA were expressed within each population of principal neuron type in the antennal lobe (AL). Thus, activation of any given LN results in a dynamic cocktail of modulators that have the potential to influence every level of olfactory processing within the AL.
Collapse
|
6
|
Diesner M, Predel R, Neupert S. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:890-902. [PMID: 29372551 DOI: 10.1007/s13361-017-1870-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/29/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed (c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Max Diesner
- Department for Biology, Zoological Institute, University of Cologne, Zuelpicher Strasse 47b, 50674, Cologne, Germany
| | - Reinhard Predel
- Department for Biology, Zoological Institute, University of Cologne, Zuelpicher Strasse 47b, 50674, Cologne, Germany
| | - Susanne Neupert
- Department for Biology, Zoological Institute, University of Cologne, Zuelpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
7
|
Liu Y, Luo J, Nässel DR. The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage. Front Mol Neurosci 2016; 9:97. [PMID: 27790090 PMCID: PMC5064288 DOI: 10.3389/fnmol.2016.00097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Drosophila could be regulated by insulin/IGF signaling and the insulin receptor (dInR). Dimm is also known to confer a secretory phenotype to neuroendocrine cells and can be part of a combinatorial code specifying terminal differentiation in peptidergic neurons. To further understand the mechanisms of Dimm function we ectopically expressed Dimm or Dimm together with dInR in a wide range of Dimm positive and Dimm negative peptidergic neurons, sensory neurons, interneurons, motor neurons, and gut endocrine cells. We provide further evidence that dInR mediated cell growth occurs in a Dimm dependent manner and that one source of insulin-like peptide (DILP) for dInR mediated cell growth in the CNS is DILP6 from glial cells. Expressing both Dimm and dInR in Dimm negative neurons induced growth of cell bodies, whereas dInR alone did not. We also found that Dimm alone can regulate cell growth depending on specific cell type. This may be explained by the finding that the dInR is a direct target of Dimm. Conditional gene targeting experiments showed that Dimm alone could affect cell growth in certain neuron types during metamorphosis or in the adult stage. Another important finding was that ectopic Dimm inhibits apoptosis of several types of neurons normally destined for programmed cell death (PCD). Taken together our results suggest that Dimm plays multiple transcriptional roles at different developmental stages in a cell type-specific manner. In some cell types ectopic Dimm may act together with resident combinatorial code transcription factors and affect terminal differentiation, as well as act in transcriptional networks that participate in long term maintenance of neurons which might lead to blocked apoptosis.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Jiangnan Luo
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University Stockholm, Sweden
| |
Collapse
|
8
|
Hadžić T, Park D, Abruzzi KC, Yang L, Trigg JS, Rohs R, Rosbash M, Taghert PH. Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED. Nucleic Acids Res 2015; 43:2199-215. [PMID: 25634895 PMCID: PMC4344488 DOI: 10.1093/nar/gku1377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway.
Collapse
Affiliation(s)
- Tarik Hadžić
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S Trigg
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Paul H Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Peptidergic cell-specific synaptotagmins in Drosophila: localization to dense-core granules and regulation by the bHLH protein DIMMED. J Neurosci 2014; 34:13195-207. [PMID: 25253864 DOI: 10.1523/jneurosci.2075-14.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioactive peptides are packaged in large dense-core secretory vesicles, which mediate regulated secretion by exocytosis. In a variety of tissues, the regulated release of neurotransmitters and hormones is dependent on calcium levels and controlled by vesicle-associated synaptotagmin (SYT) proteins. Drosophila express seven SYT isoforms, of which two (SYT-α and SYT-β) were previously found to be enriched in neuroendocrine cells. Here we show that SYT-α and SYT-β tissue expression patterns are similar, though not identical. Furthermore, both display significant overlap with the bHLH transcription factor DIMM, a known neuroendocrine (NE) regulator. RNAi-mediated knockdown indicates that both SYT-α and SYT-β functions are essential in identified NE cells as these manipulations phenocopy loss-of-function states for the indicated peptide hormones. In Drosophila cell culture, both SYT-α and neuropeptide cargo form DIMM-dependent fluorescent puncta that are coassociated by super-resolution microscopy. DIMM is required to maintain SYT-α and SYT-β protein levels in DIMM-expressing cells in vivo. In neurons normally lacking all three proteins (DIMM(-)/SYT-α(-)/SYT-β(-)), DIMM misexpression conferred accumulation of endogenous SYT-α and SYT-β proteins. Furthermore transgenic SYT-α does not appreciably accumulate in nonpeptidergic neurons in vivo but does so if DIMM is comisexpressed. Among Drosophila syt genes, only syt-α and syt-β RNA levels are upregulated by DIMM overexpression. Together, these data suggest that SYT-α and SYT-β are important for NE cell physiology, that one or both are integral membrane components of the large dense-core vesicles, and that they are closely regulated by DIMM at a post-transcriptional level.
Collapse
|
10
|
Luo J, Liu Y, Nässel DR. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila. PLoS Genet 2013; 9:e1004052. [PMID: 24385933 PMCID: PMC3873260 DOI: 10.1371/journal.pgen.1004052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023] Open
Abstract
Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS) in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR) expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM). Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B), whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin) signaling components, such as Rheb (small GTPase), TOR and S6K (S6 kinase). After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth. Nerve cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. We ask if there is a regulatory mechanism for scaling the size of individual nerve cells, independent of the growth of the entire central nervous system (CNS). Growth of tissues and whole organisms depends on insulin/insulin-like growth factor signaling (IIS), but it is not known whether IIS regulates the size of individual nerve cells. We therefore studied the role of IIS in the size scaling of neurons in the CNS of the fruitfly Drosophila. By targeted genetic manipulations of insulin receptor (dInR) expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the transcription factor DIMMED (DIMM). DIMM-positive neurons displayed enlarged cell bodies after overexpression of the dInR and downstream signaling components, whereas DIMM-negative neurons did not. Knockdown of these components results in smaller neurons. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity (neurohormone production) to changing physiological conditions and nutrient-dependent organismal growth.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
Abstract
Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms.
Collapse
Affiliation(s)
- Paul H. Taghert
- Department of Anatomy & Neurobiology, Washington University Medical School, St. Louis, MO
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneraton and Repair, Yale School of Medicine, New Haven, CT
| |
Collapse
|
12
|
Direnzo D, Hess DA, Damsz B, Hallett JE, Marshall B, Goswami C, Liu Y, Deering T, Macdonald RJ, Konieczny SF. Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells. Gastroenterology 2012; 143:469-80. [PMID: 22510200 PMCID: PMC3664941 DOI: 10.1053/j.gastro.2012.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Early embryogenesis involves cell fate decisions that define the body axes and establish pools of progenitor cells. Development does not stop once lineages are specified; cells continue to undergo specific maturation events, and changes in gene expression patterns lead to their unique physiological functions. Secretory pancreatic acinar cells mature postnatally to synthesize large amounts of protein, polarize, and communicate with other cells. The transcription factor MIST1 is expressed by only secretory cells and regulates maturation events. MIST1-deficient acinar cells in mice do not establish apical-basal polarity, properly position zymogen granules, or communicate with adjacent cells, disrupting pancreatic function. We investigated whether MIST1 directly induces and maintains the mature phenotype of acinar cells. METHODS We analyzed the effects of Cre-mediated expression of Mist1 in adult Mist1-deficient (Mist1(KO)) mice. Pancreatic tissues were collected and analyzed by light and electron microscopy, immunohistochemistry, real-time polymerase chain reaction analysis, and chromatin immunoprecipitation. Primary acini were isolated from mice and analyzed in amylase secretion assays. RESULTS Induced expression of Mist1 in adult Mist1(KO) mice restored wild-type gene expression patterns in acinar cells. The acinar cells changed phenotypes, establishing apical-basal polarity, increasing the size of zymogen granules, reorganizing the cytoskeletal network, communicating intercellularly (by synthesizing gap junctions), and undergoing exocytosis. CONCLUSIONS The exocrine pancreas of adult mice can be remodeled by re-expression of the transcription factor MIST1. MIST1 regulates acinar cell maturation and might be used to repair damaged pancreata in patients with pancreatic disorders.
Collapse
Affiliation(s)
- Daniel Direnzo
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - David A. Hess
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Barbara Damsz
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Judy E. Hallett
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Brett Marshall
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Chirayu Goswami
- Laboratory for Computational Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Laboratory for Computational Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tye Deering
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raymond J. Macdonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen F. Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
13
|
Mills JC, Taghert PH. Scaling factors: transcription factors regulating subcellular domains. Bioessays 2011; 34:10-6. [PMID: 22028036 DOI: 10.1002/bies.201100089] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.
Collapse
Affiliation(s)
- Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
14
|
Park D, Hadžić T, Yin P, Rusch J, Abruzzi K, Rosbash M, Skeath JB, Panda S, Sweedler JV, Taghert PH. Molecular organization of Drosophila neuroendocrine cells by Dimmed. Curr Biol 2011; 21:1515-24. [PMID: 21885285 DOI: 10.1016/j.cub.2011.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND In Drosophila, the basic-helix-loop-helix protein DIMM coordinates the molecular and cellular properties of all major neuroendocrine cells, irrespective of the secretory peptides they produce. When expressed by nonneuroendocrine neurons, DIMM confers the major properties of the regulated secretory pathway and converts such cells away from fast neurotransmission and toward a neuroendocrine state. RESULTS We first identified 134 transcripts upregulated by DIMM in embryos and then evaluated them systematically using diverse assays (including embryo in situ hybridization, in vivo chromatin immunoprecipitation, and cell-based transactivation assays). We conclude that of eleven strong candidates, six are strongly and directly controlled by DIMM in vivo. The six targets include several large dense-core vesicle (LDCV) proteins, but also proteins in non-LDCV compartments such as the RNA-associated protein Maelstrom. In addition, a functional in vivo assay, combining transgenic RNA interference with MS-based peptidomics, revealed that three DIMM targets are especially critical for its action. These include two well-established LDCV proteins, the amidation enzyme PHM and the ascorbate-regenerating electron transporter cytochrome b(561-1). The third key DIMM target, CAT-4 (CG13248), has not previously been associated with peptide neurosecretion-it encodes a putative cationic amino acid transporter, closely related to the Slimfast arginine transporter. Finally, we compared transcripts upregulated by DIMM with those normally enriched in DIMM neurons of the adult brain and found an intersection of 18 DIMM-regulated genes, which included all six direct DIMM targets. CONCLUSIONS The results provide a rigorous molecular framework with which to describe the fundamental regulatory organization of diverse neuroendocrine cells.
Collapse
Affiliation(s)
- Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Park S, Bustamante EL, Antonova J, McLean GW, Kim SK. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling. PLoS Genet 2011; 7:e1002241. [PMID: 21901108 PMCID: PMC3161926 DOI: 10.1371/journal.pgen.1002241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/28/2011] [Indexed: 12/15/2022] Open
Abstract
Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism. The requirement for glucose regulation is conserved in metazoans and crucial for metabolism, growth, and survival. In fruit flies and other insects, neurons secrete insulin-like hormones and neuroendocrine corpora cardiaca cells secrete adipokinetic hormone, a peptide with functional similarities to glucagon. Both hormones are essential for systemic glucose control in Drosophila. To understand the mechanisms governing formation and function of corpora cardiaca cells, we sought to identify their embryonic origin and investigate their developmental genetic regulation. Based on prior reports suggesting a neuroectodermal origin, we were surprised to discover—using genetic lineage tracing methods—that embryonic corpora cardiac progenitors derive from anterior head mesoderm. To our knowledge, this is the first demonstration of neuroendocrine differentiation from mesoderm in Drosophila. Genetic studies reveal that Notch signaling restricts the number of corpora cardiaca progenitors, and we show that Notch signaling inactivation results in significant expansion of corpora cardiac cells. Loss- and gain-of-function studies identified transcription factors both necessary and sufficient for corpora cardiaca development. These and other findings reveal similarities in the development of fly corpora cardiaca cells and mammalian neuroendocrine cells that develop in the pancreas, pituitary, and from neural crest.
Collapse
Affiliation(s)
- Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Erika L. Bustamante
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie Antonova
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Graeme W. McLean
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ohtsuka K, Atsumi T, Fukushima Y, Shiomi K. Identification of a cis-regulatory element that directs prothoracicotropic hormone gene expression in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:356-361. [PMID: 21324358 DOI: 10.1016/j.ibmb.2011.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/19/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
In the silkworm Bombyx mori and other insects, prothoracicotropic hormone (PTTH) plays a central role in controlling molting and metamorphosis by stimulating the prothoracic glands to synthesize and release the molting hormone ecdysone. Using an AcNPV (Autographa californica nucleopolyhedrovirus)-mediated transient gene transfer system, we identified a cis-regulatory element that participates in the decision to switch expression of PTTH on or off in PTTH-producing neurosecretory cells (PTPCs). The nucleotide sequence of this cis-regulatory element is similar to a cis-regulatory element that participates in direction of expression of diapause hormone-pheromone biosynthesis activating neuropeptide gene (DH-PBAN) (Shiomi et al., 2007). Furthermore, we found that B. mori Pitx (BmPitx), a bicoid-like homeobox transcription factor, binds the element and activates PTTH expression. Therefore, we propose that the cell-specific expression of two neuropeptide hormone genes, PTTH and DH-PBAN, is activated by the Pitx transcription factor, which may act as a pan-activator in the insect neuroendocrine system and in vertebrate pituitary cells.
Collapse
Affiliation(s)
- Kazunori Ohtsuka
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | | | | | | |
Collapse
|
17
|
Capoccia BJ, Lennerz JKM, Bredemeyer AJ, Klco JM, Frater JL, Mills JC. Transcription factor MIST1 in terminal differentiation of mouse and human plasma cells. Physiol Genomics 2011; 43:174-86. [PMID: 21098683 PMCID: PMC3055710 DOI: 10.1152/physiolgenomics.00084.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022] Open
Abstract
Despite their divergent developmental ancestry, plasma cells and gastric zymogenic (chief) cells share a common function: high-capacity secretion of protein. Here we show that both cell lineages share increased expression of a cassette of 269 genes, most of which regulate endoplasmic reticulum (ER) and Golgi function, and they both induce expression of the transcription factors X-box binding protein 1 (Xbp1) and Mist1 during terminal differentiation. XBP1 is known to augment plasma cell function by establishing rough ER, and MIST1 regulates secretory vesicle trafficking in zymogenic cells. We examined morphology and function of plasma cells in wild-type and Mist1(-/-) mice and found subtle differences in ER structure but no overall defect in plasma cell function, suggesting that Mist1 may function redundantly in plasma cells. We next reasoned that MIST1 might be useful as a novel and reliable marker of plasma cells. We found that MIST1 specifically labeled normal plasma cells in mouse and human tissues, and, moreover, its expression was also characteristic of plasma cell differentiation in a cohort of 12 human plasma cell neoplasms. Overall, our results show that MIST1 is enriched upon plasma cell differentiation as a part of a genetic program facilitating secretory cell function and also that MIST1 is a novel marker of normal and neoplastic plasma cells in mouse and human tissues.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ilijin L, Vlahović M, Mrdaković M, Mirčić D, Prolić Z, Lazarević J, Perić-Mataruga V. The effects of acute exposure to magnetic fields on morphometric characteristics of bombyxin-producing neurosecretory neurons in gypsy moth caterpillars. Int J Radiat Biol 2011; 87:461-71. [PMID: 21219112 DOI: 10.3109/09553002.2011.542544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effects of acute exposure to strong static magnetic fields and extremely low frequency magnetic fields, on neurosecretory neurons which synthesise insulin-like neurohormone. MATERIALS AND METHODS Immunocytochemical detection of bombyxin-like material in the protocerebral neurosecretory neurons of Lymantria dispar caterpillars was performed using a monoclonal antibody directed against a synthetic dekapeptide corresponding to the N-terminus of the bombyxin A-chain. Caterpillars were exposed to strong static magnetic fileds (235 mT) and extremely low frequency magnetic fields (2 mT) for three days after moulting into the 4th instar. RESULTS We report the presence of immunoreactive molecules in A2 type of medial neurosecretory neurons (nsn) in caterpillars' brain of L. dispar. The three-day exposure of caterpillars to stresogenic external magnetic fields changed the size of A2 type nsn, their nuclei and the intensity of protein band in the region of bombyxin molecular mass (4-6 kD) after exposure to extremely low frequency magnetic fields in comparison to control group and group treated by strong static magnetic fields. CONCLUSION These are the first data on the influence of external magnetic fields on the polyphagous phytophagous forest pest L. dispar L. (Lepidoptera: Lymantridae) indicating an intensive synthesis of insulin-like neurosecretory material.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research Siniša Stanković, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 2010; 107:13497-502. [PMID: 20624977 DOI: 10.1073/pnas.1002081107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To compare circadian gene expression within highly discrete neuronal populations, we separately purified and characterized two adjacent but distinct groups of Drosophila adult circadian neurons: the 8 small and 10 large PDF-expressing ventral lateral neurons (s-LNvs and l-LNvs, respectively). The s-LNvs are the principal circadian pacemaker cells, whereas recent evidence indicates that the l-LNvs are involved in sleep and light-mediated arousal. Although half of the l-LNv-enriched mRNA population, including core clock mRNAs, is shared between the l-LNvs and s-LNvs, the other half is l-LNv- and s-LNv-specific. The distribution of four specific mRNAs is consistent with prior characterization of the four encoded proteins, and therefore indicates successful purification of the two neuronal types. Moreover, an octopamine receptor mRNA is selectively enriched in l-LNvs, and only these neurons respond to in vitro application of octopamine. Dissection and purification of l-LNvs from flies collected at different times indicate that these neurons contain cycling clock mRNAs with higher circadian amplitudes as well as at least a 10-fold higher fraction of oscillating mRNAs than all previous analyses of head RNA. Many of these cycling l-LNv mRNAs are well expressed but do not cycle or cycle much less well elsewhere in heads. The results suggest that RNA cycling is much more prominent in circadian neurons than elsewhere in heads and may be particularly important for the functioning of these neurons.
Collapse
|
20
|
RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation. Mol Cell Biol 2009; 30:1269-84. [PMID: 20038531 DOI: 10.1128/mcb.01328-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about how differentiating cells reorganize their cellular structure to perform specialized physiological functions. MIST1, an evolutionarily conserved transcription factor, is required for the formation of large, specialized secretory vesicles in gastric zymogenic (chief) cells (ZCs) as they differentiate from their mucous neck cell progenitors. Here, we show that MIST1 binds to highly conserved CATATG E-boxes to directly activate transcription of 6 genes, including those encoding the small GTPases RAB26 and RAB3D. We next show that RAB26 and RAB3D expression is significantly downregulated in Mist1(-)(/)(-) ZCs, suggesting that MIST1 establishes large secretory granules by inducing RAB transcription. To test this hypothesis, we transfected human gastric cancer cell lines stably expressing MIST1 with red fluorescent protein (RFP)-tagged pepsinogen C, a key secretory product of ZCs. Those cells upregulate expression of RAB26 and RAB3D to form large secretory granules, whereas control, non-MIST1-expressing cells do not. Moreover, granule formation in MIST1-expressing cells requires RAB activity because treatment with a RAB prenylation inhibitor and transfection of dominant negative RAB26 abrogate granule formation. Together, our data establish the molecular process by which a transcription factor can directly induce fundamental cellular architecture changes by increasing transcription of specific cellular effectors that act to organize a unique subcellular compartment.
Collapse
|
21
|
HELFRICH-FÖRSTER C. Neuropeptide PDF plays multiple roles in the circadian clock ofDrosophila melanogaster. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00408.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|