1
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Yang Y, Xu L, Lei B, Huang Y, Yu M. Effects of trichlorobisphenol A on the expression of proteins and genes associated with puberty initiation in GT1-7 cells and the relevant molecular mechanism. Food Chem Toxicol 2024; 183:114258. [PMID: 38040238 DOI: 10.1016/j.fct.2023.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
This study evaluated the effects of Cl3BPA on kisspeptin-G-protein coupled receptor 54 (GPR54)/gonadotropin-releasing hormone (GnRH) (KGG) signals and analyzed the roles of estrogen receptor alpha (ERɑ) and G-protein coupled estrogen receptor 1 (GPER1) in regulating KGG signals. The results showed that Cl3BPA at 50 μM increased the levels of intracellular reactive oxygen species (ROS) and GnRH, upregulated the protein levels of kisspeptin and the expression of fshr, lhr and gnrh1 genes related to KGG in GT1-7 cells. In addition, 50 μM Cl3BPA significantly upregulated the phosphorylation of extracellular regulated protein kinases 1/2 (Erk1/2), the protein levels of GPER1 and the expression of the gper1 as well as the most target genes associated with mitogen-activated protein kinase (MAPK)/Erk1/2 pathways. Specific signal inhibitor experiments found that Cl3BPA activated KGG signals by activating the GPER1-mediated MAPK/Erk1/2 signaling pathway at the mRNA level. A docking test further confirmed the interactions between Cl3BPA and GPER1. The findings suggest that Cl3BPA might induce precocious puberty by increasing GnRH secretion together with KGG signaling upregulation, which is driven by GPER1-mediated signaling pathway. By comparison, ClxBPAs with fewer chlorine atoms had more obvious effects on the expression of proteins and partial genes related to KGG signals in GT1-7 cells.
Collapse
Affiliation(s)
- Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
3
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Barbosa EM, Santos BR, Mendonça LD, Cunha MCDSG, Machado WM, Santana LR, Kersul MG, Henriques PC, Lopes RA, Snoeck PPDN, Szawka RE, Silva JF. Kisspeptin treatment reverses high prolactin levels and improves gonadal function in hypothyroid male rats. Sci Rep 2023; 13:16819. [PMID: 37798396 PMCID: PMC10556046 DOI: 10.1038/s41598-023-44056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
We evaluated whether the administration of kisspeptin-10 (Kp10) is capable of restoring gonadal function in hypothyroid male rats. Hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals were treated with Kp10. Hypothyroidism reduced testicular and sex gland mass, decreased the proliferation of the seminiferous epithelium, and compromised sperm morphology, motility, and vigor. A decrease in plasma LH and testosterone levels and an increase in prolactin secretion were observed in the hypothyroid rats. Hypothyroidism reduced Kiss1 and Kiss1r protein and gene expression and Star and Cyp11a1 mRNA levels in the testis. Furthermore, it reduced Lhb, Prl, and Drd2 and increased Tshb and Gnrhr expression in the pituitary. In the hypothalamus, hypothyroidism increased Pdyn and Kiss1r while reducing Gnrh1. Kp10 treatment in hypothyroid rats restored testicular and seminal vesicle morphology, improved sperm morphology and motility, reversed high prolactin levels, and increased LH and testosterone levels. In addition, Kp10 increased testicular expression of Kiss1, Kiss1r, Fshr, and Nr5a1 and pituitary Kiss1 expression. Our findings describe the inhibitory effects of hypothyroidism on the male gonadal axis and sperm quality and demonstrate that Kp10 treatment reverses high prolactin levels and improves gonadal function and sperm quality in hypothyroid rats.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - William Morais Machado
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa Rodrigues Santana
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maíra Guimarães Kersul
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Patrícia Costa Henriques
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Roberta Araújo Lopes
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Paola Pereira das Neves Snoeck
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Raphael Escorsim Szawka
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil.
| |
Collapse
|
4
|
Tumurbaatar T, Kanasaki H, Yacca SS, Cairang Z, Tumurgan Z, Oride A, Okada H, Kyo S. Kisspeptin induces Kiss-1 and GnRH gene expression in mHypoA-55 hypothalamic cell models: Involvement of the ERK and PKA signaling pathways. Gen Comp Endocrinol 2023; 337:114260. [PMID: 36933747 DOI: 10.1016/j.ygcen.2023.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
mHypoA-55 cells are kisspeptin-expressing neuronal cells originating from the arcuate nucleus of the mouse hypothalamus. These cells are called KNDy neurons because they co-express kisspeptin, neurokinin B, and dynorphin A. In addition, they express gonadotropin-releasing hormone (GnRH). Here, we found that kisspeptin 10 (KP10) increased Kiss-1 (encoding kisspeptin) and GnRH gene expression in kisspeptin receptor (Kiss-1R)-overexpressing mHypoA-55 cells. KP10 greatly increased serum response element (SRE) promoter activity, which is a target of extracellular signal-regulated kinase (ERK) (20.0 ± 2.54-fold). KP10 also increased cAMP-response element (CRE) promoter activity in these cells (2.32 ± 0.36-fold). KP10-increased SRE promoter activity was significantly prevented in the presence of PD098095, a MEK kinase (MEKK) inhibitor, and KP10-induced CRE promoter activity was also inhibited by PD098059. Similarly, H89, a protein kinase A (PKA) inhibitor, significantly inhibited the KP10 induction of SRE and CRE promoters. KP10-induced Kiss-1 and GnRH gene expressions were inhibited in the presence of PD098059. Likewise, H89 significantly inhibited the KP10-induced increase in Kiss-1 and GnRH. Transfection of mHypoA-55 cells with constitutively active MEKK (pFC-MEKK) increased SRE and CRE promoter activities by 9.75 ± 1.77- and 1.36 ± 0.12-fold, respectively. Induction of constitutively active PKA (pFC-PKA) also increased SRE and CRE promoter activities by 2.41 ± 0.42- and 40.71 ± 7.77-fold, respectively. Furthermore, pFC-MEKK and -PKA transfection of mHypoA-55 cells increased both Kiss-1 and GnRH gene expression. Our current observations suggest that KP10 increases both the ERK and PKA pathways and that both pathways mutually interact in mHypoA-55 hypothalamic cells. Activation of both ERK and PKA signaling might be necessary to induce Kiss-1 and GnRH gene expressions.
Collapse
Affiliation(s)
- Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | - Susdiaman Sudin Yacca
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Zhuoma Cairang
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
5
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
6
|
de Oliveira LS, da Silva TQM, Barbosa EM, Dos Anjos Cordeiro JM, Santos LC, Henriques PC, Santos BR, Gusmao DDO, de Macedo IO, Szawka RE, Silva JF. Kisspeptin Treatment Restores Ovarian Function in Rats with Hypothyroidism. Thyroid 2022; 32:1568-1579. [PMID: 35765915 DOI: 10.1089/thy.2021.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Hypothyroidism causes ovarian dysfunction and infertility in women, in addition to being associated with hyperprolactinemia and reduced hypothalamic expression of kisspeptin (Kp). However, it remains unknown whether and how Kp is able to reverse the ovarian dysfunction caused by hypothyroidism. Methods: Hypothyroidism was induced in adult female Wistar rats using 6-propyl-2-thiouracil for 3 months. In the last month, half of the animals received Kp10. Blood samples were collected for dosage of free thyroxine, thyrotropin (TSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2), and uteruses and ovaries were collected for histomorphometry. Body and ovarian weight and the number of corpora lutea were also evaluated. Half of the brains were evaluated by immunohistochemistry to Kp, and the other half had the arcuate nucleus of hypothalamus (ARC) and preoptic area microdissected for gene evaluation of Kiss1, Nkb, Pdyn, and Gnrh1. The pituitary gland and corpora lutea were also dissected for gene evaluation. Results: Hypothyroidism kept the animals predominantly acyclic and promoted a reduction in ovarian weight, number of corpora lutea, endometrial thickness, number of endometrial glands, and plasma LH, in addition to increasing the luteal messenger RNA (mRNA) expression of Star and Cyp11a1 and reducing 20αHsd. An increase in plasma PRL and P4 levels was also caused by hypothyroidism. Kp immunoreactivity and Kiss1 and Nkb mRNA levels in the ARC and Kiss1 in the anteroventral periventricular nucleus of hypothalamus were reduced in hypothyroid rats. Hypothyroid animals had lower pituitary gene expression of Gnrhr, Lhb, Prl, and Drd2, and an increase in Tshb. The treatment with Kp10 restored estrous cyclicality, plasma LH, ovarian and uterine morphology, and Cyp11a1, 3βHsd, and 20αHsd mRNA levels in the corpora lutea. Kp10 treatment did not alter gene expression for Kiss1 or Nkb in the ARC of hypothyroid rats. Nevertheless, Kp10 increased Lhb mRNA levels and reduced Tshb in the pituitary compared with the hypothyroid group. Conclusions: The present findings characterize the inhibitory effects of hypothyroidism on the hypothalamic-pituitary-gonadal axis in female rats and demonstrate that Kp10 is able to reverse the ovarian dysfunction caused by hypothyroidism, regardless of hyperprolactinemia.
Collapse
Affiliation(s)
- Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Patrícia Costa Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Daniela de Oliveira Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| |
Collapse
|
7
|
Lei B, Xu L, Huang Y, Liu Y, Yu M, Tang Q. Chlorobisphenol A activated kisspeptin/GPR54-GnRH neuroendocrine signals through ERα and GPER pathway in neuronal GT1-7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113290. [PMID: 35158255 DOI: 10.1016/j.ecoenv.2022.113290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Chlorobisphenol A (ClxBPA) is a kind of novel estrogenic compounds. The present study aims to investigate the effects of three ClxBPA compounds on the kisspeptin/G protein-coupled receptor 54 (GPR54, also named KissR1)-gonadotropin-releasing hormone (GnRH) (KGG) system in neuronal GT1-7 cells with mechanistic insights by estrogen receptor signaling pathways. The study demonstrated that low-concentration ClxBPA induced the cell proliferation, promoted GnRH secretion, upregulated the expression of KGG neuroendocrine signal-related proteins (KissR1, GnRH1 and kisspeptin) and genes including Kiss1, GnRH1, KissR1, luteinizing hormone receptor (Lhr) and follicle-stimulating hormone receptor (Fshr) in GT1-7 cells. Additionally, ClxBPA activated nuclear estrogen receptor alpha (ERα) and member estrogen receptor G protein-coupled estrogen receptor (GPER)-regulated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (Erk1/2) signaling pathways. Pretreatment of GT1-7 cells with GPER inhibitor G15 and ERα inhibitor ICI reduced the expression of KissR1, GnRH1 and kisspeptin proteins, attenuated mRNA levels of Kiss1, GnRH1, KissR1, Fshr and Lhr genes, and decreased ClxBPA-induced GT1-7 cell proliferation. The results suggested that ClxBPA activated the KGG neuroendocrine signals and induced the proliferation of GT1-7 cells via ERα and GPER signaling pathways. This study provides a new perspective to explore the neuroendocrine toxicity mechanism of ClxBPA. CAPSULE: ClxBPA activated KGG neuroendocrine signaling pathway via ERα and GPER and induced the proliferation of GT1-7 cells.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, Guangdong Province 510530, PR China.
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Qianqian Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
8
|
Oride A, Kanasaki H, Tumurbaatar T, Tumurgan Z, Okada H, Kyo S. Effect of anti-Müllerian hormone in hypothalamic Kiss-1- and GnRH-producing cell models. Gynecol Endocrinol 2021; 37:841-847. [PMID: 34236272 DOI: 10.1080/09513590.2021.1950134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Purpose: Anti-Müllerian hormone (AMH) is one of the local factors involved in follicle development. In addition, AMH and its receptor are broadly expressed throughout the body. In this study, we examined how AMH modifies gene expression of Kiss-1 and GnRH.Materials and methods: mHypoA-50 and mHypoA-55 cells were originated from the hypothalamic anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), respectively, and these cells are known as Kiss-1 (which encodes kisspeptin) expressing cell models. These cells also express gonadotropin-releasing hormone (GnRH) genes. Our experiments were performed useing these cell models.Results: Both mHypoA-50 and mHypoA-55 hypothalamic cells expressed AMH and AMH receptor type 2 (AMHR2). Exogenous AMH failed to alter the expression levels of the Kiss-1 gene in both cell models but significantly increased GnRH gene expression by 1.73 ± 0.2-fold at 100 pM in mHypoA-50 AVPV cells and by 1.74 ± 0.17-fold at 1 nM in mHypoA-55 ARC cells. AMH also augmented GnRH protein expression in both cell models. Similar to the phenomenon observed in the hypothalamic cell lines, 100 pM AMH significantly increased GnRH, but not Kiss-1, mRNA expression in primary cultures of fetal rat brain cells. Kisspeptin-10 (KP10) increased Kiss-1 gene expression in mHypoA-55 ARC cells but this was blocked by AMH. AMH did not alter the expression of the kisspeptin receptor (Kiss1R) or that of neurokinin B or dynorphin A in mHypoA-55 ARC cells.Conclusions: It was demonstrated that AMH participates in hypothalamic-pituitary-gonadal axis control by stimulating GnRH expression. In addition, AMH might be a potent repressor of Kiss-1 gene expression induced by KP10.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
9
|
Kanasaki H, Tumurbaatar T, Tumurgan Z, Oride A, Okada H, Kyo S. Mutual Interactions Between GnRH and Kisspeptin in GnRH- and Kiss-1-Expressing Immortalized Hypothalamic Cell Models. Reprod Sci 2021; 28:3380-3389. [PMID: 34268716 DOI: 10.1007/s43032-021-00695-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Kisspeptin and gonadotropin-releasing hormone (GnRH) are central regulators of the hypothalamic-pituitary-gonadal axis and control female reproductive functions. Recently established mHypoA-50 and mHypoA-55 cells are immortalized hypothalamic neuronal cell models that originated from the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) regions of the mouse hypothalamus, respectively. mHypoA-50 or mHypoA-55 cells were stimulated with kisspeptin-10 (KP10) and GnRH, after which the expression of kisspeptin and GnRH was determined. Primary cultures of fetal rat brain cells were also examined. mHypoA-50 and mHypoA-55 cells expressed mRNA for Kiss-1 (which encodes kisspeptin) and GnRH as well as receptors for kisspeptin and GnRH. We found that Kiss-1 mRNA expression was significantly increased in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. Kisspeptin protein expression was also increased by KP10 and GnRH stimulation in these cells. In contrast, GnRH expression was unchanged in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. In mHypoA-55 ARC cells, kisspeptin expression was also significantly increased at the mRNA and protein levels by KP10 and GnRH stimulation; however, GnRH expression was also upregulated by KP10 and GnRH stimulation in these cells. KP10 and estradiol (E2) both increased Kiss-1 gene expression in mHypoA-50 AVPV cells, but combined stimulation with KP10 and E2 did not potentiate their individual effects on Kiss-1 gene expression. On the other hand, E2 did not increase Kiss-1 gene expression in mHypoA-55 ARC cells, and the KP10-induced increase of Kiss-1 gene expression was inhibited in the presence of E2 in these cells. KP10 and GnRH significantly increased c-Fos protein expression in the mHypoA-50 AVPV and mHypoA-55 ARC cell lines. In primary cultures of fetal rat neuronal cells, KP10 significantly increased Kiss-1 gene expression, whereas GnRH significantly increased GnRH gene expression. We found that kisspeptin and GnRH affected Kiss-1- and GnRH-expressing hypothalamic cells and modulated Kiss-1 and/or GnRH gene expression with a concomitant increase in c-Fos protein expression. A mutual- or self-regulatory system might be present in Kiss-1 and/or GnRH neurons in the hypothalamus.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
10
|
Gorbunova OL, Shirshev SV. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. BIOCHEMISTRY (MOSCOW) 2021; 85:839-853. [PMID: 33045946 DOI: 10.1134/s0006297920080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.
Collapse
Affiliation(s)
- O L Gorbunova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| | - S V Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| |
Collapse
|
11
|
Ullah A, Pirzada M, Jahan S, Ullah H, Razak S, Rauf N, Khan MJ, Mahboob SZ. Prenatal BPA and its analogs BPB, BPF, and BPS exposure and reproductive axis function in the male offspring of Sprague Dawley rats. Hum Exp Toxicol 2020; 38:1344-1365. [PMID: 31514588 DOI: 10.1177/0960327119862335] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the past has indicated associated long-term and low levels of exposure of bisphenol A (BPA) in early life and neuroendocrine disorders, such as obesity, precocious puberty, diabetes, and hypertension. BPA and its analogs bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) have been reported to have similar or even more toxic effect as compared to BPA. Exposure of rats to BPA and its analogs BPB, BPF, and BPS resulted in decreased sperm production, testosterone secretion, and histological changes in the reproductive tissues of male rats. In the present study, BPA, BPB, BPF, and BPS were administered in drinking water at concentrations of (5, 25, and 50 μg/L) from pregnancy day (PD) 1 to PD 21. Body weight (BW), hormonal concentrations, antioxidant enzymes, and histological changes were determined in the reproductive tissues. BPA and its analogs prenatal exposure to female rats induced significant statistical difference in the antioxidant enzymes, plasma testosterone, and estrogen concentrations in the male offspring when compared with the control. Histological parameters of both testis and epididymis revealed prominent changes in the reproductive tissues. The present study suggests that BPA and its analogs BPB, BPF, and BPS different concentrations led to marked alterations in the development of the male reproductive system.
Collapse
Affiliation(s)
- A Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M Pirzada
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - H Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Razak
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Rauf
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M J Khan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Z Mahboob
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
13
|
Kanasaki H, Tumurbaatar T, Tumurgan Z, Oride A, Okada H, Kyo S. Effect of relaxin-3 on Kiss-1, gonadotropin-releasing hormone, and gonadotropin subunit gene expression. Reprod Med Biol 2019; 18:397-404. [PMID: 31607801 PMCID: PMC6780024 DOI: 10.1002/rmb2.12298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Relaxin-3 is a hypothalamic neuropeptide that belongs to the insulin superfamily. We examined whether relaxin-3 could affect hypothalamic Kiss-1, gonadotropin-releasing hormone (GnRH), and pituitary gonadotropin subunit gene expression. METHODS Mouse hypothalamic cell models, mHypoA-50 (originated from the hypothalamic anteroventral periventricular region), mHypoA-55 (originated from arcuate nucleus), and GT1-7, and the mouse pituitary gonadotroph LβT2 were used. Expression of Kiss-1, GnRH, and luteinizing hormone (LH)/follicle-stimulating hormone (FSH) β-subunits was determined after stimulation with relaxin-3. RESULTS RXFP3, a principle relaxin-3 receptor, was expressed in these cell models. In mHypoA-50 cells, relaxin-3 did not exert a significant effect on Kiss-1 expression. In contrast, the Kiss-1 gene in mHypoA-55 was significantly increased by 1 nmol/L relaxin-3. These cells also express GnRH mRNA, and its expression was significantly stimulated by relaxin-3. In GT1-7 cells, relaxin-3 significantly upregulated Kiss-1 expression; however, GnRH mRNA expression in GT1-7 cells was not altered. In primary cultures of fetal rat neuronal cells, 100 nmol/L relaxin-3 significantly increased GnRH expression. In pituitary gonadotroph LβT2, both LHβ- and FSHβ-subunit were significantly increased by 1 nmol/L relaxin-3. CONCLUSIONS Our findings suggest that relaxin-3 exerts its effect by modulating the expression of Kiss-1, GnRH, and gonadotropin subunits, all of which are part of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan
| | | | - Zolzaya Tumurgan
- Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan
| | - Aki Oride
- Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan
| | - Hiroe Okada
- Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan
| | - Satoru Kyo
- Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan
| |
Collapse
|
14
|
Liu Y, Bai JH, Xu XL, Chen ZL, Spicer LJ, Feng T. Effects of N-carbamylglutamate and L-arginine on gonadotrophin-releasing hormone (GnRH) gene expression and secretion in GT1-7 cells. Reprod Fertil Dev 2019; 30:759-765. [PMID: 29121483 DOI: 10.1071/rd17265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Recent studies have shown that N-carbamylglutamate (NCG) and arginine (ARG) supplementation improves reproductive performance in livestock. The objectives of the present study were to evaluate the effects of NCG and ARG on GT1-7 cell gonadotrophin-releasing hormone (GnRH) secretion, gene expression and cell proliferation. GT1-7 cells were treated in vitro with different concentrations of NCG (0-1.0mM) or ARG (0-4.0mM) in serum-free medium for 12 or 24h. For GnRH secretion and cell proliferation, GT1-7 cells were more sensitive to NCG than ARG. NCG treatment after 12h increased cell numbers and inhibited GnRH secretion in a dose-dependent manner (P<0.05), although there was no significant effect of NCG on these parameters after 24h culture. ARG treatment decreased GnRH secretion after 24h (P<0.05), whereas it had no effect after 12h. GT1-7 cells express GnRH, Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), neuronal nitric oxide synthase (nNOS) and estrogen receptor α (ERα) genes. High concentrations of NCG (1.0mM) and ARG (4.0mM) inhibited (P<0.05) GnRH and nNOS mRNA abundance in GT1-7 cells. ARG treatment decreased Kiss1 and increased ERα mRNA abundance. Thus, high concentrations of NCG (1.0mM) and ARG (4.0mM) may act both directly and indirectly to regulate GnRH neuron function by downregulating genes related to GnRH synthesis and secretion to slow GnRH production while stimulating GT1-7 cell proliferation.
Collapse
Affiliation(s)
- Y Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - J H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - X L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Z L Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
15
|
Son YL, Ubuka T, Tsutsui K. Molecular Mechanisms of Gonadotropin-Inhibitory Hormone (GnIH) Actions in Target Cells and Regulation of GnIH Expression. Front Endocrinol (Lausanne) 2019; 10:110. [PMID: 30858828 PMCID: PMC6397841 DOI: 10.3389/fendo.2019.00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Since gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as the first hypothalamic neuropeptide that actively inhibits gonadotropin release, researches conducted for the last 18 years have demonstrated that GnIH acts as a pronounced negative regulator of reproduction. Inhibitory effect of GnIH on reproduction is mainly accomplished at hypothalamic-pituitary levels; gonadotropin-releasing hormone (GnRH) neurons and gonadotropes are major targets of GnIH action based on the morphological interaction with GnIH neuronal fibers and the distribution of GnIH receptor. Here, we review molecular studies mainly focusing on the signal transduction pathway of GnIH in target cells, GnRH neurons, and gonadotropes. The use of well-defined cellular model systems allows the mechanistic study of signaling pathway occurring in target cells by demonstrating the direct cause-and-effect relationship. The insights gained through studying molecular mechanism of GnIH action contribute to deeper understanding of the mechanism of how GnIH communicates with other neuronal signaling systems to control our reproductive function. Reproductive axis closely interacts with other endocrine systems, thus GnIH expression levels would be changed by adrenal and thyroid status. We also briefly review molecular studies investigating the regulatory mechanisms of GnIH expression to understand the role of GnIH as a mediator between adrenal, thyroid and gonadal axes.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Photobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: You Lee Son
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Hara T, Kanasaki H, Tumurbaatar T, Oride A, Okada H, Kyo S. Role of kisspeptin and Kiss1R in the regulation of prolactin gene expression in rat somatolactotroph GH3 cells. Endocrine 2019; 63:101-111. [PMID: 30255291 DOI: 10.1007/s12020-018-1759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
Hypothalamic kisspeptin is a known principal activator of gonadotropin-releasing hormone neurons and governs the hypothalamic-pituitary-gonadal axis. Previous reports have shown that kisspeptin is also released into the hypophyseal portal circulation and directly affects the anterior pituitary. In this study, we examined the direct effect of kisspeptin on pituitary prolactin-producing cells. The rat pituitary somatolactotroph cell line GH3 expresses the kisspeptin receptor (Kiss1R); however, in these cells, kisspeptin failed to stimulate prolactin-promoter activity. When GH3 cells overexpressed Kiss1R, kisspeptin clearly increased prolactin-promoter activity, with a concomitant increase in extracellular signal-regulated kinase (ERK) and cAMP/protein kinase A (PKA) signaling pathways. In the experiments using GH3 cells overexpressing Kiss1R, kisspeptin did not potentiate thyrotropin-releasing hormone (TRH)-induced prolactin-promoter activity, but it potentiated the pituitary adenylate cyclase-activating polypeptide-induced prolactin-promoter activity, with a concomitant enhancement of ERK and PKA signaling pathways. Although the basal and TRH-induced prolactin-promoter activities were not modulated by increasing amounts of Kiss1R expression in GH3 cells, kisspeptin-stimulated prolactin-promoter activity was increased by the amount of Kiss1R overexpression. Endogenous Kiss1r mRNA expression in GH3 cells was significantly increased by treatment with estradiol (E2) but not by TRH. In addition, kisspeptin's ability to stimulate prolactin-promoter activity was restored after E2 treatment in non-transfected GH3 cells. Our current observations suggest that kisspeptin might have a direct effect on prolactin expression in the anterior pituitary prolactin-producing cells under the influence of E2, which may regulate Kiss1R expression and function.
Collapse
Affiliation(s)
- Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan.
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| |
Collapse
|
17
|
Hu KL, Chang HM, Li R, Yu Y, Qiao J. Regulation of LH secretion by RFRP-3 - From the hypothalamus to the pituitary. Front Neuroendocrinol 2019; 52:12-21. [PMID: 29608929 DOI: 10.1016/j.yfrne.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
RFamide-related peptides (RFRPs) have long been identified as inhibitors of the hypothalamus-pituitary-gonad axis in mammals. However, less progress has been made in the detailed roles of RFRPs in the control of LH secretion. Recent studies have suggested that RFRP-3 neurons in the hypothalamus can regulate the secretion of LH at different levels, including kisspeptin neurons, GnRH neurons, and the pituitary. Additionally, conflicting results regarding the effects of RFRP-3 on these levels exist. In this review, we collect the latest evidence related to the effects of RFRP-3 neurons in regulating LH secretion by acting on kisspeptin neurons, GnRH neurons, and the pituitary and discuss the potential role of the timely reduction of RFRP-3 signaling in the modulation of the preovulatory LH surge.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Department of Obstetrics and Gynaecology, University of British Columbia, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
18
|
Recanati MA, Du H, Kramer KJ, Hüttemann M, Welch RA. Antisense techniques provide robust decrease in GnRH receptor expression with minimal cytotoxicity in GT1-7 cells. Syst Biol Reprod Med 2018; 64:389-398. [PMID: 30136857 DOI: 10.1080/19396368.2018.1499153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The episodic pattern of gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus is driven by an integrated network of cells termed the GnRH pulse generator. Cultured and immortalized GnRH neurons also produce a pulsatile pattern of GnRH secretions when grown in the absence of other cell types, suggesting the presence of an intrinsic oscillator mediating GnRH secretion. The mechanisms underlying such pulsatility comprise one of the most tantalizing problems in contemporary neuroendocrinology. In order to study the mechanism by which GnRH is produced in a pulsatile fashion, the autocrine effect of GnRH on GnRH-producing neurons must be eliminated. This may be performed by downregulating the expression of the GnRH receptor. Treatment with three 21-mer exogenous phosphorothioates and transient transfections with an inducible plasmid containing an antisense construct to the GnRH receptor gene decreased GnRH receptor expression further. This resulted in less cytotoxicity compared to inhibition of RNA or protein synthesis with actinomycin D, α-amanitin, puromycin, and cycloheximide. This study shows methods and optimized conditions established for the generation of a stable GT1-7 cell line containing an inducible construct allowing the downregulation of GnRH receptor expression. ABBREVIATIONS ANOVA: analysis of the variance; DMEM: Dulbecco's modified Eagle's medium; GnRH: gonadotropin-releasing hormone; RXR: retinoid X receptor.
Collapse
Affiliation(s)
| | - Hongling Du
- a Department of Obstetrics and Gynecology , Wayne State University , Detroit , MI , USA
| | | | - Maik Hüttemann
- c Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Robert A Welch
- a Department of Obstetrics and Gynecology , Wayne State University , Detroit , MI , USA
| |
Collapse
|
19
|
Oride A, Kanasaki H, Kyo S. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamic-pituitary system. Reprod Med Biol 2018; 17:234-241. [PMID: 30013423 PMCID: PMC6046521 DOI: 10.1002/rmb2.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/01/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional peptide that is isolated and identified from the ovine hypothalamus, whose effects and mechanisms have been elucidated in numerous studies. The PACAP and its receptor are widely expressed, not only in the hypothalamus but also in peripheral organs. METHODS The studies on the role of PACAP in the hypothalamic-pituitary system, including those by the authors, were summarized. RESULTS In the pituitary gonadotrophs, PACAP increases the gonadotrophin α-, luteinizing hormoneβ-, and follicle-stimulating hormone β-subunit expression and the expression of gonadotropin-releasing hormone (GnRH) receptor and its own receptor, PAC1R. Moreover, a low-frequency GnRH pulse increases the expression of PACAP and PAC1R more than a high-frequency GnRH pulse in the gonadotrophs. The PACAP stimulates prolactin synthesis and secretion and increases PAC1R in the lactotrophs. In the hypothalamus, PACAP increases the expression of the GnRH receptors, although it is unable to increase the expression of GnRH in the GnRH-producing neurons. CONCLUSION The PACAP not only acts directly in each hormone-producing cell, it possibly might regulate hormone synthesis via the expression of its own receptors or those of other hormones.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| | - Haruhiko Kanasaki
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| | - Satoru Kyo
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| |
Collapse
|
20
|
Mijiddorj T, Kanasaki H, Oride A, Hara T, Sukhbaatar U, Tumurbaatar T, Kyo S. Interaction between kisspeptin and adenylate cyclase-activating polypeptide 1 on the expression of pituitary gonadotropin subunits: a study using mouse pituitary lbetaT2 cells. Biol Reprod 2018; 96:1043-1051. [PMID: 28863434 DOI: 10.1093/biolre/iox030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
We examined direct effect of kisspeptin on pituitary gonadotrophs. Kisspeptin-10 (KP10) significantly increased the promoter activities of the gonadotropin subunits, common alpha-glycoprotein (Cga), luteinizing hormone beta (Lhb), and follicle-stimulatinghormone beta (Fshb) in LbetaT2 cells overexpressing kisspeptin receptor (Kiss1r). KP10 and gonadotropin-releasing hormone (GnRH) increased gonadotropin subunit levels to similar degrees and combined treatment with GnRH and KP10 did not potentiate their individual effects. Adenylate cyclase-activating polypeptide 1 (ADCYAP1) also stimulates all three gonadotropin subunits. When cells were stimulated with both KP10 and ADCYAP1, expression of gonadotropin subunits was further increased compared to KP10 or ADCYAP1 alone. KP10 and GnRH dramatically increased serum response element (Sre) promoter levels but only slightly increased cAMP response element (Cre) promoter levels. Combined stimulation with KP10 and GnRH further increased Sre promoter levels. In contrast, ADCYAP1 slightly increased Sre promoter expression but did not modify the effect of KP10. However, ADCYAP1 increased Cre promoter to greater levels than KP10 alone, and combined treatment with KP10 and ADCYAP1 further increased Cre promoter expression. KP10 increased the expression of ADCYAP1 type I receptor (Adcyap1r) and the basal activity of the Cga promoter was increased at a higher Adcyap1r transfection level. The KP10-induced fold increase in all three gonadotropin subunit promoters was not altered by transfection with a higher amount of Adcyap1r vector. Our findings using model cells show that distinct signaling activation by ADCYAP1 potentiates the action of KP10. We also found that KP10 increases Adcyap1r expression.
Collapse
Affiliation(s)
- Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
21
|
Adams C, Stroberg W, DeFazio RA, Schnell S, Moenter SM. Gonadotropin-Releasing Hormone (GnRH) Neuron Excitability Is Regulated by Estradiol Feedback and Kisspeptin. J Neurosci 2018; 38:1249-1263. [PMID: 29263236 PMCID: PMC5792479 DOI: 10.1523/jneurosci.2988-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 12/09/2017] [Indexed: 01/03/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons produce the central output controlling fertility and are regulated by steroid feedback. A switch from estradiol negative to positive feedback initiates the GnRH surge, ultimately triggering ovulation. This occurs on a daily basis in ovariectomized, estradiol-treated (OVX+E) mice; GnRH neurons are suppressed in the morning and activated in the afternoon. To test the hypotheses that estradiol and time of day signals alter GnRH neuron responsiveness to stimuli, GFP-identified GnRH neurons in brain slices from OVX+E or OVX female mice were recorded during the morning or afternoon. No differences were observed in baseline membrane potential. Current-clamp revealed GnRH neurons fired more action potentials in response to current injection during positive feedback relative to all other groups, which were not different from each other despite reports of differing ionic conductances. Kisspeptin increased GnRH neuron response in cells from OVX and OVX+E mice in the morning but not afternoon. Paradoxically, excitability in kisspeptin knock-out mice was similar to the maximum observed in control mice but was unchanged by time of day or estradiol. A mathematical model applying a Markov Chain Monte Carlo method to estimate probability distributions for estradiol- and time of day-dependent parameters was used to predict intrinsic properties underlying excitability changes. A single identifiable distribution of solutions accounted for similar GnRH neuron excitability in all groups other than positive feedback despite different underlying conductance properties; this was attributable to interdependence of voltage-gated potassium channel properties. In contrast, redundant solutions may explain positive feedback, perhaps indicative of the importance of this state for species survival.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for central neural control of ovulation. We studied how estradiol feedback regulates GnRH excitability, a key determinant of neural firing rate using laboratory and computational approaches. GnRH excitability is upregulated during positive feedback, perhaps driving increased neural firing rate at this time. Kisspeptin increased GnRH excitability and was essential for estradiol regulation of excitability. Modeling predicts that multiple combinations of changes to GnRH intrinsic conductances can produce the firing response in positive feedback, suggesting the brain has many ways to induce ovulation.
Collapse
Affiliation(s)
| | | | | | - Santiago Schnell
- Departments of Molecular and Integrative Physiology
- Computational Medicine and Bioinformatics
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology,
- Obstetrics and Gynecology, and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
22
|
Kanasaki H, Tselmeg M, Oride A, Sukhbaatar U, Hara T, Kyo S. Pulsatile kisspeptin effectively stimulates gonadotropin-releasing hormone (GnRH)-producing neurons. Gynecol Endocrinol 2017; 33:721-727. [PMID: 28447478 DOI: 10.1080/09513590.2017.1318277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Hypothalamic kisspeptin is integral to the hypothalamic-pituitary-gonadal axis by stimulating gonadotropin-releasing hormone (GnRH) release. GnRH is released from the hypothalamus in a pulsatile manner and determines the output of the gonadotropins. However, the effect of kisspeptin on GnRH-secreting cells remains unknown. In an experiment using static cultures of GT1-7 cells, kisspeptin did not significantly increase GnRH mRNA expression. However, when kisspeptin was administered to the cells in a pulsatile manner, GnRH mRNA expression was significantly increased. Primary cultures of fetal rat brain containing GnRH-expressing neurons responded to kisspeptin and increased GnRH mRNA expression by 1.65 ± 0.27-fold in the static condition. When cells were stimulated with kisspeptin in a pulsatile manner, GnRH mRNA expression was increased by up to 2.40 ± 0.21-fold. In perifused GT1-7 cells, pulsatile, but not continuous kisspeptin stimulation, effectively stimulated GnRH mRNA expression. To assess the level of stimulation of GnRH neurons by kisspeptin, the expression of c-fos was examined. In GT1-7 cells, kisspeptin stimulation in the static condition failed to increase c-fos mRNA expression. However, pulsatile kisspeptin stimulation increased c-fos mRNA by 2.31 ± 0.47-fold. Similar to the phenomenon observed in GT1-7 cells, pulsatile, but not static, kisspeptin stimulation significantly increased c-fos mRNA expression in the primary cultures of fetal rat brain. These observations suggest that pulsatile kisspeptin more effectively stimulates GnRH-producing cells to increase the production of GnRH.
Collapse
Affiliation(s)
| | | | - Aki Oride
- a Shimane University , Izumo , Japan
| | | | | | | |
Collapse
|
23
|
Kanasaki H, Oride A, Mijiddorj T, Sukhbaatar U, Kyo S. How is GnRH regulated in GnRH-producing neurons? Studies using GT1-7 cells as a GnRH-producing cell model. Gen Comp Endocrinol 2017; 247:138-142. [PMID: 28131616 DOI: 10.1016/j.ygcen.2017.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
Abstract
Hypothalamic secretion of gonadotropin-releasing hormone (GnRH) has been established as a principle pathway for initiating and integrating female reproductive function. GnRH stimulates the release of two gonadotropins-luteinizing hormone and follicle-stimulating hormone-from the anterior pituitary, which eventually stimulate the synthesis of sex steroids in association with follicular growth and ovulation. This reproductive control of the hypothalamic-pituitary-gonadal (HPG) axis also mediates gonadal feedback mechanisms. Although GnRH neurons certainly play a pivotal role in the HPG axis, the detailed mechanisms of their functional network, including regulatory systems, remain unknown. After the discovery of the indispensable role of kisspeptin in the development of human reproductive functions, our understanding of the neuroendocrine regulation of the HPG axis was revolutionized, and it is now recognized that kisspeptin acts upstream of GnRH and is responsible for sex steroid feedback mechanisms. Kisspeptin can stimulate gonadotropin release from the pituitary gland by stimulating GnRH release and GnRH antagonists prevent kisspeptin-induced gonadotropin release. Furthermore, it has been shown that GnRH neurons express kisspeptin receptors. Nevertheless, the detailed mechanisms underlying the regulation of homogeneous populations of GnRH neurons are still largely unknown because of the limitations of experimental models used for investigation. The hypothalamus consists of a complex network of distinct neuronal cells, and it is difficult to isolate single-cell populations of GnRH neurons. The establishment of GnRH-expressing cell lines has allowed us to examine the events happening at the single-cell level. In this review, we describe in vitro studies using a GnRH-producing cell model, GT1-7 cells, which have been used to examine how GnRH-producing cells respond to hypothalamic factors and how they are involved in GnRH synthesis.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan.
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
24
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
25
|
Mijiddorj T, Kanasaki H, Sukhbaatar U, Oride A, Hara T, Kyo S. Mutual regulation by GnRH and kisspeptin of their receptor expression and its impact on the gene expression of gonadotropin subunits. Gen Comp Endocrinol 2017; 246:382-389. [PMID: 28087300 DOI: 10.1016/j.ygcen.2017.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 11/21/2022]
Abstract
Hypothalamic kisspeptin plays a pivotal role in the regulation of the hypothalamic-pituitary-gonadal axis by stimulating gonadotropin-releasing hormone (GnRH) release into the portal circulation, with the subsequent release of gonadotropins. Kisspeptin and its receptor, the kisspeptin 1 receptor (Kiss1R), are also expressed in the pituitary gland. This study demonstrates the interaction between GnRH and kisspeptin within the pituitary gonadotrophs by altering their individual receptor expression. Our results show that kisspeptin and Kiss1R are expressed in the mouse pituitary gonadotroph cell line LβT2. Endogenous Kiss1R did not respond to kisspeptin and failed to stimulate gonadotropin LHβ and FSHβ expression in LβT2 cells; however, kisspeptin increased both LHβ and FSHβ promoter activity in Kiss1R-overexpressing LβT2 cells. Stimulating the cells with GnRH significantly increased Kiss1R expression, whereas kisspeptin increased the expression of the GnRH receptor (GnRHR) in these cells. Elevating the Kiss1R concentration led to an increase in the basal activities of gonadotropin LHβ- and FSHβ-subunit promoters. In addition, the level of kisspeptin-induced LHβ promoter activity, but not that of FSHβ, was significantly increased when a large number of Kiss1R expression vectors was introduced into the cells. The level of induction of GnRH-induced gonadotropin promoter activities was not significantly changed by increasing Kiss1R expression. Increasing the amount of GnRHR by overexpressing cellular GnRHR did not potentiate basal gonadotropin promoter activities; however, kisspeptin- and GnRH-stimulated increases in gonadotropin promoter activities were significantly potentiated (except GnRH-induced LHβ promoters). The activities of serum response element-containing promoters were also modified in cells overexpressing Kiss1R or GnRHR. Our current observations demonstrate that GnRH and kisspeptin affect each other's function to stimulate gonadotropin subunit gene expression by reciprocally increasing the expression of their receptors.
Collapse
Affiliation(s)
- Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
26
|
Huma T, Hu X, Ma Y, Willden A, Rizak J, Shahab M, Wang Z. Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived Lyon NSCs. Neuroscience 2017; 349:318-329. [DOI: 10.1016/j.neuroscience.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
|
27
|
Sukhbaatar U, Kanasaki H, Mijiddorj T, Oride A, Hara T, Yamada T, Kyo S. Expression of GnRH and Kisspeptin in Primary Cultures of Fetal Rat Brain. Reprod Sci 2016; 24:227-233. [PMID: 27313117 DOI: 10.1177/1933719116653679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic studies in humans or in vivo studies using animals have shown that kisspeptin released from the hypothalamus controls secretion of gonadotropin-releasing hormone (GnRH) from GnRH neurons, and subsequently GnRH induces gonadotropin secretion from the anterior pituitary. Kisspeptin did not stimulate GnRH expression in the GnRH-producing cell line GT1-7. Thus, we cultured GnRH and kisspeptin neurons from whole fetal rat brain and examined the regulation of GnRH and kisspeptin. Expression of GnRH messenger RNA (mRNA) was unchanged by estradiol (E2) treatment in these primary cultures. In contrast, kisspeptin mRNA expression was increased 2.00 ± 0.23-fold by E2 treatment. When these cultures were stimulated by kisspeptin-10, GnRH mRNA was significantly increased up to 1.51 ± 0.35-fold. Expression of GnRH mRNA was also stimulated 1.84 ± 0.33-fold by GnRH itself. Interestingly, kisspeptin mRNA was significantly increased up to 2.43 ± 0.40-fold by kisspeptin alone. In addition, kisspeptin mRNA expression was significantly increased by stimulation with GnRH (1.46 ± 0.21-fold). Our observations demonstrated that kisspeptin, but not GnRH, was upregulated by E2 and that kisspeptin stimulates GnRH mRNA expression in primary cultures of whole fetal rat brain. Furthermore, GnRH and kisspeptin stimulate their own neurons to produce GnRH or kisspeptin, respectively.
Collapse
Affiliation(s)
- Unurjargal Sukhbaatar
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Haruhiko Kanasaki
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Tselmeg Mijiddorj
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Aki Oride
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Tomomi Hara
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Takaya Yamada
- 2 Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Izumo, Shimane, Japan
| | - Satoru Kyo
- 1 Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
28
|
Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R. Int J Mol Sci 2016; 17:ijms17101635. [PMID: 27681724 PMCID: PMC5085668 DOI: 10.3390/ijms17101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R) has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of GnRH neurons, gonadotrophs, and lactotrophs, which are regulated mainly by kisspeptin, GnRH, and TRH, respectively.
Collapse
|
29
|
Gorbunova OL, Shirshev SV. Molecular mechanisms of the regulation by kisspeptin of the formation and functional activity of Treg and Th17. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Native recombinant kisspeptin can induce gnrh1 and kissr2 expression in Paralichthys olivaceus in vitro. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:36-43. [PMID: 27260091 DOI: 10.1016/j.cbpb.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Kisspeptins have been described as one of the most potent activators of the hypothalamic-pituitary-gonadal axis. Kisspeptins control the onset of reproductive functions during puberty by directly stimulating the neuronal activity and release of gonadotropin-releasing hormone (GnRH). The function of kisspeptins has been investigated in vivo and in vitro. In our study, three kinds of recombinant kisspeptin proteins were expressed in Escherichia coli. Kisspeptin fragments Kp54, Kp44, and Kp10 translated from Paralichthys olivaceus kiss2 gene were then obtained. Kp44 contained 44 amide acids (aa) which are the same as the N-terminal of Kp54; Kp10 shares the same 10 aa with the C-terminal of Kp54 but Kp10 also contains some other amide acids. In the dose course of treatments with prokaryotically expressed peptides, Kp54 and Kp10 could induce the expression of kissr2 and gnrh1; by contrast, Kp44 could not induce a similar expression. These results provided direct evidence that the core decapeptide of kisspeptin is necessary to ensure its biological functions. In the time course of the Kp54 treatments on two kinds of cultured brain cells, different patterns of kissr2 and gnrh1 mRNA suggested that the responses of these cells to kisspeptins depends on cell type and treatment duration. Thus, our research provided alternative methods to investigate the functions of kisspeptin in vitro and to detect biological activities; this research also established basis for kisspeptin applications in production processes.
Collapse
|
31
|
Kanasaki H, Mijiddorj T, Sukhbaatar U, Oride A, Ishihara T, Yamagami I, Kyo S. Trichostatin A reduces GnRH mRNA expression with a concomitant increase in retinaldehyde dehydrogenase in GnRH-producing neurons. Mol Cell Endocrinol 2015; 413:113-9. [PMID: 26116234 DOI: 10.1016/j.mce.2015.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
Trichostatin A (TSA) is a selective inhibitor of mammalian histone deacetylase and is widely used to modify the ability of DNA transcription factors to bind DNA within chromatin by interfering with histone deacetylation. In the GnRH-producing neuronal cell line GT1-7, TSA significantly reduced expression of GnRH mRNA. Kisspeptin, a known regulator of GnRH release, failed to increase GnRH mRNA expression and did not modify TSA-induced reduction of GnRH expression. TSA, but not kisspeptin, increased histone acetylation in whole-cell lysates and significantly stimulated the expression of retinaldehyde dehydrogenase (RALDH), a retinoic acid (RA)-synthesizing enzyme that is known to be involved in cell differentiation. In addition, treatment of the GT1-7 cells with RA dose-dependently inhibited the expression of GnRH mRNA. Whereas, TSA-induced reduction of GnRH mRNA was not modulated by treatment with the pan-RA receptor inverse agonist BMS493 or the RA metabolism inhibitor liarozole. Our current results suggest that the RALDH and RA might not be directly involved in the reduction of GnRH expression induced by TSA, however these substances could be a novel regulator of GnRH.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Tomoko Ishihara
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Ikuko Yamagami
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
32
|
Sukhbaatar U, Mijiddorj T, Oride A, Kanasaki H. Stimulation of δ subunit-containing GABAA receptor by DS1 increases GnRH receptor expression but reduces GnRH mRNA expression in GnRH-producing GT1-7 cells. Endocrine 2015; 49:222-30. [PMID: 25355308 DOI: 10.1007/s12020-014-0464-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/23/2014] [Indexed: 12/23/2022]
Abstract
Acting via ionotropic GABAA receptors, the neurotransmitter γ-aminobutyric acid (GABA) is an important modulator of gonadotropin-releasing hormone (GnRH) neurons. In the present study, we examined the effect of DS1, a GABAA α4β3δ receptor agonist, on a strain of mouse hypothalamic immortalized GnRH neuronal cells, the GT1-7 cell line. DS1 increased the activities of serum-response element (SRE) and cAMP-response element (CRE) promoters, which reflect the activities of extracellular signal-regulated kinase and cAMP/protein kinase A (PKA) pathways, respectively. In G protein-coupled receptor 54 (GPR54)-overexpressing GT1-7 cells, both DS1 and kisspeptin-10 stimulated SRE promoter activity, and combined treatment with DS1 and kisspeptin further increased SRE promoter activity compared with DS1 or kisspeptin alone. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased CRE promoter activity in PACAP type I receptor-overexpressing GT1-7 cells, with an effect similar to that of DS1 alone, and combined stimulation with PACAP and DS1 potentiated their individual effects. DS1 stimulated the transcriptional activity of GnRH receptor, and DS1 induced GnRH receptor mRNA and protein expression. PACAP-increased GnRH receptor expression was enhanced in the presence of DS1. However, DS1 significantly inhibited the basal expression of GnRH mRNA in GT1-7 cells. Our current observations suggest that DS1 exerts its stimulatory effect on the intracellular signal transduction system via GABAA α4β3δ receptors in GnRH-producing neurons. Stimulation with DS1 increased the expression of GnRH receptor but decreased the basal expression of GnRH mRNA.
Collapse
Affiliation(s)
- Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, 89-1 Enya, Izumo City, Shimane Prefecture, 693-8501, Japan
| | | | | | | |
Collapse
|
33
|
Kanasaki H, Oride A, Kyo S. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamus-pituitary neuroendocrine functions in mouse cell models. J Neuroendocrinol 2015; 27:1-7. [PMID: 25303162 DOI: 10.1111/jne.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cyclic adenosine monophosphate production in pituitary cells. PACAP and its receptor are expressed not only in the central nervous system, but also in peripheral organs, and function to stimulate pituitary hormone synthesis and secretion as both a hypothalamic-pituitary-releasing factor and an autocrine-paracrine factor within the pituitary. PACAP stimulates the expression of the gonadotrophin α, luteinising hormone (LH) β and follicle-stimulating hormone (FSH) β subunits, as well as the gonadotrophin-releasing hormone (GnRH) receptor and its own PACAP type I receptor (PAC1R) in gonadotrophin-secreting pituitary cells. In turn, GnRH, which is known to be a crucial component of gonadotrophin secretion, stimulates the expression of PACAP and PAC1R in gonadotrophs. In addition, PAC1R and PACAP modulate the functions of GnRH-producing neurones in the hypothalamus. This review summarises the current understanding of the possible roles of PACAP and PAC1R in modulating hypothalamus and pituitary neuroendocrine cells in the mouse models.
Collapse
Affiliation(s)
- H Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | | | | |
Collapse
|
34
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|