1
|
Yu R, Shi D, Ru Q, Chen Q, Shen J. Flavonoids from Camellia oleifera flower ameliorate type 2 diabetes mellitus by regulating the p53 pathway. Fitoterapia 2024; 179:106267. [PMID: 39428078 DOI: 10.1016/j.fitote.2024.106267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Camellia oleifera flower (COF) is rich in flavonoids and polyphenols, strongly preventing postprandial hyperglycemia and improving diabetes. However, research on the effective ingredients in COF extracts that have hypoglycemic effects is limited, and the mechanism by which COF extracts improve liver insulin resistance and glucose and lipid metabolism still needs to be clarified, requiring further investigation. AIM To systematically clarify the role of COF extracts in improving insulin resistance in diabetes mice and to explore their key targets and mechanisms in anti-type 2 diabetes (T2DM). MATERIALS AND METHODS Ultrafiltration combined with liquid chromatography-mass spectrometry (UPLC-Q-MS) was used to analyze α-glucosidase inhibitors in COF extracts qualitatively. Blood glucose, lipid, oxidative stress, and liver function indicators were detected in the db/db type 2 diabetes mouse model. Then, RNA-seq was used to identify differentially expressed mRNAs (DEGs) in the liver, screen for key genes and metabolic pathways, and validate the results' accuracy through qPCR experiments. RESULTS 17 α-glucosidase inhibitors were identified as flavonoids from COF. Through db/db type 2 diabetes mouse model, it was indicated that COF could significantly improve symptoms of hyperglycemia and hyperlipidemia, alleviate oxidative stress, and protect liver and pancreatic tissues by regulating key differential genes expressed, including Nek2, Cdk1, Ccnb1, and Ccnb2 via the p53 signaling pathway and ameliorate the insulin resistance effect. CONCLUSION This study demonstrated the anti-diabetic effect of COF, explored its potential hypoglycemic target, and provided data support for future T2DM prevention and drug treatment.
Collapse
Affiliation(s)
- Ruining Yu
- Institutes of Natural Products and Human Health, Zhejiang University, Hangzhou, China
| | - Dier Shi
- College of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Ru
- Institutes of Natural Products and Human Health, Zhejiang University, Hangzhou, China
| | - Qiuping Chen
- College of Biology and Environment, Zhejiang Wanli University, Ningbo, China
| | - Jianfu Shen
- Institutes of Natural Products and Human Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Zand H, Pourvali K. The Function of the Immune System, Beyond Strategies Based on Cell-Autonomous Mechanisms, Determines Cancer Development: Immune Response and Cancer Development. Adv Biol (Weinh) 2024; 8:e2300528. [PMID: 38221702 DOI: 10.1002/adbi.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Indexed: 01/16/2024]
Abstract
Although cancer remains a challenging disease to treat, early detection and removal of primary tumors through surgery or chemotherapy/radiotherapy can offer hope for patients. The privilege paradigm in cancer biology suggests that cell-autonomous mechanisms play a central role in tumorigenesis. According to this paradigm, these cellular mechanisms are the primary focus for the prevention and treatment of cancers. However, this point of view does not present a comprehensive theory for the initiation of cancer and an effective therapeutic strategy. Having an incomplete understanding of the etiology of cancer, it is essential to re-examine previous assumptions about carcinogenesis and develop new, practical theories that can account for all available clinical and experimental evidence. This will not only help to gain a better understanding of the disease, but also offer new avenues for treatment. This review provides evidence suggesting a shift in focus from a cell-autonomous mechanism to systemic mechanisms, particularly the immune system, that are involved in cancer formation.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| |
Collapse
|
3
|
Shimi G, Pourvali K, Ghorbani A, Nooshin S, Zare Karizi S, Iranirad R, Zand H. Alterations of DNA methylation and expression of genes related to thyroid hormone metabolism in colon epithelium of obese patients. BMC Med Genomics 2022; 15:229. [PMID: 36320063 PMCID: PMC9628115 DOI: 10.1186/s12920-022-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer is common among obese individuals. The purpose of the current study was to determine changes in DNA methylation status and mRNA expression of thyroid hormone receptor beta (THRB), as a tumor suppressor, and thyroid hormone inactivating enzyme, type 3 deiodinase (DIO3) genes, in human epithelial colon tissues of healthy obese individuals.
Methods Colon biopsies were analyzed by methylation sensitive-high resolution melting (MS-HRM) to investigate promoter methylation of DIO3 and THRB, and by quantitative real-time polymerase chain reaction to assay expression of DIO3 and THRB mRNA on eighteen obese and twenty-one normal-weight healthy men.
Results There was no significant difference in mean methylation levels at the THRB promoter region between the two groups. Nevertheless, obesity decreased THRB expression levels, significantly (P < 0.05; fold change: 0.19). Furthermore, obesity attenuated DNA methylation (P < 0.001) and enhanced mRNA expression of DIO3 (P < 0.05; fold change: 3). Conclusions Our findings suggest that obesity may alter expression of THRB and DIO3 genes through epigenetic mechanism. Alterations of THRB and DIO3 expressions may predispose colon epithelium of obese patients to neoplastic transformation.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Sajad Nooshin
- MSc Molecular Genetics, Islamic Azad University, Pishva-Varamin, Iran
| | - Shohreh Zare Karizi
- Department of Genetics, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Reza Iranirad
- Sasan Alborz Biomedical Research Center, Masoud Gastroenterology and Hepatology Clinic, Tehran, 14117-13135, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
4
|
The Effects of Continuous and Withdrawal Voluntary Wheel Running Exercise on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of Young Mice. Int J Mol Sci 2020; 22:ijms22010264. [PMID: 33383848 PMCID: PMC7794976 DOI: 10.3390/ijms22010264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Obesity has become a global medical problem. The upregulation of senescence-related markers in adipose tissue may cause impairment of adipose tissue and disorders of systemic metabolism. Weight control through diet has been found to ameliorate senescence in the adipose tissue. Exercise is also important in maintaining a healthy lifestyle, however, very few researchers have examined the relationship between senescence-related markers in adipose tissue. Dietary restriction is also reported to have a legacy effect, wherein the effects are maintained for some periods after the termination of the intervention. However, very few researchers have examined the relationship between exercise and senescence-related markers in adipose tissue. Besides, there is no study on the long-term effects of exercise. Hence, we investigated whether the exercise could change the expression of senescence-related genes in the visceral adipose tissue of young mice and whether there was a legacy effect of exercise for 10 weeks after the termination of exercise. Four-week-old male ICR mice were assigned to one of the three groups: 20 weeks of sedentary condition, 20 weeks of voluntary wheel running exercise, or 10 weeks of exercise followed by 10 weeks of sedentary condition. The mice showed decreased expression in genes related to senescence and senescence-associated secretory phenotype, such as p53, p16, and IL-6, in the visceral adipose tissue in response to exercise. These effects were maintained for 10 weeks after the mice stopped exercising. Our study is the first report that exercise reduces the expression of senescence-related genes in the visceral adipose tissue of young mice, and that exercise causes the legacy effect.
Collapse
|
5
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
6
|
Yang L, Zhang B, Wang X, Liu Z, Li J, Zhang S, Gu X, Jia M, Guo H, Feng N, Fan R, Xie M, Pei J, Chen L. P53/PANK1/miR-107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high-fat diet. J Cell Mol Med 2020; 24:3611-3624. [PMID: 32048816 PMCID: PMC7131928 DOI: 10.1111/jcmm.15053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
High-fat diet (HFD) leads to obesity, type II diabetes mellitus (T2DM) and increases the coincidence of cardiovascular diseases and cancer. Insulin resistance (IR) is considered as the 'common soil' of those diseases. Furthermore, people on HFD showed restrained glycolysis and enhanced fatty acid oxidation, which is the so-called metabolic reprogramming. However, the relationship between metabolic reprogramming and IR induced by HFD is still unclear. Here, we demonstrate that PANK1 and miR-107 were up-regulated in the liver tissue of mice on HFD for 16 weeks and involved in metabolic reprogramming induced by palmitate acid (PA) incubation. Importantly, miR-107 within an intron of PANK1 gene facilitated IR by targeting caveolin-1 in AML12 cells upon PA incubation. Moreover, we identify that HFD enhanced P53 expression, and activation of P53 with nutlin-3a induced PANK1 and miR-107 expression simultaneously in transcriptional level, leading to metabolic reprogramming and IR, respectively. Consistently, inhibition of P53 with pifithrin-α hydrobromide ameliorated PA-induced metabolic reprogramming and IR. Thus, our results revealing a new mechanism by which P53 regulate metabolism. In addition, the results distinguished the different roles of PANK1 and its intron miR-107 in metabolic regulation, which will provide more accurate intervention targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Bin Zhang
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Xinju Wang
- Battalion 5 of CadetsFourth Military Medical UniversityXi'anChina
| | - Zhenhua Liu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Juan Li
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Shumiao Zhang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Xiaoming Gu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Min Jia
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Haitao Guo
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Na Feng
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Rong Fan
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Manjiang Xie
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Jianming Pei
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Li Chen
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Kadkhoda G, Zarkesh M, Saidpour A, Oghaz MH, Hedayati M, Khalaj A. Association of dietary intake of fruit and green vegetables with PTEN and P53 mRNA gene expression in visceral and subcutaneous adipose tissues of obese and non-obese adults. Gene 2020; 733:144353. [PMID: 31978509 DOI: 10.1016/j.gene.2020.144353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The present study investigates the association of dietary intake of fruit and green Vegetables with PTEN and P53 mRNA gene expression in visceral (VAT) and subcutaneous adipose tissues (SAT) of obese and non-obese adults. METHODS VAT and SAT were obtained from 151 individuals, aged ~40 years, who had undergone elective abdominal surgery. The participants were grouped according to their body mass index (BMI), as obese (BMI > 30 kg/m2) and non-obese (BMI = 18.5-30 kg/m2). Dietary intakes were obtained using a valid and reliable food-frequency questionnaire (FFQ). Real-time PCR was carried out for PTEN and P53 mRNA expressions. Associations between expression levels and dietary parameters were analyzed. RESULTS P53 mRNA expression of obese participants was significantly higher than the non-obese, only in VAT (p < 0.001). After adjusting for total energy intake, age and BMI, fruit intake was inversely associated with P53 gene expression in both VAT (β = -0.38, P = 0.01) and SAT (β = -0.35, P = 0.03) among non-obese participants. Furthermore, fruit consumption was inversely associated with P53 gene expression in obese individuals, only in VAT (β = -0.21, P = 0.05). More so, intake of green vegetables in obese subjects was negatively associated with P53 gene expression in VAT (β = -0.27, P = 0.01) and SAT (β = -0.28, P < 0.001). On the other hand, after adjustment for total energy intake, age and BMI, a positive association was observed between fruit intake and PTEN in VAT (β = 0.27, P = 0.01) and SAT (β = 0.34, P < 0.001) among obese participants. In addition, dietary consumption of fruits in non-obese individuals was negatively associated withPTEN expression in SAT (β = -0.48, P < 0.001). CONCLUSION Dietary intake of fruit and green vegetables was associated with P53 gene expression in VAT and SAT of obese participants, suggesting their protective role in regulating P53 mRNA expression in adipose tissue. Furthermore, higher fruit intake was inversely associated with PTEN mRNA levels in non-obese participants, implying the anti-adipogenic role of PTEN gene expression.
Collapse
Affiliation(s)
- Golnoosh Kadkhoda
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atoosa Saidpour
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Hajizadeh Oghaz
- National Nutrition and Food Technology Research Institute, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Khalaj
- Tehran Obesity Treatment Center, Department of Surgery, Shahed University, Tehran, Iran.
| |
Collapse
|
8
|
Holter MM, Garibay D, Lee SA, Saikia M, McGavigan AK, Ngyuen L, Moore ES, Daugherity E, Cohen P, Kelly K, Weiss RS, Cummings BP. Hepatocyte p53 ablation induces metabolic dysregulation that is corrected by food restriction and vertical sleeve gastrectomy in mice. FASEB J 2019; 34:1846-1858. [PMID: 31914635 DOI: 10.1096/fj.201902214r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
P53 has been implicated in the pathogenesis of obesity and diabetes; however, the mechanisms and tissue sites of action are incompletely defined. Therefore, we investigated the role of hepatocyte p53 in metabolic homeostasis using a hepatocyte-specific p53 knockout mouse model. To gain further mechanistic insight, we studied mice under two complementary conditions of restricted weight gain: vertical sleeve gastrectomy (VSG) or food restriction. VSG or sham surgery was performed in high-fat diet-fed male hepatocyte-specific p53 wild-type and knockout littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Hepatocyte-specific p53 ablation in sham-operated ad libitum-fed mice impaired glucose homeostasis, increased body weight, and decreased energy expenditure without changing food intake. The metabolic deficits induced by hepatocyte-specific p53 ablation were corrected, in part by food restriction, and completely by VSG. Unlike food restriction, VSG corrected the effect of hepatocyte p53 ablation to lower energy expenditure, resulting in a greater improvement in glucose homeostasis compared with food restricted mice. These data reveal an important new role for hepatocyte p53 in the regulation of energy expenditure and body weight and suggest that VSG can improve alterations in energetics associated with p53 dysregulation.
Collapse
Affiliation(s)
- Marlena M Holter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Seon A Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mridusmita Saikia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lily Ngyuen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Elizabeth S Moore
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Erin Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Kathleen Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Kim SR, Jiang K, Ogrodnik M, Chen X, Zhu XY, Lohmeier H, Ahmed L, Tang H, Tchkonia T, Hickson LJ, Kirkland JL, Lerman LO. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl Res 2019; 213:112-123. [PMID: 31356770 PMCID: PMC6783353 DOI: 10.1016/j.trsl.2019.07.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Abstract
Obesity and dyslipidemia can be associated with cellular senescence, and may impair kidney function. However, whether senescence contributes to renal dysfunction in these conditions remains unclear. Quercetin is an abundant dietary flavonoid that selectively clears inhibiting PI3K/AKT and p53/p21/serpines and inducing apoptosis. We hypothesized that high-fat-diet-induced obesity causes renal senescence, which would be mitigated by quercetin. C57BL/6J mice fed either standard chow or high-fat diets (HFDs) were treated with quercetin (50 mg/kg) or vehicle 5-days biweekly via oral gavage for 10 weeks. Subsequently, renal function was studied in vivo using magnetic resonance imaging, and renal senescence and histology were evaluated ex vivo. Mice fed with a HFD developed obesity and hypercholesterolemia, whereas renal size remained unchanged. Murine obesity impaired renal function and cortical oxygenation, and induced glomerulomegaly. Renal markers of senescence (eg, expression of p16, p19, and p53) and its secretory phenotype were upregulated in the obese hypercholesterolemic compared to lean mice in renal tubular cells, but attenuated in quercetin-treated murine kidneys, as was renal fibrosis. Quercetin treatment also increased renal cortical oxygenation and decreased plasma creatinine levels in obese mice, whereas body weight and cholesterol levels were unaltered. Therefore, murine obesity and dyslipidemia induce renal tissue senescence and impairs kidney function, which is alleviated by chronic senolytic treatment. These findings implicate senescence in loss of kidney function in murine dyslipidemia and obesity, and support further studies of senolytic therapy in obesity.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mikolaj Ogrodnik
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Xiaojun Chen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hannah Lohmeier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Leena Ahmed
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Hadi S, Alipour M, Aghamohammadi V, Shahemi S, Ghafouri-Taleghani F, Pourjavidi N, Foroughi M, Chraqipoor M. Improvement in fasting blood sugar, anthropometric measurement and hs-CRP after consumption of epigallocatechin-3-gallate (EGCG) in patients with type 2 diabetes mellitus. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-04-2019-0126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The epigallocatechin gallate (EGCG) effect in diabetes has been investigated in animal studies, but results of clinical trials are inconsistent. Thus, this study aims to evaluate the effects of EGCG supplementation in patients with type 2 diabetes mellitus (T2DM).
Design/methodology/approach
A total of 50 patients with T2DM were recruited in a double-blind, randomized, placebo-controlled trial. The eligible participants were randomly allocated to EGCG (n = 25) and placebo (n = 25) groups. The EGCG group received two capsules of EGCG (each capsule contained 150 mg; Shari Made®, Iran) and placebo group was administered two capsules of placebo (starch) for eight weeks. A three-day 24-h dietary recall and anthropometric and laboratory measurements were carried out at the beginning and the end of the study.
Findings
At the end of the trial, weight and body mass index (BMI) were decreased significantly in both groups, but the reduction was not statistically significant between the two groups. Fasting blood sugar decreased significantly in EGCG group. No significant between-group and within-group differences were found in insulin, homeostatic model assessment of insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index values. The high-sensitive C-reactive protein (hs-CRP) was significantly reduced in the EGCG group (4.13 ± 0.48-3.93 ± 0.50, p = 0.003) compared to baseline.
Originality/value
This study showed that consuming 300 mg/day of EGCG for eight weeks in patients with T2DM caused a significant decrease in fasting blood glucose, body weight, BMI and hs-CRP compared to baseline. Therefore, the EGCG supplementation may improve glycemic control, anthropometric and inflammation status in T2DM.
Collapse
|
11
|
Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53 - Cancer and beyond. Biochim Biophys Acta Rev Cancer 2018; 1870:32-42. [PMID: 29883595 PMCID: PMC6102416 DOI: 10.1016/j.bbcan.2018.06.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
p53 is an important tumour suppressor gene, with loss of p53 contributing to the development of most human cancers. However, the activation of p53 in response to stress signals underpins a role for p53 in diverse aspects of health and disease. Activities of p53 that regulate metabolism can play a role in maintaining homeostasis and protecting cells from damage - so preventing disease development. By contrast, either loss or over-activation of p53 can contribute to numerous metabolic pathologies, including aging, obesity and diabetes.
Collapse
Affiliation(s)
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
12
|
Sliwinska A, Kasznicki J, Kosmalski M, Mikolajczyk M, Rogalska A, Przybylowska K, Majsterek I, Drzewoski J. Tumour protein 53 is linked with type 2 diabetes mellitus. Indian J Med Res 2018; 146:237-243. [PMID: 29265025 PMCID: PMC5761034 DOI: 10.4103/ijmr.ijmr_1401_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND & OBJECTIVES Tumour protein p53 (TP53) is a stress sensitive transcription factor responsible for the control of cell survival and death to prevent from tumour formation. In vitro and animal studies have indicated that TP53 also responds to metabolic changes and influences metabolic pathways. This study was undertaken to determine the serum level of TP53 and its correlations with clinical and biochemical parameters in type 2 diabetes mellitus (T2DM) patients in comparison to non-diabetic control individuals. METHODS An observational study was conducted between December 2009 and November 2013 to evaluate TP53 serum level using ELISA. Cases (n=225) were defined as patients who were diagnosed with T2DM. Non-diabetic controls (n=255) were matched by age and sex. Multivariable modelling using logistic regression examined associations between clinical characteristics and TP53 level or T2DM predication was performed. RESULTS Serum TP53 level was significantly higher in T2DM patients as compared to non-diabetic healthy controls (1.69 vs 2.07 ng/ml, P<0.001). In T2DM patients, the level of TP53 increased with the age, duration of diabetes and waist-to-hip ratio (WHR) value. A logistic regression analysis revealed that increased serum TP53 level was significantly associated with family history of diabetes, age and WHR. Moreover, TP53, triglyceride and body mass index could be used to predict T2DM. INTERPRETATION & CONCLUSIONS Our results suggest that TP53 may be linked with T2DM. The fluctuations of serum TP53 level may reflect metabolic and oxidative stress associated with chronic hyperglycaemia. Further studies need to be done to confirm these findings.
Collapse
Affiliation(s)
- Agnieszka Sliwinska
- Department of Internal Disease, Diabetology & Clinical Pharmacology, Lodz, Poland
| | - Jacek Kasznicki
- Department of Internal Disease, Diabetology & Clinical Pharmacology, Lodz, Poland
| | - Marcin Kosmalski
- Department of Internal Disease, Diabetology & Clinical Pharmacology, Lodz, Poland
| | - Melania Mikolajczyk
- Department of Internal Disease, Diabetology & Clinical Pharmacology, Lodz, Poland
| | - Aneta Rogalska
- Department of Thermobiology, University of Lodz, Lodz, Poland
| | - Karolina Przybylowska
- Department of Chemistry & Clinical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Chemistry & Clinical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Disease, Diabetology & Clinical Pharmacology, Lodz, Poland
| |
Collapse
|
13
|
Zwezdaryk K, Sullivan D, Saifudeen Z. The p53/Adipose-Tissue/Cancer Nexus. Front Endocrinol (Lausanne) 2018; 9:457. [PMID: 30158901 PMCID: PMC6104444 DOI: 10.3389/fendo.2018.00457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity and the resultant metabolic complications have been associated with an increased risk of cancer. In addition to the systemic metabolic disturbances in obesity that are associated with cancer initiation and progression, the presence of adipose tissue in the tumor microenvironment (TME) contributes significantly to malignancy through direct cell-cell interaction or paracrine signaling. This chronic inflammatory state can be maintained by p53-associated mechanisms. Increased p53 levels that are observed in obesity exacerbate the release of inflammatory cytokines that fuel cancer initiation and progression. Dysregulated adipose tissue signaling from the TME can reprogram tumor cell metabolism. The links between p53, cellular metabolism and adipose tissue dysfunction and how they relate to cancer, will be presented in this review.
Collapse
Affiliation(s)
- Kevin Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Kevin Zwezdaryk
| | - Deborah Sullivan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Deborah Sullivan
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Nephrology, Tulane University School of Medicine, New Orleans, LA, United States
- Zubaida Saifudeen
| |
Collapse
|
14
|
P53 modulates hepatic insulin sensitivity through NF-κB and p38/ERK MAPK pathways. Biochem Biophys Res Commun 2017; 495:2139-2144. [PMID: 29258820 DOI: 10.1016/j.bbrc.2017.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Besides its well-established oncosuppressor activity, the role of p53 in regulating metabolic pathways has been recently identified. Nevertheless, the function of p53 with respect to insulin resistance appears highly controversial. To address this issue, we investigated the expression of p53 in experimental model of insulin resistance. Then we used activator (nutlin-3α) and inhibitor (pifithrin-α, PFT-α) of p53 in HepG2 cell. Here we showed that p53 protein level was decreased in the hepatic tissue of high-fat diet-induced insulin resistance mice, genetically diabetic ob/ob mice and palmitate (PA) treated HepG2 cells. And high expression of phosphor-p38, ERK1/2 and nuclear factor kappa B (NF-κB) p65 accompanied with low expression of p53. But activation of p53 with nutlin-3α prevented PA-induced reduction of glucose consumption and suppression of insulin signaling pathways. At the same time, nutlin-3α downregulated the activation of NF-κB, p38 and ERK1/2 pathways upon stimulation with PA. In contrast, inhibition of p53 with PFT-α decreased glucose consumption and suppressed insulin signaling pathway. Furthermore, PFT-α activated NF-κB, p38 and ERK1/2 pathways in HepG2 cells. Overall, these results suggest that p53 is involved in improving insulin sensitivity of hepatic cells via inhibition of mitogen-activated protein kinases (MAPKs) and NF-κB pathways.
Collapse
|
15
|
Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein. Biogerontology 2017; 18:321-332. [PMID: 28357524 DOI: 10.1007/s10522-017-9698-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Obesity is an induced health problem that human beings have been facing with non-optimal treatment so far. Humans are on average getting fatter with age, and obesity and aging interact each other to shorten lifetime and decrease life quality. Obesity also causes several aging related-disorders such as cancer, strokes, cardiovascular disease, high blood pressure and type 2 diabetes. So, the molecular connections between aging and obesity are promising targets for bio-medical researches and innovative therapies of many health problems. In this review, we discuss the findings of adipose p53 and Rb-two central molecular linkages between aging and obesity-on lipid metabolism and obesity.
Collapse
|
16
|
Zhang N, Li Z, Xu K, Wang Y, Wang Z. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1. Biol Pharm Bull 2017; 39:1448-54. [PMID: 27582325 DOI: 10.1248/bpb.b16-00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related renal diseases have been a worldwide issue. Effective strategy that prevents high fat-diet induced renal damage is of great significance. Resveratrol, a natural plant polyphenol, is famous for its antioxidant activity, cardioprotective effects and anticancer properties. However whether resveratrol can play a role in the treatment of renal diseases is unknown. In this study, we added resveratrol in normal glucose or high glucose medium and provide evidences that resveratrol protects against high-glucose triggered oxidative stress and cell senescence. Moreover, mice were fed with standard diet, standard diet plus resveratrol, high-fat diet or high-fat diet plus resveratrol for 3 months, and results show that resveratrol treatment prevents high-fat diet induced renal pathological damage by activating SIRT1, a key member in the mammalian sirtuin family that response to calorie restriction life-extension method. This research confirms the potential role of resveratrol in the treatment of renal diseases and may provide an effective and convenient method to mimic the beneficial effects of calorie restriction.
Collapse
Affiliation(s)
- Nannan Zhang
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University
| | | | | | | | | |
Collapse
|
17
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Serum insulin in pathogenesis and treatment of osteoarthritis. Med Hypotheses 2016; 99:45-46. [PMID: 28110696 DOI: 10.1016/j.mehy.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/22/2016] [Indexed: 11/23/2022]
Abstract
Osteoarthritis (OA) is one of the major health problems that's development and progression is obesity-related. We believe that higher levels of insulin may explains this link especially. High levels of insulin in obesity and metabolic syndrome can induce numerous complications. Insulin can increase proliferation of chondrocyte but simultaneously, it prevents their differentiation. Moreover, hyperinsulinemia reduces the circulating level of serum T4 and conversion of T4 to T3, mimicking hypothyroidism, because thyroid hormones are necessary for the maturation of chondrocytes. So maybe decreasing insulin levels, prevents OA progression or improve the treatment process.
Collapse
|
19
|
Ehrampoush E, Homayounfar R, Davoodi SH, Zand H, Askari A, Kouhpayeh SA. Ability of dairy fat in inducing metabolic syndrome in rats. SPRINGERPLUS 2016; 5:2020. [PMID: 27994997 PMCID: PMC5125350 DOI: 10.1186/s40064-016-3716-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
Background The risk of heart diseases, diabetes and stroke is increased with higher metabolic risk factors. Models of diseases resulting from high-calorie diets have a significant role in pathophysiologic analysis of metabolic syndrome in rodents; but, these diets are considerably different from each other in various studies and may not be very similar to the metabolic syndrome model in humans. This study sought to make a model close to the disease in humans. 20 five-week old male Wistar rats were randomly assigned to two groups. For one of the groups, a high-calorie diet with 416 calories per 100 g with dairy-based fat was considered and, for another group, a control diet was given for 12 weeks. Weight changes, lipid profile, glucose values, Blood pressure, insulin and HOMA indices, were measured for both groups and weight changes were compared using repeated measures and independent t test; also, serum results were compared using independent t test. Results Values of weight, glucose, insulin, lipid profile and blood pressure, except HDL, had a tangible difference between two groups at the end of the study. HOMA-IR, HOMA-B and HOMA-S indicates a significant difference between the two groups after consumption high-energy diet. Conclusion The present study showed ability of dairy fat in gaining weight, insulin resistance and metabolic syndrome and provided the necessity of paying serious attention to the amount of fat intake from dairy sources.
Collapse
Affiliation(s)
- Elham Ehrampoush
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Homayounfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Askari
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
20
|
Kung CP, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. J Endocrinol 2016; 231:R61-R75. [PMID: 27613337 PMCID: PMC5148674 DOI: 10.1530/joe-16-0324] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
In the context of tumor suppression, p53 is an undisputedly critical protein. Functioning primarily as a transcription factor, p53 helps fend off the initiation and progression of tumors by inducing cell cycle arrest, senescence or programmed cell death (apoptosis) in cells at the earliest stages of precancerous development. Compelling evidence, however, suggests that p53 is involved in other aspects of human physiology, including metabolism. Indeed, recent studies suggest that p53 plays a significant role in the development of metabolic diseases, including diabetes, and further that p53's role in metabolism may also be consequential to tumor suppression. Here, we present a review of the literature on the role of p53 in metabolism, diabetes, pancreatic function, glucose homeostasis and insulin resistance. Additionally, we discuss the emerging role of genetic variation in the p53 pathway (single-nucleotide polymorphisms) on the impact of p53 in metabolic disease and diabetes. A better understanding of the relationship between p53, metabolism and diabetes may one day better inform the existing and prospective therapeutic strategies to combat this rapidly growing epidemic.
Collapse
Affiliation(s)
- Che-Pei Kung
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| | - Maureen E Murphy
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
21
|
Zand H, Homayounfar R, Cheraghpour M, Jeddi-Tehrani M, Ghorbani A, Pourvali K, Soltani SR. Obesity-induced p53 activation in insulin-dependent and independent tissues is inhibited by beta-adrenergic agonist in diet-induced obese rats. Life Sci 2016; 147:103-109. [PMID: 26827989 DOI: 10.1016/j.lfs.2016.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023]
Abstract
AIMS The purpose of this study was to assay the role of beta-adrenergic receptor signaling in the regulation of obesity-induced p53 in high fat feeding obese rats. MAIN METHODS The role of beta-adrenergic receptor/cyclic AMP in the regulation of p53 and its downstream mediators was evaluated by western blot and real-time quantitative RT-PCR among diet induced rats. KEY FINDINGS Beta-adrenergic receptor agonist, isoproterenol, and an adenylate cyclase activator, forskolin, at a single dose significantly reduced insulin resistance consistent with a decrease in total and phospho-p53 levels in insulin and non-insulin metabolic target tissues. The decrease of p53 signaling was consistent with the elevation of AKT and subsequent activation. Obese rats exposed to fasting also exhibited improvement in insulin action despite a slight effect on p53 level. SIGNIFICANCE Results of the present study obviously showed that beta-adrenergic receptor agonist/cAMP prevented obesity-induced p53 activation. Although this effect in metabolic insulin target tissues tempted us to consider them as insulin sensitizers in obesity-related diabetes, p53 inhibition in non-insulin target tissues warned about the impairment of anti-cancer mechanisms in obese subjects.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Homayounfar
- Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Makan Cheraghpour
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arman Ghorbani
- Faculty of Nutrition and Diet Therapy, Department of Cellular and Molecular Nutrition, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Reza Soltani
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|