1
|
Percio F, Rubio L, Amorim‐Silva V, Botella MA. Crucial Roles of Brassinosteroids in Cell Wall Composition and Structure Across Species: New Insights and Biotechnological Applications. PLANT, CELL & ENVIRONMENT 2025; 48:1751-1767. [PMID: 39491539 PMCID: PMC11788965 DOI: 10.1111/pce.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Brassinosteroids (BR) are steroidal phytohormones essential for plant growth, development, and stress resistance. They fulfil this role partially by modulating cell wall structure and composition through the control of gene expression involved in primary and secondary cell wall biosynthesis and metabolism. This affects the deposition of cellulose, lignin, and other components, and modifies the inner architecture of the wall, allowing it to adapt to the developmental status and environmental conditions. This review focuses on the effects that BR exerts on the main components of the cell wall, cellulose, hemicellulose, pectin and lignin, in multiple and relevant plant species. We summarize the outcomes that result from modifying cell wall components by altering BR gene expression, applying exogenous BR and utilizing natural variability in BR content and describing new roles of BR in cell wall structure. Additionally, we discuss the potential use of BR to address pressing needs, such as increasing crop yield and quality, enhancing stress resistance and improving wood production through cell wall modulation.
Collapse
Affiliation(s)
- Francisco Percio
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| | - Lourdes Rubio
- Departamento de Botánica y Fisiología Vegetal, Facultad de CienciasUniversidad de MálagaMálagaMálagaSpain
| | - Vitor Amorim‐Silva
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| | - Miguel A. Botella
- Área de Mejora y Fisiología de Plantas, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaMálagaSpain
| |
Collapse
|
2
|
Bi H, Liu Z, Liu S, Qiao W, Zhang K, Zhao M, Wang D. Genome-wide analysis of wheat xyloglucan endotransglucosylase/hydrolase (XTH) gene family revealed TaXTH17 involved in abiotic stress responses. BMC PLANT BIOLOGY 2024; 24:640. [PMID: 38971763 PMCID: PMC11227136 DOI: 10.1186/s12870-024-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Environmental stresses, including high salinity and drought, severely diminish wheat yield and quality globally. The xyloglucan endotransglucosylase/hydrolase (XTH) family represents a class of cell wall-modifying enzymes and plays important roles in plants growth, development and stress adaptation. However, systematic analyses of XTH family genes and their functions under salt and drought stresses have not been undertaken in wheat. RESULTS In this study, we identified a total of 135 XTH genes in wheat, which were clustered into three evolutionary groups. These TaXTHs were unevenly distributed on 21 chromosomes of wheat with a majority of TaXTHs located on homelogous groups 2, 3 and 7. Gene duplication analysis revealed that segmental and tandem duplication were the main reasons for the expansion of XTH family in wheat. Interaction network predictions indicated that TaXTHs could interact with multiple proteins, including three kinases, one methyltransferase and one gibberellin-regulated protein. The promoters of the TaXTH genes harbored various cis-acting elements related to stress and hormone responses. RNA-seq data analyses showed that some TaXTH genes were induced by salt and drought stresses. Furthermore, we verified that TaXTH17 was induced by abiotic stresses and phytohormone treatments, and demonstrated that TaXTH17 was localized in the secretory pathway and cell wall. Functional analyses conducted in heterologous expression systems and in wheat established that TaXTH17 plays a negative role in plant resistance to salt and drought. CONCLUSIONS We identified 135 XTH genes in wheat and conducted comprehensive analyses of their phylogenetic relationships, gene structures, conserved motifs, gene duplication events, chromosome locations, interaction networks, cis-acting elements and gene expression patterns. Furthermore, we provided solid evidence supporting the notion that TaXTH17 plays a negative role in plant resistance to salt and drought stresses. Collectively, our results provide valuable insights into understanding wheat XTHs, particularly their involvement in plant stress responses, and establish a foundation for further functional and mechanistic studies of TaXTHs.
Collapse
Affiliation(s)
- Huihui Bi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Zeliang Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenchen Qiao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Kunpu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Minghui Zhao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China.
| | - Daowen Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Sun JY, Guo R, Jiang Q, Chen CZ, Gao YQ, Jiang MM, Shen RF, Zhu XF, Huang J. Brassinosteroid decreases cadmium accumulation via regulating gibberellic acid accumulation and Cd fixation capacity of root cell wall in rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133862. [PMID: 38432090 DOI: 10.1016/j.jhazmat.2024.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
The precise mechanism behind the association between plants' reactions to cadmium (Cd) stress and brassinosteroid (BR) remains unclear. In the current investigation, Cd stress quickly increased the endogenous BR concentration in the rice roots. Exogenous BR also increased the hemicellulose level in the root cell wall, which in turn increased its capacity to bind Cd. Simultaneously, the transcription level of genes responsible for root Cd absorption was decreased, including Natural Resistance-Associated Macrophage Protein 1/5 (OsNRAMP1/5) and a major facilitator superfamily gene called OsCd1. Ultimately, the increased expression of Heavy Metal ATPase 3 (OsHMA3) and the decreased expression of OsHMA2, which was in charge of separating Cd into vacuoles and translocating Cd to the shoots, respectively, led to a decrease in the amount of Cd that accumulated in the rice shoots. In contrast, transgenic rice lines overexpressing OsGSK2 (a negative regulator in BR signaling) accumulated more Cd, while OsGSK2 RNA interference (RNAi) rice line accumulated less Cd. Furthermore, BR increased endogenous Gibberellic acid (GA) level, and applying GA could replicate its alleviative effect. Taken together, BR decreased Cd accumulation in rice by mediating the cell wall's fixation capacity to Cd, which might relied on the buildup of the GA.
Collapse
Affiliation(s)
- Jie Ya Sun
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Rui Guo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qi Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Chang Zhao Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yong Qiang Gao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Meng Meng Jiang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Jiu Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
4
|
Molina-Montenegro MA, Egas C, Ballesteros G, Acuña-Rodríguez IS, San Martín F, Gianoli E. Sunspot activity influences tree growth: Molecular evidence and ecological implications. Mol Ecol 2024; 33:e16813. [PMID: 36479720 DOI: 10.1111/mec.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Solar activity has a significant influence on Earth's climate and may drive many biological processes. Here, we measured growth in 11 tree species distributed along an ≈600-km latitudinal gradient in South-Central Chile, recording the width of their growth-rings among periods of maximum (highest number of sunspots) and minimum (lowest number of sunspots) solar activity. In one of these species, Quillaja saponaria, we experimentally assessed three ecophysiological traits (CO2 fixation through photosynthesis [Amax], growth and leaf production) as well as the expression of five genes related to cell wall elongation and expansion following exposure to high and low levels of UV-B radiation, simulating scenarios of maximum and minimum solar activity, respectively. We found lower tree growth during the periods of maximum solar activity, with this trend being more evident at lower latitudes, where UV-B radiation is higher. Exposure of Q. saponaria to higher levels of UV-B affected the ecophysiological parameters, revealing a decrease in Amax, growth and leaf production. In addition, higher levels of UV-B led to repression in four of the five genes studied. Our results may help foresee environmental scenarios for different plant species associated with solar activity.
Collapse
Affiliation(s)
- Marco A Molina-Montenegro
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Claudia Egas
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Gabriel Ballesteros
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Filoromo San Martín
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
5
|
Gao Y, Wang L, Li D, Qi D, Fang F, Luo Y, Zhang H, Zhang S. Genome-wide characterization of the xyloglucan endotransglucosylase/hydrolase family genes and their response to plant hormone in sugar beet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108239. [PMID: 38113720 DOI: 10.1016/j.plaphy.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) play a crucial role in plant growth and development. However, their functional response to phytohormone in sugar beet still remains obscure. In this study, we identified 30 putative BvXTH genes in the sugar beet genome. Phylogenetic and evolutionary relationship analysis revealed that they were clustered into three groups and have gone through eight tandem duplication events under purifying selection. Gene structure and motif composition analysis demonstrated that they were highly conserved and all contained one conserved glycoside hydrolase family 16 domain (Glyco_hydro_16) and one xyloglucan endotransglycosylase C-terminus (XET_C) domain. Transcriptional expression analysis exhibited that all BvXTHs were ubiquitously expressed in leaves, root hairs and tuberous roots, and most of them were up-regulated by brassinolide (BR), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA3). Further mutant complementary experiment demonstrated that expression of BvXTH17 rescued the retarded growth phenotype of xth22, an Arabidopsis knock out mutant of AtXTH22. The findings in our work provide fundamental information on the structure and evolutionary relationship of the XTH family genes in sugar beet, and reveal the potential function of BvXTH17 in plant growth and hormone response.
Collapse
Affiliation(s)
- Yachao Gao
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China.
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| | - Dong Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Dazhuang Qi
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| | - Fengyan Fang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| | - Yuankai Luo
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| | - Shaoying Zhang
- Sugar Beet Physiological Research Institute, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
6
|
Han J, Liu Y, Shen Y, Li W. A Surprising Diversity of Xyloglucan Endotransglucosylase/Hydrolase in Wheat: New in Sight to the Roles in Drought Tolerance. Int J Mol Sci 2023; 24:9886. [PMID: 37373033 DOI: 10.3390/ijms24129886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Drought has become a major limiting factor for wheat productivity, and its negative impact on crop growth is anticipated to increase with climate deterioration in arid areas. Xyloglucan endoglycosylases/hydrolases (XTHs) are involved in constructing and remodeling cell wall structures and play an essential role in regulating cell wall extensibility and stress responses. However, there are no systematic studies on the wheat XTH gene family. In this study, 71 wheat XTH genes (TaXTHs) were characterized and classified into three subgroups through phylogenetic analysis. Genomic replication promoted the expansion of TaXTHs. We found a catalytically active motif and a potential N-linked glycosylation domain in all TaXTHs. Further expression analysis revealed that many TaXTHs in the roots and shoots were significantly associated with drought stress. The wheat TaXTH12.5a gene was transferred into Arabidopsis to verify a possible role of TaXTHs in stress response. The transgenic plants possessed higher seed germination rates and longer roots and exhibited improved tolerance to drought. In conclusion, bioinformatics and gene expression pattern analysis indicated that the TaXTH genes played a role in regulating drought response in wheat. The expression of TaXTH12.5a enhanced drought tolerance in Arabidopsis and supported the XTH genes' role in regulating drought stress response in plants.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
7
|
Zhu J, Tang G, Xu P, Li G, Ma C, Li P, Jiang C, Shan L, Wan S. Genome-wide identification of xyloglucan endotransglucosylase/hydrolase gene family members in peanut and their expression profiles during seed germination. PeerJ 2022; 10:e13428. [PMID: 35602895 PMCID: PMC9121870 DOI: 10.7717/peerj.13428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Seed germination marks the beginning of a new plant life cycle. Improving the germination rate of seeds and the consistency of seedling emergence in the field could improve crop yields. Many genes are involved in the regulation of seed germination. Our previous study found that some peanut XTHs (xyloglucan endotransglucosylases/hydrolases) were expressed at higher levels at the newly germinated stage. However, studies of the XTH gene family in peanut have not been reported. In this study, a total of 58 AhXTH genes were identified in the peanut genome. Phylogenetic analysis showed that these AhXTHs, along with 33 AtXTHs from Arabidopsis and 61 GmXTHs from soybean, were classified into three subgroups: the I/II, IIIA and IIIB subclades. All AhXTH genes were unevenly distributed on the 18 peanut chromosomes, with the exception of chr. 07 and 17, and they had relatively conserved exon-intron patterns, most with three to four introns. Through chromosomal distribution pattern and synteny analysis, it was found that the AhXTH family experienced many replication events, including 42 pairs of segmental duplications and 23 pairs of tandem duplications, during genome evolution. Conserved motif analysis indicated that their encoded proteins contained the conserved ExDxE domain and N-linked glycosylation sites and displayed the conserved secondary structural loops 1-3 in members of the same group. Expression profile analysis of freshly harvested seeds, dried seeds, and newly germinated seeds using transcriptome data revealed that 26 AhXTH genes, which account for 45% of the gene family, had relatively higher expression levels at the seed germination stage, implying the important roles of AhXTHs in regulating seed germination. The results of quantitative real-time PCR also confirmed that some AhXTHs were upregulated during seed germination. The results of GUS histochemical staining showed that AhXTH4 was mainly expressed in germinated seeds and etiolated seedlings and had higher expression levels in elongated hypocotyls. AhXTH4 was also verified to play a crucial role in the cell elongation of hypocotyls during seed germination.
Collapse
Affiliation(s)
- Jieqiong Zhu
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Changle Ma
- College of Life Science, Shandong Normal University, Jinan, China
| | - Pengxiang Li
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Chunyu Jiang
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Lei Shan
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| | - Shubo Wan
- College of Life Science, Shandong Normal University, Jinan, China,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Jinan, China
| |
Collapse
|
8
|
Yang J, Li L, Zhang X, Wu S, Han X, Li X, Xu J. Comparative Transcriptomics Analysis of Roots and Leaves under Cd Stress in Calotropis gigantea L. Int J Mol Sci 2022; 23:ijms23063329. [PMID: 35328749 PMCID: PMC8955323 DOI: 10.3390/ijms23063329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Calotropis gigantea is often found in mining areas with heavy metal pollution. However, little is known about the physiological and molecular response mechanism of C. gigantea to Cd stress. In the present study, Cd tolerance characteristic of C. gigantea and the potential mechanisms were explored. Seed germination test results showed that C. gigantea had a certain Cd tolerance capacity. Biochemical and transcriptomic analysis indicated that the roots and leaves of C. gigantea had different responses to early Cd stress. A total of 176 and 1618 DEGs were identified in the roots and leaves of C. gigantea treated with Cd compared to the control samples, respectively. Results indicated that oxidative stress was mainly initiated in the roots of C. gigantea, whereas the leaves activated several Cd detoxification processes to cope with Cd, including the upregulation of genes involved in Cd transport (i.e., absorption, efflux, or compartmentalization), cell wall remodeling, antioxidant system, and chelation. This study provides preliminary information to understand how C. gigantea respond to Cd stress, which is useful for evaluating the potential of C. gigantea in the remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Jingya Yang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Lingxiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Xiong Zhang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Shibo Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Xiaohui Han
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Xiong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- Correspondence: (X.L.); (J.X.)
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.Y.); (X.Z.); (S.W.); (X.H.)
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- Correspondence: (X.L.); (J.X.)
| |
Collapse
|
9
|
Yang Z, Zhang R, Zhou Z. The XTH Gene Family in Schima superba: Genome-Wide Identification, Expression Profiles, and Functional Interaction Network Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:911761. [PMID: 35783982 PMCID: PMC9243642 DOI: 10.3389/fpls.2022.911761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/31/2022] [Indexed: 05/04/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTH), belonging to glycoside hydrolase family 16, is one of the key enzymes in plant cell wall remodeling. Schima superba is an important timber and fireproof tree species in southern China. However, little is known about XTHs in S. superba. In the present study, a total of 34 SsuXTHs were obtained, which were classified into three subfamilies based on the phylogenetic relationship and unevenly distributed on 18 chromosomes. Furthermore, the intron-exon structure and conserved motif composition of them supported the classification and the members belonging to the same subfamily shared similar gene structures. Segmental and tandem duplication events did not lead to SsuXTH gene family expansion, and strong purifying selection pressures during evolution led to similar structure and function of SsuXTH gene family. The interaction network and cis-acting regulatory elements analysis revealed the SsuXTH expression might be regulated by multiple hormones, abiotic stresses and transcription factors. Finally, expression profiles and GO enrichment analysis showed most of the tandem repeat genes were mainly expressed in the phloem and xylem and they mainly participated in glycoside metabolic processes through the transfer and hydrolysis of xyloglucan in the cell wall and then regulated fiber elongation.
Collapse
Affiliation(s)
- Zhongyi Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
| | - Rui Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- *Correspondence: Rui Zhang,
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- Zhichun Zhou,
| |
Collapse
|
10
|
Wu Z, Cui C, Xing A, Xu X, Sun Y, Tian Z, Li X, Zhu J, Wang G, Wang Y. Identification and response analysis of xyloglucan endotransglycosylase/hydrolases (XTH) family to fluoride and aluminum treatment in Camellia sinensis. BMC Genomics 2021; 22:761. [PMID: 34696727 PMCID: PMC8547062 DOI: 10.1186/s12864-021-08056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xyloglucan endotransglycosylase/hydrolases (XTH) can disrupt and reconnect the xyloglucan chains, modify the cellulose-xyloglucan complex structure in the cell wall to reconstruct the cell wall. Previous studies have reported that XTH plays a key role in the aluminum (Al) tolerance of tea plants (Camellia sinensis), which is a typical plant that accumulates Al and fluoride (F), but its role in F resistance has not been reported. RESULTS Here, 14 CsXTH genes were identified from C. sinensis and named as CsXTH1-14. The phylogenetic analysis revealed that CsXTH members were divided into 3 subclasses, and conserved motif analysis showed that all these members included catalytic active region. Furthermore, the expressions of all CsXTH genes showed tissue-specific and were regulated by Al3+ and F- treatments. CsXTH1, CsXTH4, CsXTH6-8 and CsXTH11-14 were up-regulated under Al3+ treatments; CsXTH1-10 and CsXTH12-14 responded to different concentrations of F- treatments. The content of xyloglucan oligosaccharide determined by immunofluorescence labeling increased to the highest level at low concentrations of Al3+ or F- treatments (0.4 mM Al3+ or 8 mg/L F-), accompanying by the activity of XET (Xyloglucan endotransglucosylase) peaked. CONCLUSION In conclusion, CsXTH activities were regulated by Al or F via controlling the expressions of CsXTH genes and the content of xyloglucan oligosaccharide in C. sinensis roots was affected by Al or F, which might finally influence the elongation of roots and the growth of plants.
Collapse
Affiliation(s)
- Zichen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanlei Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiqiang Tian
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuyan Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangyuan Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Genmei Wang
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Seo H, Kim SH, Lee BD, Lim JH, Lee SJ, An G, Paek NC. The Rice Basic Helix-Loop-Helix 79 ( OsbHLH079) Determines Leaf Angle and Grain Shape. Int J Mol Sci 2020; 21:ijms21062090. [PMID: 32197452 PMCID: PMC7139501 DOI: 10.3390/ijms21062090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Changes in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield. Among the basic Helix-Loop-Helix (bHLH) transcription factors in rice (Oryza sativa), we found an enhancer-trap T-DNA insertion mutant of OsbHLH079 (termed osbhlh079-D). The osbhlh079-D mutant showed a wide leaf angle phenotype and produced long grains, similar to the phenotypes of mutants with increased brassinosteroid (BR) levels or enhanced BR signaling. Reverse transcription-quantitative PCR analysis showed that BR signaling-associated genes are largely upregulated in osbhlh079-D, but BR biosynthesis-associated genes are not upregulated, compared with its parental japonica cultivar ‘Dongjin’. Consistent with this, osbhlh079-D was hypersensitive to BR treatment. Scanning electron microscopy revealed that the expansion of cell size in the adaxial side of the lamina joint was responsible for the increase in leaf angle in osbhlh079-D. The expression of cell-elongation-associated genes encoding expansins and xyloglucan endotransglycosylases/hydrolases increased in the lamina joints of leaves in osbhlh079-D. The regulatory function of OsbHLH079 was further confirmed by analyzing 35S::OsbHLH079 overexpression and 35S::RNAi-OsbHLH079 gene silencing lines. The 35S::OsbHLH079 plants showed similar phenotypes to osbhlh079-D, and the 35S::RNAi-OsbHLH079 plants displayed opposite phenotypes to osbhlh079-D. Taking these observations together, we propose that OsbHLH079 functions as a positive regulator of BR signaling in rice.
Collapse
Affiliation(s)
- Hyoseob Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Byoung-Doo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Jung-Hyun Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Sang-Ji Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea;
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
- Correspondence: ; Tel.: +82-2-880-4543; Fax: +82-2-877-4550
| |
Collapse
|
12
|
Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019; 20:ijms20163971. [PMID: 31443183 PMCID: PMC6718997 DOI: 10.3390/ijms20163971] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.
Collapse
Affiliation(s)
- Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jana Deckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Marijke Jozefczak
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
13
|
Fu MM, Liu C, Wu F. Genome-Wide Identification, Characterization and Expression Analysis of Xyloglucan Endotransglucosylase/Hydrolase Genes Family in Barley ( Hordeum vulgare). Molecules 2019; 24:E1935. [PMID: 31137473 PMCID: PMC6572274 DOI: 10.3390/molecules24101935] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023] Open
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs)-a family of xyloglucan modifying enzymes-play an essential role in the construction and restructuring of xyloglucan cross-links. However, no comprehensive study has been performed on this gene family in barley. A total of 24 HvXTH genes (named HvXTH1-24) and an EG16 member were identified using the recently completed genomic database of barley (Hordeum vulgare). Phylogenetic analysis showed that 24 HvXTH genes could be classified into three phylogenetic groups: (I/II, III-A and III-B) and HvXTH15 was in the ancestral group. All HvXTH protein members-except HvXTH15-had a conserved N-glycosylation site. The genomic location of HvXTHs on barley chromosomes showed that the 24 genes are unevenly distributed on the 7 chromosomes, with 10 of them specifically located on chromosome 7H. A structure-based sequence alignment demonstrates that each XTH possesses a highly conserved domain (ExDxE) responsible for catalytic activity. Expression profiles based on the barley genome database showed that HvXTH family members display different expression patterns in different tissues and at different stages. This study is the first systematic genomic analysis of the barley HvXTH gene family. Our results provide valuable information that will help to elucidate the roles of HvXTH genes in the growth and development of barley.
Collapse
Affiliation(s)
- Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Chen Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Liu C, Zhang C, Fan M, Ma W, Chen M, Cai F, Liu K, Lin F. GmIDL2a and GmIDL4a, Encoding the Inflorescence Deficient in Abscission-Like Protein, Are Involved in Soybean Cell Wall Degradation during Lateral Root Emergence. Int J Mol Sci 2018; 19:E2262. [PMID: 30072588 PMCID: PMC6121880 DOI: 10.3390/ijms19082262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022] Open
Abstract
The number of lateral roots (LRs) of a plant determines the efficiency of water and nutrient uptake. Soybean is a typical taproot crop which is deficient in LRs. The number of LRs is therefore an important agronomic trait in soybean breeding. It is reported that the inflorescence deficient in abscission (IDA) protein plays an important role in the emergence of Arabidopsis LRs. Previously, the genes which encode IDA-like (IDL) proteins have been identified in the soybean genome. However, the functions of these genes in LR development are unknown. Therefore, it is of great value to investigate the function of IDL genes in soybean. In the present study, the functions of two root-specific expressed IDL genes, GmIDL2a and GmIDL4a, are investigated. The expressions of GmIDL2a and GmIDL4a, induced by auxin, are located in the overlaying tissue, where LRs are initiated. Overexpression of GmIDL2a and GmIDL4a increases the LR densities of the primary roots, but not in the elder root. Abnormal cell layer separation has also been observed in GmIDL2a- and GmIDL4a-overexpressing roots. These results suggest that the overlaying tissues of GmIDL2a- and GmIDL4a-overexpressing roots are looser and are suitable for the emergence of the LR primordium. Further investigation shows that the expression of some of the cell wall remodeling (CWR) genes, such as xyloglucan endotransglucosylase/hydrolases, expansins, and polygalacturonases, are increased when GmIDL2a and GmIDL4a are overexpressed in hairy roots. Here, we conclude that GmIDL2a and GmIDL4a function in LR emergence through regulating soybean CWR gene expression.
Collapse
Affiliation(s)
- Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Mingxia Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Wenjuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Meiming Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Fengchun Cai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Kuichen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| |
Collapse
|
16
|
Genome-Wide Identification and Expression Profiling Analysis of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family in Tobacco ( Nicotiana tabacum L.). Genes (Basel) 2018; 9:genes9060273. [PMID: 29795009 PMCID: PMC6027287 DOI: 10.3390/genes9060273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Xyloglucan endotransglucosylase/hydrolase genes (XTHs) encode enzymes required for the reconstruction and modification of xyloglucan backbones, which will result in changes of cell wall extensibility during growth. A total of 56 NtXTH genes were identified from common tobacco, and 50 cDNA fragments were verified by PCR amplification. The 56 NtXTH genes could be classified into two subfamilies: Group I/II and Group III according to their phylogenetic relationships. The gene structure, chromosomal localization, conserved protein domains prediction, sub-cellular localization of NtXTH proteins and evolutionary relationships among Nicotiana tabacum, Nicotiana sylvestrisis, Nicotiana tomentosiformis, Arabidopsis, and rice were also analyzed. The NtXTHs expression profiles analyzed by the TobEA database and qRT-PCR revealed that NtXTHs display different expression patterns in different tissues. Notably, the expression patterns of 12 NtXTHs responding to environment stresses, including salinity, alkali, heat, chilling, and plant hormones, including IAA and brassinolide, were characterized. All the results would be useful for the function study of NtXTHs during different growth cycles and stresses.
Collapse
|
17
|
Zhang JF, Xu YQ, Dong JM, Peng LN, Feng X, Wang X, Li F, Miao Y, Yao SK, Zhao QQ, Feng SS, Hu BZ, Li FL. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS One 2018; 13:e0195138. [PMID: 29596529 PMCID: PMC5875846 DOI: 10.1371/journal.pone.0195138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Min Dong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Na Peng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fei Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Miao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shu-Kuan Yao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao-Qin Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shan-Shan Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bao-Zhong Hu
- Harbin University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| |
Collapse
|
18
|
Iqbal A, Wang T, Wu G, Tang W, Zhu C, Wang D, Li Y, Wang H. Physiological and transcriptome analysis of heteromorphic leaves and hydrophilic roots in response to soil drying in desert Populus euphratica. Sci Rep 2017; 7:12188. [PMID: 28939837 PMCID: PMC5610244 DOI: 10.1038/s41598-017-12091-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Populus euphratica Olivier, which has been considered as a tree model for the study of higher plant response to abiotic stresses, survive in the desert ecosystem characterized by extreme drought stress. To survive in the harsh environmental condition the plant species have developed some plasticity such as the development of heteromorphic leaves and well-developed roots system. We investigated the physiological and molecular mechanisms enabling this species to cope with severe stress caused by drought. The heterophylly, evolved from linear to toothed-ovate shape, showed the significant difference in cuticle thickness, stomata densities, and sizes. Physiological parameters, SOD, POD, PPO, CAT activity, free proline, soluble protein and MDA contents fluctuated in response to soil drying. Gene expression profile of roots monitored at control and 4 moisture gradients regimes showed the up-regulation of 124, 130, 126 and 162 and down-regulation of 138, 251, 314, 168 DEGs, respectively. Xyloglucan endotransglucosylase/ hydrolase gene (XET) up-regulated at different moisture gradients, was cloned and expressed in tobacco. The XET promoter sequence harbors the drought signaling responsive cis-elements. The promoter expression activity varies in different organs. Over-expression and knocked down transgenic tobacco plant analysis confirmed the role of XET gene in roots growth and drought resistance.
Collapse
Affiliation(s)
- Arshad Iqbal
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Tianxiang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Wensi Tang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Chen Zhu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Dapeng Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- Department of Plant Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na + /K + and antioxidant competence. PHYSIOLOGIA PLANTARUM 2017; 159:161-177. [PMID: 27545692 DOI: 10.1111/ppl.12492] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 05/13/2023]
Abstract
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+ /K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yangyang Han
- Plastic Surgery Institute of Weifang Medical University, Weifang, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Hanhan Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| |
Collapse
|
20
|
Rao X, Dixon RA. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:806. [PMID: 28567047 PMCID: PMC5434148 DOI: 10.3389/fpls.2017.00806] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/28/2017] [Indexed: 05/19/2023]
Abstract
Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs) play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae) and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
| |
Collapse
|
21
|
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, De Bellis L, Perrotta C, Dalessandro G, Piro G, Fry SC, Lenucci MS. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:1686. [PMID: 27891140 PMCID: PMC5102909 DOI: 10.3389/fpls.2016.01686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.
Collapse
Affiliation(s)
- Andrea Iurlaro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Erika Sabella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Mariarosaria De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Carla Perrotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giuseppe Dalessandro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| |
Collapse
|
22
|
Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants. PLoS One 2016; 11:e0153494. [PMID: 27073898 PMCID: PMC4830583 DOI: 10.1371/journal.pone.0153494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Yangyang Han
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, P. R. China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| |
Collapse
|
23
|
Wang Y, Xiao X, Wang X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.). Int J Biol Sci 2016; 12:653-66. [PMID: 27194943 PMCID: PMC4870709 DOI: 10.7150/ijbs.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.
Collapse
Affiliation(s)
- Yi Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiaolu Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
24
|
Li X, Zhao J, Walk TC, Liao H. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment. Appl Microbiol Biotechnol 2014; 98:2805-17. [PMID: 24113821 DOI: 10.1007/s00253-013-5240-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.
Collapse
Affiliation(s)
- Xinxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Han Y, Wang W, Sun J, Ding M, Zhao R, Deng S, Wang F, Hu Y, Wang Y, Lu Y, Du L, Hu Z, Diekmann H, Shen X, Polle A, Chen S. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4225-38. [PMID: 24085577 PMCID: PMC3808310 DOI: 10.1093/jxb/ert229] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH overexpression. Compared with the wild type, PeXTH-transgenic plants contained 36% higher water content per unit area and 39% higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a 47-78% greater net photosynthesis under control and salt treatments (100-150 mM NaCl). Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.
Collapse
Affiliation(s)
- Yansha Han
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Wei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jian Sun
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Mingquan Ding
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shurong Deng
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Feifei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yue Hu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yang Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanjun Lu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Liping Du
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heike Diekmann
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Xin Shen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Andrea Polle
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
26
|
Campos A, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 94:45-53. [PMID: 23726538 DOI: 10.1016/j.ecoenv.2013.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/18/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Toxic cyanobacteria and cyanotoxins have been pointed as important players in the control of phytoplankton diversity and species abundance, causing ecological unbalances and contamination of the environment. In vitro experiments have been undertaken to address the impact of toxic cyanobacteria in green algae. In this regard the aim of this work was to compare the toxicity of two cyanobacteria species, Aphanizomenon ovalisporum and Microcystis aeruginosa, to the green alga Chlorella vulgaris by assessing culture growth when exposed for three and seven days to (I) cyanobacterial cell extracts and (II) pure toxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN). The biochemical response of the green alga to pure toxins was also characterized, through the activity of the antioxidant markers glutathione S-transferase (GST) and glutathione peroxidase (GPx) and the expressed extracellular proteins in seven-day exposed cultures. A. ovalisporum crude extracts were toxic to C. vulgaris. Pure toxins up to 179.0 µg/L, on the other hand, stimulated the green alga growth. Growth results suggest that the toxicity of A. ovalisporum extracts is likely due to a synergistic action of CYN and other metabolites produced by the cyanobacterium. Regarding the green alga antioxidant defense mechanism, CYN at 18.4 and 179.0 µg/L increased the activity of GPx and GST while MC-LR inhibited the enzymes' activity at a concentration of 179.0 µg/L demonstrating a contrasting mode of action. Moreover the identification of F-ATPase subunit, adenylate cyclase, sulfate ABC transporter, putative porin, aspartate aminotransferase, methylene-tetrahydrofolate dehydrogenase and chlorophyll a binding proteins in the culture medium of C. vulgaris indicates that biochemical processes involved in the transport of metabolites, photosynthesis and amino acid metabolism are affected by cyanobacterial toxins and may contribute to the regulation of green alga growth.
Collapse
Affiliation(s)
- Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
27
|
Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 2013; 163:281-91. [PMID: 23183383 DOI: 10.1016/j.jbiotec.2012.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/13/2022]
Abstract
Expansins are the key regulators of cell wall extension during plant growth. Previously, we produced transgenic tobacco plants with increased tolerance to water stress by overexpressing the wheat expansin gene TaEXPB23 driven by the constitutive 35S cauliflower mosaic virus (CaMV) promoter. However, the growth and development of 35S::TaEXPB23 transgenic tobacco plants were altered under normal growth conditions, with a faster growth rate at the seedling stage, earlier flowering and maturation, and a shorter plant height compared to WT. In the current study, we determined that cellular characteristics and carbohydrate metabolism were altered in 35S::TaEXPB23 transgenic tobacco plants. We also generated transgenic Arabidopsis plants using the same vector. The transgenic Arabidopsis plants had the same phenotype as the transgenic tobacco plants, which may have resulted from the altered expression of several flowering-related genes. We then produced TaEXPB23 transgenic tobacco plants using the stress-inducible RD29A promoter. The use of this promoter reduced the negative effects of TaEXPB23 on plant growth and development. The RD29A::TaEXPB23 transgenic tobacco plants had greater tolerance to water stress than WT, as determined by examining physiological and biochemical parameters. Therefore, the use of stress-inducible promoters, such as RD29A, may minimize the negative effects of constitutive transgene expression and improve the water-stress tolerance of plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
The transcriptomes of columnar and standard type apple trees (Malus x domestica) - a comparative study. Gene 2012; 498:223-30. [PMID: 22353365 DOI: 10.1016/j.gene.2012.01.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/11/2023]
Abstract
Columnar apple trees (Malus x domestica) provide several economic advantages due to their specific growth habit. The columnar phenotype is the result of the dominant allele of the gene Co and is characterized by thick stems with short internodes and reduced lateral branching. Co is located on chromosome 10 and often appears in a heterozygous state (Co/co). The molecular explanation of columnar growth is not well established. Therefore, we studied the transcriptomes of columnar and standard type apple trees using 454 and Illumina next generation sequencing (NGS) technologies. We analyzed the transcriptomes of shoot apical meristems (SAMs) because we expect that these organs are involved in forming the columnar growth phenotype. The results of the comparative transcriptome analysis show significant differences in expression levels of hundreds of genes. Many of the differentially expressed genes are associated with membrane and cell wall growth or modification and can be brought in line with the columnar phenotype. Additionally, earlier findings on the hormonal state of shoots of columnar apples could be affirmed. Our study resulted in a large number of genes differentially expressed in columnar vs. standard type apple tree SAMs. Although we have not unraveled the nature of the Co gene, we could show that the modified expression of these genes, most likely due to the presence of Co, can determine the columnar phenotype. Furthermore, the usefulness of NGS for the analysis of the molecular basis of complex phenotypes is discussed.
Collapse
|
30
|
Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP, Shewry PR, Mitchell RA. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. PLANT PHYSIOLOGY 2012; 158:612-27. [PMID: 22123899 PMCID: PMC3271754 DOI: 10.1104/pp.111.189191] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/24/2011] [Indexed: 05/20/2023]
Abstract
The transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3;1,4)-β-d-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented. The most highly expressed GT transcript (excluding those known to be involved in starch synthesis) was a GT47 family transcript similar to Arabidopsis (Arabidopsis thaliana) IRX10 involved in xylan extension, and the second most abundant was a GT61. Profiles for GT43 IRX9 and IRX14 putative orthologs were consistent with roles in AX synthesis. Low abundances were found for transcripts from genes in the acyl-coA transferase BAHD family, for which a role in AX feruloylation has been postulated. The relative expression of these was much greater in whole grain compared with starchy endosperm, correlating with the levels of bound ferulate. Transcripts associated with callose (GSL), cellulose (CESA), pectin (GAUT), and glucomannan (CSLA) synthesis were also abundant in starchy endosperm, while the corresponding cell wall polysaccharides were confirmed as low abundance (glucomannan and callose) or undetectable (pectin) in these samples. Abundant transcripts from GH families associated with the hydrolysis of these polysaccharides were also present, suggesting that they may be rapidly turned over. Abundant transcripts in the GT31 family may be responsible for the addition of Gal residues to arabinogalactan peptide.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rowan A.C. Mitchell
- Centre for Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (T.K.P., A.L., J.F., P.T., C.G.L., P.R.S., R.A.C.M.); and Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (J.P.K.)
| |
Collapse
|
31
|
Budzinski IGF, Santos TB, Sera T, Pot D, Vieira LGE, Pereira LFP. Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:462-71. [PMID: 21489097 DOI: 10.1111/j.1438-8677.2010.00400.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a first step towards understanding the physiological role and regulation of the expansin gene (EXP) family in Coffea arabica fruits during growth and maturation, we identified 11 expansin genes, nine belonging to the α-expansin family (EXPA), one EXLA and one EXLB, through in silico analysis of expressed sequence tags (ESTs). Within the α-expansin family, three isoforms were selected for detailed examination based on their high expression in coffee fruits or because they were specifically induced during different fruit developmental stages, according to the EST information. The expression patterns were analysed in different fruit tissues (perisperm, endosperm and pericarp) of C. arabica cv. IAPAR-59 and C. arabica cv. IAPAR-59 Graúdo, the latter being a closely related cultivar with a larger fruit size. Accumulation of CaEXPA1 and CaEXPA3 transcripts was high in the perisperm (tissue responsible for coffee bean size) and in the early stages of pericarp development. Transcripts of CaEXPA2 were detected only in the pericarp during the later stages of fruit maturation and ripening. There was no detectable transcription of the three EXPs analysed in the endosperm. The observed differences in mRNA expression levels of CaEXPA1 and CaEXP3 in the perisperm of IAPAR-59 and IAPAR-59 Graúdo suggest the participation of these two isoforms in the regulation of grain size.
Collapse
Affiliation(s)
- I G F Budzinski
- Instituto Agronômico do Paraná, IAPAR, LBI-AMG, Londrina, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen JP, Vissenberg K. Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:261-71. [PMID: 20732879 DOI: 10.1093/jxb/erq263] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall enzymes that are able to graft xyloglucan chains to oligosaccharides or to other available xyloglucan chains and/or to hydrolyse xyloglucan chains. As they are involved in the modification of the load-bearing cell-wall components, they are believed to be very important in the regulation of growth and development. Given the large number (33) of XTH genes in Arabidopsis and the overlapping expression patterns, specific enzymic properties may be expected. Five predominantly root-expressed Arabidopsis thaliana XTHs belonging to subgroup I/II were analysed here. These represent two sets of closely related genes: AtXTH12 and 13 on the one hand (trichoblast-enriched) and AtXTH17, 18, and 19 on the other (expressed in nearly all cell types in the root). They were all recombinantly produced in the yeast Pichia pastoris and partially purified by ammonium sulphate precipitation before they were subsequently all subjected to a series of identical in vitro tests. The kinetic properties of purified AtXTH13 were investigated in greater detail to rule out interference with the assays by contaminating yeast proteins. All five proteins were found to exhibit only the endotransglucosylase (XET; EC 2.4.1.207) activity towards xyloglucan and non-detectable endohydrolytic (XEH; EC 3.2.1.151) activity. Their endotransglucosylase activity was preferentially directed towards xyloglucan and, in some cases, water-soluble cellulose acetate, rather than to mixed-linkage β-glucan. Isoforms differed in optimum pH (5.0-7.5), in temperature dependence and in acceptor substrate preferences.
Collapse
Affiliation(s)
- An Maris
- Department of Biology, Laboratory of Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Breen J, Li D, Dunn DS, Békés F, Kong X, Zhang J, Jia J, Wicker T, Mago R, Ma W, Bellgard M, Appels R. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain. BMC PLANT BIOLOGY 2010; 10:99. [PMID: 20507562 PMCID: PMC2887456 DOI: 10.1186/1471-2229-10-99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/27/2010] [Indexed: 05/16/2023]
Abstract
BACKGROUND Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. RESULTS In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. CONCLUSIONS Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426Survey sequences of TaEXPB11ws and TsEXPB11 are provided request.
Collapse
Affiliation(s)
- James Breen
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
| | - Dora Li
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, Murdoch University, South Street, Perth 6150, Australia
| | - David S Dunn
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Centre for Clinical Immunology and Biomedical Statistics, Murdoch University, South Street, Perth WA 6150, Australia
| | - Ferenc Békés
- CSIRO Plant Industries, PO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Juncheng Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Jizeng Jia
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich, CH-8008 Switzerland
| | - Rohit Mago
- CSIRO Plant Industries, PO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Wujun Ma
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, Murdoch University, South Street, Perth 6150, Australia
- Department of Agriculture and Food, Western Australia (DAFWA), 3 Baron Hay Court, Perth, 6151 Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
| | - Rudi Appels
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| |
Collapse
|
34
|
Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1147-57. [PMID: 20080826 PMCID: PMC2826655 DOI: 10.1093/jxb/erp380] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 12/01/2009] [Accepted: 12/08/2009] [Indexed: 05/18/2023]
Abstract
Grain weight is one of the most important components of cereal yield and quality. A clearer understanding of the physiological and molecular determinants of this complex trait would provide an insight into the potential benefits for plant breeding. In the present study, the dynamics of dry matter accumulation, water uptake, and grain size in parallel with the expression of expansins during grain growth in wheat were analysed. The stabilized water content of grains showed a strong association with final grain weight (r(2)=0.88, P <0.01). Grain length was found to be the trait that best correlated with final grain weight (r(2)=0.98, P <0.01) and volume (r(2)=0.94, P <0.01). The main events that defined final grain weight occurred during the first third of grain-filling when maternal tissues (the pericarp of grains) undergo considerable expansion. Eight expansin coding sequences were isolated from pericarp RNA and the temporal profiles of accumulation of these transcripts were monitored. Sequences showing high homology with TaExpA6 were notably abundant during early grain expansion and declined as maturity was reached. RNA in situ hybridization studies revealed that the transcript for TaExpA6 was principally found in the pericarp during early growth in grain development and, subsequently, in both the endosperm and pericarp. The signal in these images is likely to be the sum of the transcript levels of all three sequences with high similarity to the TaExpA6 gene. The early part of the expression profile of this putative expansin gene correlates well with the critical periods of early grain expansion, suggesting it as a possible factor in the final determination of grain size.
Collapse
Affiliation(s)
- X Carolina Lizana
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile.
| | | | | | | | | | | | | |
Collapse
|
35
|
Maris A, Suslov D, Fry SC, Verbelen JP, Vissenberg K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3959-72. [PMID: 19635745 DOI: 10.1093/jxb/erp229] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in the modification of load-bearing cell wall components. They cleave xyloglucan chains and, often, re-form bonds to the non-reducing ends of available xyloglucan molecules in plant primary cell walls. The enzymic properties and effects on root growth of two Arabidopsis thaliana XTHs belonging to subgroup I/II, that are predominantly expressed in root hairs and in non-elongating zones of the root, were analysed here. AtXTH14 and AtXTH26 were recombinantly produced in Pichia and subsequently purified. Both proteins were found to exhibit xyloglucan endotransglucosylase (XET; EC 2.4.1.207) but not xyloglucan endohydrolase (XEH; EC 3.2.1.151) activity. Their endotransglucosylase activity was at least 70x greater on xyloglucan rather than on mixed-linkage beta-glucan. Differences were found in pH- and temperature-dependence as well as in acceptor-substrate preferences. Furthermore, the specific activity of XET was approximately equal for the two enzymes. Removal of N-linked sugar residues by Endo H treatment reduced XET activity to 60%. Constant-load extensiometry experiments revealed that the enzymes reduce the extension in a model system of heat-inactivated isolated cell walls. When given to growing roots, either of these XTH proteins reduced cell elongation in a concentration-dependent manner and caused abnormal root hair morphology. This is the first time that recombinant and purified XTHs added to growing roots have exhibited a clear effect on cell elongation. It is proposed that these specific XTH isoenzymes play a role in strengthening the side-walls of root-hairs and cell walls in the root differentiation zone after the completion of cell expansion.
Collapse
Affiliation(s)
- An Maris
- Department of Biology, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | |
Collapse
|
36
|
Genovesi V, Fornalé S, Fry SC, Ruel K, Ferrer P, Encina A, Sonbol FM, Bosch J, Puigdomènech P, Rigau J, Caparrós-Ruiz D. ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:875-89. [PMID: 18316315 DOI: 10.1093/jxb/ern013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs; EC 2.4.1.207 and/or EC 3.2.1.151) are enzymes involved in the modification of cell wall structure by cleaving and, often, also re-joining xyloglucan molecules in primary plant cell walls. Using a pool of antibodies raised against an enriched cell wall protein fraction, a new XTH cDNA in maize, ZmXTH1, has been isolated from a cDNA expression library obtained from the elongation zone of the maize root. The predicted protein has a putative N-terminal signal peptide and possesses the typical domains of this enzyme family, such as a catalytic domain that is homologous to that of Bacillus macerans beta-glucanase, a putative N-glycosylation motif, and four cysteine residues in the central and C terminal regions of the ZmXTH1 protein. Phylogenetic analysis of ZmXTH1 reveals that it belongs to subgroup 4, so far only reported from Poaceae monocot species. ZmXTH1 has been expressed in Pichia pastoris (a methylotrophic yeast) and the recombinant enzyme showed xyloglucan endotransglucosylase but not xyloglucan endohydrolase activity, representing the first enzyme belonging to subgroup 4 characterized in maize so far. Expression data indicate that ZmXTH1 is expressed in elongating tissues, modulated by culture conditions, and induced by gibberellins. Transient expression assays in onion cells reveal that ZmXTH1 is directed to the cell wall, although weakly bound. Finally, Arabidopsis thaliana plants expressing ZmXTH1 show slightly increased xyloglucan endohydrolase activity and alterations in the cell wall structure and composition.
Collapse
Affiliation(s)
- Valeria Genovesi
- Laboratori de Genètica Molecular Vegetal, Consorci CSIC-IRTA, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|