1
|
Shen X, Yan H, Hu M, Zhou H, Zhang Q, Gao R, Liu Q, Sun Q. A detailed transcriptome study uncovers the epigenetic characteristics associated with Aromatase inhibitor-induced masculinization in Takifugu rubripes larvae gonads. BMC Genomics 2025; 26:380. [PMID: 40240894 PMCID: PMC12001447 DOI: 10.1186/s12864-025-11375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Takifugu rubripes is an economically valuable fish species in Asia. The implementation of all-male culture for T. rubripes is highly anticipated in aquaculture. Aromatase inhibitor (AI, letrozole) treatment was found to be an efficient method to induced masculinization in T. rubripes, as reported in our previous study. Here, to further explore the underlying regulation mechanism of AI-induced masculinization, a whole-transcriptome analysis comparing was conducted between AI-induced masculinized XX (AI-XX) gonads and control (Con) gonads in T. rubripes. RESULTS In Con-XX/Con-XY comparison, 1,172 differential expression (DE) mRNAs, 129 DEmiRNAs, 210 DElncRNAs, and 4 DEcircRNAs were identified. In the Con-XX/AI-XX comparison, 1,329 DEmRNAs, 174 DEmiRNAs, 6 DEcircRNAs and 280 DElncRNAs were found. Con-XX/Con-XY and Con-XX/AI-XX comparisons shared 690 DEmRNAs, 50 DEmiRNAs, 3 DEcircRNAs, and 105 DElncRNAs. The analyses of protein-protein interaction (PPI) and competitive endogenous RNA (ceRNA) network identified interactions among these shared DERNAs. Kcnh2b, trim27, cnnm2b, reln, cckbra, pkd1l2, steap4, gsg1l, hamp, and foxg1c were predicted as the top ten of hub genes. miRNAs included miRNA-27 family and miRNA-489 family showed targeting relationship with hub genes. GO and KEGG functional enrichment analysis showed that the targeted genes were mainly enriched in GO:0065008 regulation of biological quality and TGF-beta signaling pathway. qPCR validation confirmed the differential expression of selected mRNAs, and ncRNAs. CONCLUSIONS This research comprehensively reveals the potential regulatory effects of ncRNAs on cellular motility, fate regulation, and hormonal regulation during gonadal masculinization in T. rubripes. It may provide significant insights into the regulation mechanisms underlying sex reversal in fish.
Collapse
Affiliation(s)
- Xufang Shen
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China.
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China.
| | - Mingtao Hu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
| | - Huiting Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Qi Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Qunwen Sun
- Dalian Tian Zheng Co., Ltd, Dalian, Liaoning, China
| |
Collapse
|
2
|
Tseng PW, Lin CJ, Tsao YH, Kuo WL, Chen HC, Dufour S, Wu GC, Chang CF. The effect of gonadal hormones on the gene expression of brain-pituitary in protandrous black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2024; 351:114482. [PMID: 38432348 DOI: 10.1016/j.ygcen.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17β (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yuan-Han Tsao
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsin-Chih Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sylvie Dufour
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan; Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
3
|
Xie QP, Zhan W, Shi JZ, Liu F, Niu BL, He X, Liu M, Wang J, Liang QQ, Xie Y, Xu P, Wang X, Lou B. Whole-genome assembly and annotation for the little yellow croaker (Larimichthys polyactis) provide insights into the evolution of hermaphroditism and gonochorism. Mol Ecol Resour 2023; 23:632-658. [PMID: 36330680 DOI: 10.1111/1755-0998.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between of L. polyactis and Larimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of the L. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein-coding genes. Phylogenomic analysis suggested that L. polyactis diverged from the common ancestor, L. crocea, approximately 25.4 million years ago. Our high-quality genome assembly enabled comparative genomic analysis, which revealed several within-chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. The dmrt1 gene was identified as the male-specific gene in L. polyactis. Transcriptome analysis showed that the expression of dmrt1 and its upstream regulatory gene (rnf183) were both sexually dimorphic. Rnf183, unlike its two paralogues rnf223 and rnf225, is only present in Larimichthys and Lates but not in other teleost species, suggesting that it originated from lineage-specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in male L. polyactis may be explained by the sequence evolution of dmrt1. Decoding the L. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.
Collapse
Affiliation(s)
- Qing-Ping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Zhi Shi
- Novogene Bioinformatics Institute, Beijing, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bao-Long Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jing Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qi-Qi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yue Xie
- Novogene Bioinformatics Institute, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Alabama Agricultural Experiment Station, Auburn, Alabama, USA.,The HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
5
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tseng PW, Wu GC, Kuo WL, Tseng YC, Chang CF. The Ovarian Transcriptome at the Early Stage of Testis Removal-Induced Male-To-Female Sex Change in the Protandrous Black Porgy Acanthopagrus schlegelii. Front Genet 2022; 13:816955. [PMID: 35401660 PMCID: PMC8986339 DOI: 10.3389/fgene.2022.816955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike gonochoristic fishes, sex is fixed after gonadal differentiation (primary sex determination), and sex can be altered in adults (secondary sex determination) of hermaphroditic fish species. The secondary sex determination of hermaphroditic fish has focused on the differences between testicular tissue and ovarian tissue during the sex change process. However, comprehensive studies analyzing ovarian tissue or testicular tissue independently have not been performed. Hermaphroditic black porgy shows a digonic gonad (ovarian tissue with testicular tissue separated by connective tissue). Protandrous black porgy has stable maleness during the first two reproductive cycles (<2 years old), and approximately 50% enter femaleness (natural sex change) during the third reproductive cycle. Precocious femaleness is rarely observed in the estradiol-17β (E2)-induced female phase (oocytes maintained at the primary oocyte stage), and a reversible female-to-male sex change is found after E2 is withdrawn in <2-year-old fish. However, precocious femaleness (oocytes entering the vitellogenic oocyte stage) is observed in testis-removed fish in <2-year-old fish. We used this characteristic to study secondary sex determination (femaleness) in ovarian tissue via transcriptomic analysis. Cell proliferation analysis showed that BrdU (5-bromo-2′-deoxyuridine)-incorporated germline cells were significantly increased in the testis-removed fish (female) compared to the control (sham) fish (male) during the nonspawning season (2 months after surgery). qPCR analysis showed that there were no differences in pituitary-releasing hormones (lhb and gtha) in pituitary and ovarian steroidogenesis-related factors (star, cyp11a1, hsd3b1, and cyp19a1a) or female-related genes (wnt4a, bmp15, gdf9, figla, and foxl2) in ovarian tissues between intact and testis-removed fish (2 months after surgery). Low expression of pituitary fshb and ovarian cyp17a1 was found after 2 months of surgery. However, we did find small numbers of genes (289 genes) showing sexual fate dimorphic expression in both groups by transcriptomic analysis (1 month after surgery). The expression profiles of these differentially expressed genes were further examined by qPCR. Our present work identified several candidate genes in ovarian tissue that may be involved in the early period of secondary sex determination (femaleness) in black porgy. The data confirmed our previous suggestion that testicular tissue plays an important role in secondary sex determination in protandrous black porgy.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organism Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| |
Collapse
|
7
|
Aruna A, Lin CJ, Nagarajan G, Chang CF. Neurohypophysial Hormones Associated with Osmotic Challenges in the Brain and Pituitary of the Euryhaline Black Porgy, Acanthopagrus schlegelii. Cells 2021; 10:3086. [PMID: 34831308 PMCID: PMC8624723 DOI: 10.3390/cells10113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Our study showed differential expression of the arginine vasotocin (avt)/isotocin (it) in the brain and pituitary gland of the euryhaline black porgy (Acanthopagrus schlegelii) during osmotic stress. A decrease in serum osmolality and increased cortisol levels were observed after acute transfer from seawater (SW) to freshwater (FW). The increased expressions of avt, avt receptor (avtr: v1a), and isotocin receptor (itr: itr1) transcripts on day 1 and it and itr transcripts on days 7 and 30 were found in the brains and pituitary glands of FW fish. Increased levels of avt mRNA in the diencephalon and avtr mRNA in the pituitary together with serum cortisol on day 1 of FW exposure indicated activation of the hypothalamic-pituitary-interrenal (HPI) axis. The expression levels of avtr and itr after FW transfer were increased in the pituitary on days 7 and 30. Furthermore, in situ hybridization demonstrated spatially differential expression of avt and itr transcripts in nucleus preopticus parvocellularis of pars gigantocellularis (PMgc), magnocellularis (PMmc), and parvocellularis (PMpc) of the preoptic area (POA). Positive signals for avt and it were highly abundant in PMpc after FW exposure. The data suggest involvement of neurohypophysial hormones in the brain (telencephalon and diencephalon) and pituitary for osmotic stress.
Collapse
Affiliation(s)
- Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91230, Taiwan;
| | - Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Basic Sciences, PYD, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
8
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
9
|
Xie QP, Li BB, Wei FL, Yu M, Zhan W, Liu F, Lou B. Growth and gonadal development retardations after long-term exposure to estradiol in little yellow croaker, Larimichthys polyactis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112462. [PMID: 34217113 DOI: 10.1016/j.ecoenv.2021.112462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Endocrine disrupting chemicals (EDCs) including 17β-estradiol (E2) are widely distributed in the aquatic environment and are known to negatively affect the reproductive system of many animals, including fish. EDCs leading to feminization, altered sex ratio and reduced fecundity, it is possibly posing potential risks to the ecosystems. To investigate the potentially toxic effects of E2 exposure on little yellow croaker (Larimichthys polyactis, L. poliactis) who have a unique gonadal development pattern that males undergo a hermaphroditic stage. An experiment was set up where L. poliactis were maintained in tanks and exposed to E2 concentrations of 10 μg/L or no E2 exposure (the ethanol and control groups) from 30 to 90 days post-hatching (dph). After exposure, the E2 withdrawal and continual cultured to 150 and 365 dph. The morphological and histological analyses were used to compare the changes in the fish body and gonad under E2 exposure. The results showed that E2 exposure caused three major phenotypes at 30 and 60 days after treatment (dat), including ovary, ovotestis and gonadal development retardation compared with the control groups. The average ratio of these three phenotypes is 60.6%, 11.97% and 27.43%, respectively. The body length and weight of E2 exposure groups were repressed during the E2 exposure period, while it can recover after E2 withdrawal. However, the gonadal development (Gonadosomatic Index) of E2 exposure groups testis were retarded at 60 dat and doesn't recover until 365 dph. The sex determination/differentiation-related genes erα, erβI, erβII, fshβ and cyp11b2 were significantly decreased in E2-exposure male fish. This research highlights the E2 leads to feminization, disrupts testis maturation and spermatogenesis, this effect persisted into the stage of sexual maturity. Collectively, our findings provide insights into the molecular mechanisms underlying E2 disturbance of a marine economic fish reproduction.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Fu-Liang Wei
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Min Yu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
12
|
Dong J, Li J, Hu J, Sun C, Tian Y, Li W, Yan N, Sun C, Sheng X, Yang S, Shi Q, Ye X. Comparative Genomics Studies on the dmrt Gene Family in Fish. Front Genet 2020; 11:563947. [PMID: 33281869 PMCID: PMC7689362 DOI: 10.3389/fgene.2020.563947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023] Open
Abstract
Doublesex and mab-3-related transcription factor (dmrt) genes are widely distributed across various biological groups and play critical roles in sex determination and neural development. Here, we applied bioinformatics methods to exam cross-species changes in the dmrt family members and evolutionary relationships of the dmrt genes based on genomes of 17 fish species. All the examined fish species have dmrt1-5 while only five species contained dmrt6. Most fish harbored two dmrt2 paralogs (dmrt2a and dmrt2b), with dmrt2b being unique to fish. In the phylogenetic tree, 147 DMRT are categorized into eight groups (DMRT1-DMRT8) and then clustered in three main groups. Selective evolutionary pressure analysis indicated purifying selections on dmrt1-3 genes and the dmrt1-3-2(2a) gene cluster. Similar genomic conservation patterns of the dmrt1-dmrt3-dmrt2(2a) gene cluster with 20-kb upstream/downstream regions in fish with various sex-determination systems were observed except for three regions with remarkable diversity. Synteny analysis revealed that dmrt1, dmrt2a, dmrt2b, and dmrt3-5 were relatively conserved in fish during the evolutionary process. While dmrt6 was lost in most species during evolution. The high conservation of the dmrt1-dmrt3-dmrt2(2a) gene cluster in various fish genomes suggests their crucial biological functions while various dmrt family members and sequences across fish species suggest different biological roles during evolution. This study provides a molecular basis for fish dmrt functional analysis and may serve as a reference for in-depth phylogenomics.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ningning Yan
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengxi Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xihui Sheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
13
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
14
|
Yu Q, Peng C, Ye Z, Tang Z, Li S, Xiao L, Liu S, Yang Y, Zhao M, Zhang Y, Lin H. An estradiol-17β/miRNA-26a/cyp19a1a regulatory feedback loop in the protogynous hermaphroditic fish, Epinephelus coioides. Mol Cell Endocrinol 2020; 504:110689. [PMID: 31891771 DOI: 10.1016/j.mce.2019.110689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Cyp19a1a is a key gene responsible for the production of estradiol-17β (E2), the main functional estrogen and a major downstream regulator of reproduction in teleost fish. It is widely known that CYP19 gene expression, aromatase activity, and E2 production can influence gonadal differentiation and sex reversal in teleost fish, but the feedback mechanisms whereby E2 regulates cyp19a1a remain poorly understood, especially regarding the potential roles of endogenous small RNA molecules (miRNAs). Here, we identified miR-26a-5p as a regulatory factor of its predicted target gene (cyp19a1a). In vitro and in vivo studies showed that miR-26a-5p can decrease cyp19a1a expression. Furthermore, high doses of E2 act as a repressor of miR-26a-5p. This study proposes a regulatory feedback loop whereby E2 regulates cyp19a1a through miR-26a-5p, and suggests that this positive feedback is an important aspect of the control of E2 production.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su Liu
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| |
Collapse
|
15
|
Breton TS, Kenter LW, Greenlaw K, Montgomery J, Goetz GW, Berlinsky DL, Luckenbach JA. Initiation of sex change and gonadal gene expression in black sea bass (Centropristis striata) exposed to exemestane, an aromatase inhibitor. Comp Biochem Physiol A Mol Integr Physiol 2018; 228:51-61. [PMID: 30414915 DOI: 10.1016/j.cbpa.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
Many teleost fishes exhibit sequential hermaphroditism, where male or female gonads develop first and later undergo sex change. Model sex change species are characterized by social hierarchies and coloration changes, which enable experimental manipulations to better understand these processes. However, other species such as the protogynous black sea bass (Centropristis striata) do not exhibit these characteristics and instead receive research attention due to their importance in fisheries or aquaculture. Black sea bass social structure is unknown, which makes sex change sampling difficult, and few molecular resources are available. The purpose of the present study was to induce sex change using exemestane, an aromatase inhibitor, and assess gonadal gene expression using sex markers (amh, zpc2) and genes involved in steroidogenesis (cyp19a1a, cyp11b), estrogen signaling (esr1, esr2b), and apoptosis or atresia (aen, casp9, fabp11, parg, pdcd4, rif1). Overall, dietary exemestane treatment was effective, and most exposed females exhibited early histological signs of sex change and significantly higher rates of ovarian atresia relative to control females. Genes associated with atresia did not reflect this, however, as expression patterns in sex changing gonads were overall similar to those of ovaries, likely due to a whole ovary dilution effect of the RNA. Still, small but insignificant expression decreases during early sex change were detected for ovary-related genes (aen, casp9, fabp11, zpc2) and anti-apoptotic factors (parg, rif1). Exemestane treatment did not impact spermatogenesis or testicular gene expression, but testes were generally characterized by elevated steroidogenic enzyme and estrogen receptor mRNAs. Further research will be needed to understand these processes in black sea bass, using isolated ovarian follicles and multiple stages of sex change.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA.
| | - Linas W Kenter
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH 03824, USA
| | - Katherine Greenlaw
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Jacob Montgomery
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Giles W Goetz
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Wang FL, Yan LX, Shi HJ, Liu XY, Zheng QY, Sun LN, Wang DS. Genome-wide identification, evolution of DNA methyltransferases and their expression during gonadal development in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:73-84. [PMID: 30170023 DOI: 10.1016/j.cbpb.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
DNA methyltransferases (dnmts) are responsible for DNA methylation and play important roles in organism development. In this study, seven dnmts genes (dnmt1, dnmt2, dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1, dnmt3bb.2) were identified in Nile tilapia. Comprehensive analyses of dnmts were performed using available genome databases from representative animal species. Phylogenetic analysis revealed that the dnmts family were highly conserved in teleosts. Based on transcriptome data from eight adult tilapia tissues, the dnmts were found to be dominantly expressed in the head kidney, testis and ovary. Analyses of the gonadal transcriptome data in different developmental stages revealed that all dnmts were expressed in both ovary and testis, and four de novo dnmts (dnmt3aa, dnmt3ab, dnmt3bb.1, dnmt3bb.2) showed higher expression in the testis than in the ovary. Furthermore, during sex reversal induced by Fadrozole, the expression of these four de novo dnmts increased significantly in treated group compared to female control group. By in situ hybridization, the seven dnmts were found to be expressed mainly in phase I and II oocytes of the ovary and spermatocytes of the testis. When gonads were incubated with a methyltransferase inhibitor (5-AzaCdR) in vitro, the expression of dnmts genes were down-regulated significantly, while the expression of cyp19a1a (a key gene in female pathway) and dmrt1 (a key gene in male pathway) increased significantly. Our results revealed the conservation of dnmts during evolution and indicated a potential role of dnmts in epigenetic regulation of gonadal development.
Collapse
Affiliation(s)
- Fei-Long Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Long-Xia Yan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Hong-Juan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Qiao-Yuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Li-Na Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China.
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
17
|
Wu GC, Li HW, Tey WG, Lin CJ, Chang CF. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One 2017; 12:e0185864. [PMID: 29016690 PMCID: PMC5634590 DOI: 10.1371/journal.pone.0185864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023] Open
Abstract
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characteristics to study Amh signaling during bi-directional sex change in the grouper. We successfully induced the female-to-male sex change by chemical (aromatase inhibitor, AI, or methyltestosterone, MT) treatment. A dormant gonad (a low proliferation rate of early germ cells and no characteristics of both sexes) was found during the transient phase of reversible male-to-female sex change after the withdrawal of chemical administration. Our results showed that amh (anti-mullerian hormone) and its receptor amhr2 (anti-mullerian hormone receptor type 2) were significantly increased in the gonads during the process of female-to-male sex change. Amh is expressed in the Sertoli cells surrounding the type A spermatogonia in the female-to-male grouper. Male-related gene (dmrt1 and sox9) expression was immediately decreased in MT-terminated males during the reversible male-to-female sex change. However, Amh expression was found in the surrounding cells of type A spermatogonia-like cells during the transient phase of reversible male-to-female sex change. This phenomenon is correlated with the dormancy of type A spermatogonia-like cells. Thus, Amh signaling is suggested to play roles in regulating male differentiation during the female-to-male sex change and in inhibiting type-A spermatogonia-like cell proliferation/differentiation during the reversible male-to-female sex change. We suggest that Amh signaling might play dual roles during bi-directional sex change in grouper.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| |
Collapse
|