1
|
Azaïs H, Brochard C, Taly V, Benoit L, Ferron G, Ray-Coquard I, You B, Abadie-Lacourtoisie S, Lebreton C, Venat L, Louvet C, Favier L, Blonz C, Dohollou N, Malaurie E, Dubot C, Kurtz JE, Pujade-Lauraine E, Rouleau E, Leary A, Bats AS, Blons H, Laurent-Puig P. Prognostic value of circulating tumor DNA at diagnosis and its early decrease after one cycle of neoadjuvant chemotherapy for patients with advanced epithelial ovarian cancer. An ancillary analysis of the CHIVA phase II GINECO trial. Gynecol Oncol 2025; 192:145-154. [PMID: 39671779 DOI: 10.1016/j.ygyno.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To evaluate the prognostic impact of circulating tumor DNA (ctDNA) detection at diagnosis (T0) and its early decrease after one cycle (T1) of neoadjuvant chemotherapy (NACT) in patients with advanced epithelial ovarian cancer (EOC) included in the CHIVA trial (NCT01583322). METHODS Blood samples were collected at T0 and before each administration of NACT. Circulating tumor DNA detection was performed by next-generation sequencing. Multivariate analysis was performed. A p-value of 0.05 was considered significant. Progression-free survival (PFS) and overall survival (OS) were compared between groups defined by ctDNA kinetic profile. Cox survival model was used to search variables associated with PFS and OS. Kaplan-Mayer curve was used to graphically express the differences in PFS and OS. A log-rank test compared the two curves. RESULTS 188 patients were included. Blood samples were available for 168 patients at T0 and for 160 patients at T0 and T1 to assess ctDNA ratio kinetics. At T0, 107 patients (63.7 %) had detectable ctDNA. At T1, 137 (85.6 %) patients had negative ctDNA or a decrease of more than 80 %. There was a significant benefit in either PFS (p = 0.0017) or OS (p = 0.0036) in favor of early decrease of ctDNA ratio. A favorable decrease was associated with a greater likelihood of being able to perform CRS (OR: 3.94 (CI95 % 1.45-10.70), p = 0.0074). CONCLUSIONS Early decrease of ctDNA ratio can provide prognostic information early in the management of patients, allowing a more accurate information to patients and an early preparation for CRS (prehabilitation).
Collapse
Affiliation(s)
- Henri Azaïs
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Gynaecological Oncological and Breast Surgery, Hôpital Européen Georges-Pompidou, Paris, France; Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | - Camille Brochard
- Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France; AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Pathology, Hôpital Européen Georges-Pompidou, Paris, France
| | - Valérie Taly
- Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Louise Benoit
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Gynaecological Oncological and Breast Surgery, Hôpital Européen Georges-Pompidou, Paris, France
| | - Gwenaël Ferron
- Institut Claudius Regaud IUCT Oncopole, GINECO, Toulouse, France
| | | | - Benoit You
- Hospices Civils de Lyon, GINECO/GINEGEPS, Pierre-Bénite, France
| | | | | | - Laurence Venat
- Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | | | | | - Cyriac Blonz
- Hôpital Privé du Confluent, GINECO, Nantes, France
| | | | | | - Coraline Dubot
- Institut Curie - Hôpital René Huguenin, GINECO, Saint-Cloud, France
| | - Jean-Emmanuel Kurtz
- ICANS - Institut de cancérologie Strasbourg Europe, GINECO, Strasbourg, France
| | | | - Etienne Rouleau
- Medical Biology and Pathology Departement, Tumor Genetics Lab, INSERM U981 Institut Gustave Roussy, Villejuif, France
| | - Alexandra Leary
- Institut Gustave Roussy, INSERM U981, Paris-Saclay University, GINECO/GINEGEPS, Villejuif, France
| | - Anne-Sophie Bats
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Gynaecological Oncological and Breast Surgery, Hôpital Européen Georges-Pompidou, Paris, France; Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Hélène Blons
- Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France; AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges-Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Université de Paris Cité, Paris CARPEM Cancer Institute, Paris, France; INSERM UMR-S 1147, University of Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
2
|
O'Keefe CM, Zhao Y, Cope LM, Ho C, Fader AN, Stone R, Ferris JS, Beavis A, Levinson K, Wethington S, Wang T, Pisanic TR, Shih I, Wang T. Single-molecule epiallelic profiling of DNA derived from routinely collected Pap specimens for noninvasive detection of ovarian cancer. Clin Transl Med 2024; 14:e1778. [PMID: 39083293 PMCID: PMC11290349 DOI: 10.1002/ctm2.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Recent advances in molecular analyses of ovarian cancer have revealed a wealth of promising tumour-specific biomarkers, including protein, DNA mutations and methylation; however, reliably detecting such alterations at satisfactorily high sensitivity and specificity through low-cost methods remains challenging, especially in early-stage diseases. Here we present PapDREAM, a new approach that enables detection of rare, ovarian-cancer-specific aberrations of DNA methylation from routinely-collected cervical Pap specimens. The PapDREAM approach employs a microfluidic platform that performs highly parallelized digital high-resolution melt to analyze locus-specific DNA methylation patterns on a molecule-by-molecule basis at or near single CpG-site resolution at a fraction (< 1/10th) of the cost of next-generation sequencing techniques. We demonstrate the feasibility of the platform by assessing intermolecular heterogeneity of DNA methylation in a panel of methylation biomarker loci using DNA derived from Pap specimens obtained from a cohort of 43 women, including 18 cases with ovarian cancer and 25 cancer-free controls. PapDREAM leverages systematic multidimensional bioinformatic analyses of locus-specific methylation heterogeneity to improve upon Pap-specimen-based detection of ovarian cancer, demonstrating a clinical sensitivity of 50% at 99% specificity in detecting ovarian cancer cases with an area under the receiver operator curve of 0.90. We then establish a logistic regression model that could be used to identify high-risk patients for subsequent clinical follow-up and monitoring. The results of this study support the utility of PapDREAM as a simple, low-cost screening method with the potential to integrate with existing clinical workflows for early detection of ovarian cancer. KEY POINTS: We present a microfluidic platform for detection and analysis of rare, heterogeneously methylated DNA within Pap specimens towards detection of ovarian cancer. The platform achieves high sensitivity (fractions <0.00005%) at a suitably low cost (∼$25) for routine screening applications. Furthermore, it provides molecule-by-molecule quantitative analysis to facilitate further study on the effect of heterogeneous methylation on cancer development.
Collapse
Affiliation(s)
- Christine M. O'Keefe
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yang Zhao
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Leslie M. Cope
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Oncology and BiostatisticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Chih‐Ming Ho
- Gynecologic Cancer CenterDepartment of Obstetrics and GynecologyCathay General HospitalTaipeiTaiwan
- School of MedicineFu Jen Catholic UniversityNew TaipeiTaiwan
| | - Amanda N. Fader
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rebecca Stone
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - James S. Ferris
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Anna Beavis
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kimberly Levinson
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Greater Baltimore Medical CenterTowsonMarylandUSA
| | - Stephanie Wethington
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tian‐Li Wang
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Thomas R. Pisanic
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ie‐Ming Shih
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tza‐Huei Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
3
|
Yi J, Wu M, Zheng Z, Zhou Q, Li X, Lu Y, Liu P. Integrated analysis of DNA methylome and transcriptome reveals SFRP1 and LIPG as potential drivers of ovarian cancer metastasis. J Gynecol Oncol 2023; 34:e71. [PMID: 37417299 PMCID: PMC10627750 DOI: 10.3802/jgo.2023.34.e71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE More than 75% of ovarian cancer patients are diagnosed at advanced stages and die of tumor cell metastasis. This study aimed to identify new epigenetic and transcriptomic alterations associated with ovarian cancer metastasis. METHODS Two cell sublines with low- and high-metastasis potentials were derived from the ovarian cancer cell line A2780. Genome-wide DNA methylome and transcriptome profiling were carried out in these two sublines by Reduced Representation Bisulfite Sequencing and RNA-seq technologies. Cell-based assays were conducted to support the clinical findings. RESULTS There are distinct DNA methylation and gene expression patterns between the two cell sublines with low- and high-metastasis potentials. Integrated analysis identified 33 methylation-induced genes potentially involved in ovarian cancer metastasis. The DNA methylation patterns of two of them (i.e., SFRP1 and LIPG) were further validated in human specimens, indicating that they were hypermethylated and downregulated in peritoneal metastatic ovarian carcinoma compared to primary ovarian carcinoma. Patients with lower SFRP1 and LIPG expression tend to have a worse prognosis. Functionally, knockdown of SFRP1 and LIPG promoted cell growth and migration, whereas their overexpression resulted in the opposite effects. In particular, knockdown of SFRP1 could phosphorylate GSK3β and increase β-catenin expression, leading to deregulated activation of the Wnt/β-catenin signaling. CONCLUSION Many systemic and important epigenetic and transcriptomic alterations occur in the progression of ovarian cancer. In particular, epigenetic silencing of SFRP1 and LIPG is a potential driver event in ovarian cancer metastasis. They can be used as prognostic biomarkers and therapeutic targets for ovarian cancer patients.
Collapse
Affiliation(s)
- Jiani Yi
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengting Wu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Lu H, Liu Y, Wang J, Fu S, Wang L, Huang C, Li J, Xie L, Wang D, Li D, Zhou H, Rao Q. Detection of ovarian cancer using plasma cell-free DNA methylomes. Clin Epigenetics 2022; 14:74. [PMID: 35681212 PMCID: PMC9185905 DOI: 10.1186/s13148-022-01285-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a highly lethal gynecologic cancer, and it is hard to diagnose at an early stage. Clinically, there are no ovarian cancer-specific markers for early detection. Here, we demonstrate the use of cell-free DNA (cfDNA) methylomes to detect ovarian cancer, especially the early-stage OC. EXPERIMENTAL DESIGN Plasma from 74 epithelial ovarian cancer patients, 86 healthy volunteers, and 20 patients with benign pelvic masses was collected. The cfDNA methylomes of these samples were generated by cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq). The differentially methylated regions (DMRs) were identified by the contrasts between tumor and non-tumor groups, and the discrimination performance was evaluated with the iterative training and testing method. RESULTS The DMRs identified for cfDNA methylomes can well discriminate tumor groups and non-tumor groups (ROC values from 0.86 to 0.98). The late-stage top 300 DMRs are more late-stage-specific and failed to detect early-stage OC. However, the early-stage markers have the potential to discriminate all-stage OCs from non-tumor samples. CONCLUSIONS This study demonstrates that cfDNA methylomes generated with cfMeDIP-seq could be used to identify OC-specific biomarkers for OC, especially early OC detection. To detect early-stage OC, the biomarkers should be directly identified from early OC plasma samples rather than mix-stage ones. Further exploration of DMRs from a k larger early-stage OC cohort is warranted.
Collapse
Affiliation(s)
- Huaiwu Lu
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunyun Liu
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingyu Wang
- Shanghai Danbei Medical Technology Co., Ltd, Shanghai, China
| | - Shaliu Fu
- Shanghai Danbei Medical Technology Co., Ltd, Shanghai, China
| | - Lingping Wang
- Shanghai Danbei Medical Technology Co., Ltd, Shanghai, China
| | - Chunxian Huang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Xie
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongyan Wang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Shanghai Danbei Medical Technology Co., Ltd, Shanghai, China
| | - Hui Zhou
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Qunxian Rao
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Tserpeli V, Stergiopoulou D, Londra D, Giannopoulou L, Buderath P, Balgkouranidou I, Xenidis N, Grech C, Obermayr E, Zeillinger R, Pavlakis K, Rampias T, Kakolyris S, Kasimir-Bauer S, Lianidou ES. Prognostic Significance of SLFN11 Methylation in Plasma Cell-Free DNA in Advanced High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010004. [PMID: 35008168 PMCID: PMC8750111 DOI: 10.3390/cancers14010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Epigenetic alterations in ctDNA are highly promising as a source of novel potential liquid biopsy biomarkers and comprise a very promising liquid biopsy approach in ovarian cancer, for early diagnosis, prognosis and response to treatment. Methods: In the present study, we examined the methylation status of six gene promoters (BRCA1, CST6, MGMT, RASSF10, SLFN11 and USP44) in high-grade serous ovarian cancer (HGSOC). We evaluated the prognostic significance of DNA methylation of these six gene promoters in primary tumors (FFPEs) and plasma cfDNA samples from patients with early, advanced and metastatic HGSOC. Results: We report for the first time that the DNA methylation of SLFN11 in plasma cfDNA was significantly correlated with worse PFS (p = 0.045) in advanced stage HGSOC. Conclusions: Our results strongly indicate that SLFN11 epigenetic inactivation could be a predictor of resistance to platinum drugs in ovarian cancer. Our results should be further validated in studies based on a larger cohort of patients, in order to further explore whether the DNA methylation of SLFN11 promoter could serve as a potential prognostic DNA methylation biomarker and a predictor of resistance to platinum-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Victoria Tserpeli
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Lydia Giannopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Christina Grech
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Kitty Pavlakis
- Pathology Department, IASO Women’s Hospital, 15123 Athens, Greece;
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Evi S. Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
- Correspondence: ; Tel.: +30-210-7274311
| |
Collapse
|
6
|
Al-Zahrani MH, Yahya FM, Assidi M, Dallol A, Buhmeida A. Klotho promoter methylation status and its prognostic value in ovarian cancer. Mol Clin Oncol 2021; 15:181. [PMID: 34277000 PMCID: PMC8278383 DOI: 10.3892/mco.2021.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023] Open
Abstract
Among all gynecological cancers, ovarian cancer (OC) is one of the deadliest types of cancer worldwide. Epigenetic silencing of some genes has been reported to be associated with OC. In this context, Klotho (KL) gene methylation is a promising biomarker for OC. The present study aimed to investigate the methylation profiles of KL and assess its prognostic value. A total of 63 formalin-fixed paraffin-embedded tissue samples from patients with primary OC were collected and analyzed in the present study. The methylation profiles of KL were assessed by performing DNA bisulfate treatment followed by DNA promoter methylation analysis using the MethyLight assay. The results revealed KL promoter hypermethylation in 62% of the OC cohort. Additionally, significant associations were observed between KL methylation profiles and tumor subtype (P<0.0001) and tumor site (P=0.039). Furthermore, Kaplan-Meier analysis revealed that a worse disease-specific survival was significantly associated with hypermethylated KL (P=0.03, log-rank; hazard ration, 0.58; 95% confidence interval (CI), 0.26-0.90). Cox regression multivariate analysis indicated that KL promoter methylation was an independent OC prognostic indicator (P=0.029). The current study suggested that KL may be a novel biomarker to predict prognosis in patients with OC, since patients with higher KL promoter methylation were more likely to have a poor prognosis and would therefore require frequent follow-up and integrative personalized therapeutic approaches.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatimah M. Yahya
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Leveraging Genomics, Transcriptomics, and Epigenomics to Understand the Biology and Chemoresistance of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13164029. [PMID: 34439181 PMCID: PMC8391219 DOI: 10.3390/cancers13164029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a major cause of fatality due to a gynecological malignancy. This lethality is largely due to the unspecific clinical manifestations of ovarian cancer, which lead to late detection and to high resistance to conventional therapies based on platinum. In recent years, we have advanced our understanding of the mechanisms provoking tumor relapse, and the advent of so-called omics technologies has provided exceptional tools to evaluate molecular mechanisms leading to therapy resistance in ovarian cancer. Here, we review the contribution of genomics, transcriptomics, and epigenomics techniques to our knowledge about the biology and molecular features of ovarian cancers, with a focus on therapy resistance. The use of these technologies to identify molecular markers and mechanisms leading to chemoresistance in these tumors is discussed, as well as potential further applications.
Collapse
|
8
|
Reid BM, Fridley BL. DNA Methylation in Ovarian Cancer Susceptibility. Cancers (Basel) 2020; 13:E108. [PMID: 33396385 PMCID: PMC7795210 DOI: 10.3390/cancers13010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread 'constitutional' alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2-a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic-epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.
Collapse
Affiliation(s)
- Brett M. Reid
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Losi L, Botticelli L, Garagnani L, Fabbiani L, Panini R, Gallo G, Sabbatini R, Maiorana A, Benhattar J. TERT promoter methylation and protein expression as predictive biomarkers for recurrence risk in patients with serous borderline ovarian tumours. Pathology 2020; 53:187-192. [PMID: 33032810 DOI: 10.1016/j.pathol.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Epithelial ovarian neoplasms can be divided into three distinct clinicopathological groups: benign, malignant and borderline tumours. Borderline tumours are less aggressive than epithelial carcinomas, with an indolent clinical course and delayed recurrence. However, a subset of these cases can progress to malignancy and relapse, and death from recurrent disease can occasionally occur. Telomerase activation is a critical element in cellular immortalisation and cancer. The enzyme telomerase comprises a catalytic subunit (TERT) expressed in various types of cancers and regulated by promoter methylation mainly in epithelial tumours. The aim of this study was to investigate the promoter methylation status and the expression of TERT in 50 serous borderline tumours (SBTs) and their correlation with clinicopathological features and outcome. TERT methylation was analysed by bisulfite pyrosequencing and TERT expression by immunohistochemistry. Methylation of TERT promoter was only observed in four SBTs. A good correlation with immunostochemistry was found: nuclear positivity for TERT expression was observed in the methylated cases, whereas no expression was detected in unmethylated tumours. One of these patients had a recurrence after 7 years and another patient died from the disease. SBTs with hypomethylated tumours and absence of TERT expression showed a good clinical behaviour. Our study highlights the low presence of TERT methylation in SBTs, confirming that these tumours have a different biology than serous carcinomas. Furthermore, the concordance between TERT promoter methylation and TERT expression and their association with clinical outcomes leads to consider TERT alteration as a potential predictive biomarker for recurrence risk identifying patients who should undergo a careful and prolonged follow-up.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy.
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Lorella Garagnani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Panini
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Graziana Gallo
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonino Maiorana
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jean Benhattar
- Aurigen, Centre de Génétique et Pathologie, Lausanne, Switzerland
| |
Collapse
|
10
|
Matei D, Nephew KP. Epigenetic Attire in Ovarian Cancer: The Emperor's New Clothes. Cancer Res 2020; 80:3775-3785. [PMID: 32381656 PMCID: PMC7501210 DOI: 10.1158/0008-5472.can-19-3837] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is an aggressive epithelial tumor that remains a major cause of cancer morbidity and mortality in women. Epigenetic alterations including DNA methylation and histone modifications are being characterized in ovarian cancer and have been functionally linked to processes involved in tumor initiation, chemotherapy resistance, cancer stem cell survival, and tumor metastasis. The epigenetic traits of cancer cells and of associated tumor microenvironment components have been shown to promote an immunosuppressive tumor milieu. However, DNA methylation and histone modifications are reversible, and therapies targeting the epigenome have been implicated in potential reinvigoration of the antitumor immunity. In this review, we provide an overview specifically of DNA methylation and histone modifications as "clothes of the ovarian cancer genome" in relationship to their functional effects and highlight recent developments in the field. We also address the clinical implications of therapeutic strategies to remove or alter specific articles of genomic "clothing" and restore normal cellular function. As the clothes of the genome continue to be deciphered, we envision that the epigenome will become an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana.
- Department of Anatomy, Cell Biology and Physiology; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
12
|
Integrative genomics approach identifies molecular features associated with early-stage ovarian carcinoma histotypes. Sci Rep 2020; 10:7946. [PMID: 32409713 PMCID: PMC7224294 DOI: 10.1038/s41598-020-64794-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer comprises multiple subtypes (clear-cell (CCC), endometrioid (EC), high-grade serous (HGSC), low-grade serous (LGSC), and mucinous carcinomas (MC)) with differing molecular and clinical behavior. However, robust histotype-specific biomarkers for clinical use have yet to be identified. Here, we utilized a multi-omics approach to identify novel histotype-specific genetic markers associated with ovarian carcinoma histotypes (CCC, EC, HGSC, and MC) using DNA methylation, DNA copy number alteration and RNA sequencing data for 96 primary invasive early-stage (stage I and II) ovarian carcinomas. More specifically, the DNA methylation analysis revealed hypermethylation for CCC in comparison with the other histotypes. Moreover, copy number imbalances and novel chromothripsis-like rearrangements (n = 64) were identified in ovarian carcinoma, with the highest number of chromothripsis-like patterns in HGSC. For the 1000 most variable transcripts, underexpression was most prominent for all histotypes in comparison with normal ovarian samples. Overall, the integrative approach identified 46 putative oncogenes (overexpressed, hypomethylated and DNA gain) and three putative tumor suppressor genes (underexpressed, hypermethylated and DNA loss) when comparing the different histotypes. In conclusion, the current study provides novel insights into molecular features associated with early-stage ovarian carcinoma that may improve patient stratification and subclassification of the histotypes.
Collapse
|
13
|
Song F, Li L, Zhang B, Zhao Y, Zheng H, Yang M, Li X, Tian J, Huang C, Liu L, Wang Q, Zhang W, Chen K. Tumor specific methylome in Chinese high-grade serous ovarian cancer characterized by gene expression profile and tumor genotype. Gynecol Oncol 2020; 158:178-187. [PMID: 32362568 DOI: 10.1016/j.ygyno.2020.04.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Extensive genetic and limited epigenetics have been characterized by the Cancer Genome Atlas (TCGA) among Western High-grade serous ovarian cancer (HGSOC). The present study aimed to characterize Chinese HGSOC at genome scale. METHODS We used reduced representation bisulfite sequencing to investigate whole-genome and tumor-specific DNA methylation in 21 HGSOC tumors paired with their normal tissues, followed by a replication study involving additional 41 HGSOC patients. Altered methylation patterns in HGSOC were further characterized by gene expression profiles and whole-exome sequencing data. RESULTS Comparing HGSOC tumors with normal tissues we observed global hypomethylation but with more specific hypermethylation in gene promoter. Totally, we revealed 159,881 differentially methylated regions (DMRs) and 4060 differentially expressed genes (DEGs). By integrating DNA methylation and mRNA expression data, we identified 153 negative (mainly in the upstream region) and 115 positive (mainly in the CDS regions) DMRs-DEGs correlated pairs, respectively. The negatively correlated DMRs-DEGs underlined Wnt and cell adhesion molecule binding as critical canonical pathways disrupted by DNA methylation. Eleven DMRs (in CAPS, FZD7, CDKN2A, PON3, KLF4, etc.), accompanied with a global DNA methylation marker, were validated in the replication samples. Whole-exome sequencing presented a relatively less dominated TP53 mutation in Chinese HGSOC compared to TCGA dataset. Unsupervised analysis of the three-level omics data identified differential methylation and expression subgroups based on tumor genetics, one of which presented increased DNA methylation and significantly associated with TP53 mutation. CONCLUSIONS Our individual and integrated analyses contribute details about the tissue-specific genetic and DNA methylation landscape of Chinese HGSOC.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Tian
- Department of Gynecological Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
14
|
Abstract
Ovarian cancer has the worst survival rate because it is typically diagnosed at advanced stage. Despite treatment, the disease commonly recurs due to chemo-resistance. Liquid biopsy, based on minimally invasive blood tests, has the advantage of following tumor evolution in real time, offering novel insights on cancer prevention and treatment. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free microRNAs (cfmiRNAs) and circulating exosomes represent the major components of liquid biopsy. In this chapter, we provide an overview of recent research on CTCs, ctDNA, cfmiRNAs and exosomes in ovarian cancer. We also focus on the clinical value of liquid biopsy in early diagnosis, prognosis, treatment response, as well as screening in the general population.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece.
| |
Collapse
|
15
|
Nowak E, Sypniewski D, Bednarek I. Morin exerts anti-metastatic, anti-proliferative and anti-adhesive effect in ovarian cancer cells: an in vitro studies. Mol Biol Rep 2020; 47:1965-1978. [PMID: 32020427 DOI: 10.1007/s11033-020-05293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
The influence of morin hydrate on changes of proliferative, metastatic, and adhesive potential of human ovarian cancer cells concerning the influence of decitabine, and decitabine with trichostatin A, and in comparison to untreated cells, were analyzed. The effect of morin hydrate, decitabine, and trichostatin A were examined in A2780 and SKOV-3 ovarian cancer cell lines using MTS assay, clonogenic assay, adhesion to endothelial HMEC-1 cells, transwell migration assay and cell cycle analysis. The expression level of epithelial to mesenchymal transition (EMT) markers was quantified using PCR Array in relation to the level of global methylation determined with Methylated DNA Quantification Kit. We observed statistically significant inhibition of adhesive and migratory potential of both cell lines and the accumulation of G0/G1 phase A2780 cells after treatment with morin hydrate. Our studies confirmed the influence of morin hydrate on down-regulation of genes considered as up-regulated during EMT, and up-regulation of some genes considered as down-regulated during EMT in A2780 and SKOV-3 cells. Phenotypic changes were associated with molecular changes in cells, eg. decrease of the expression level of genes associated with adhesion, and an increase of genes down-regulated during EMT, after morin hydrate treatment in comparison to untreated control cells in both cell lines, were observed.
Collapse
Affiliation(s)
- Ewa Nowak
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci Street 8, 41-200, Sosnowiec, Poland.
| | - Daniel Sypniewski
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci Street 8, 41-200, Sosnowiec, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci Street 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
16
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
17
|
Pujade-Lauraine E, Banerjee S, Pignata S. Management of Platinum-Resistant, Relapsed Epithelial Ovarian Cancer and New Drug Perspectives. J Clin Oncol 2019; 37:2437-2448. [PMID: 31403868 DOI: 10.1200/jco.19.00194] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eric Pujade-Lauraine
- ARCAGY-GINECO (Association de Recherche contre les Cancers dont Gynécologiques-Groupe des Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, gynécologiques et du sein), Paris, France
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Sandro Pignata
- Istituto Nazionale Tumori Fondazione G Pascale, Istituto di Ricovero e Cura a Carattere Scientifico, Napoli, Italy
| |
Collapse
|
18
|
Losi L, Lauriola A, Tazzioli E, Gozzi G, Scurani L, D'Arca D, Benhattar J. Involvement of epigenetic modification of TERT promoter in response to all-trans retinoic acid in ovarian cancer cell lines. J Ovarian Res 2019; 12:62. [PMID: 31291979 PMCID: PMC6617683 DOI: 10.1186/s13048-019-0536-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND All-trans retinoic acid (ATRA) is currently being used to treat hematological malignancies, given the ability to inhibit cell proliferation. This effect seems to be related to epigenetic changes of the TERT (Telomerase Reverse Transcriptase) promoter. When hypomethylated, ATRA-inducible TERT repressors can bind the promoter, repressing transcription of TERT, the rate-limiting component of telomerase. Ovarian carcinomas are heterogeneous tumors characterized by several aberrantly methylated genes among which is TERT. We recently found a hypomethylation of TERT promoter in about one third of serous carcinoma, the most lethal histotype. Our aim was to investigate the potential role of ATRA as an anticancer drug in a sub-group of ovarian carcinoma where the TERT promoter was hypomethylated. METHODS The potential antiproliferative and cytotoxic effect of ATRA was investigated in seven serous ovarian carcinoma and one teratocarcinoma cell lines and the results were compared to the methylation status of their TERT promoter. RESULTS The serous ovarian carcinoma cell line OVCAR3, harboring a hypomethylated TERT promoter, was the best and fastest responder. PA1 and SKOV3, two cell lines with an intermediate methylated promoter, revealed a weaker and delayed response. On the contrary, the other 5 cell lines with a highly methylated promoter did not respond to ATRA, indicative of ATRA-resistant cells. CONCLUSIONS Our results demonstrate an inverse correlation between the methylation level of TERT promoter and ATRA efficacy in ovarian carcinoma cell lines. Although these results are preliminary, ATRA treatment could become a new powerful, personalized therapy in serous ovarian carcinoma patients, but only in those with tumors harboring a hypomethylated TERT promoter.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.
| | - Angela Lauriola
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Tazzioli
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.,Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gaia Gozzi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy
| | - Letizia Scurani
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jean Benhattar
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland. .,Aurigen, Centre de Génétique et Pathologie, Avenue de Sévelin 18, 1004, Lausanne, Switzerland.
| |
Collapse
|
19
|
Bodelon C, Killian JK, Sampson JN, Anderson WF, Matsuno R, Brinton LA, Lissowska J, Anglesio MS, Bowtell DDL, Doherty JA, Ramus SJ, Talhouk A, Sherman ME, Wentzensen N. Molecular Classification of Epithelial Ovarian Cancer Based on Methylation Profiling: Evidence for Survival Heterogeneity. Clin Cancer Res 2019; 25:5937-5946. [PMID: 31142506 DOI: 10.1158/1078-0432.ccr-18-3720] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Ovarian cancer is a heterogeneous disease that can be divided into multiple subtypes with variable etiology, pathogenesis, and prognosis. We analyzed DNA methylation profiling data to identify biologic subgroups of ovarian cancer and study their relationship with histologic subtypes, copy number variation, RNA expression data, and outcomes. EXPERIMENTAL DESIGN A total of 162 paraffin-embedded ovarian epithelial tumor tissues, including the five major epithelial ovarian tumor subtypes (high- and low-grade serous, endometrioid, mucinous, and clear cell) and tumors of low malignant potential were selected from two different sources: The Polish Ovarian Cancer study, and the Surveillance, Epidemiology, and End Results Residual Tissue Repository (SEER RTR). Analyses were restricted to Caucasian women. Methylation profiling was conducted using the Illumina 450K methylation array. For 45 tumors array copy number data were available. NanoString gene expression data for 39 genes were available for 61 high-grade serous carcinomas (HGSC). RESULTS Consensus nonnegative matrix factorization clustering of the 1,000 most variable CpG sites showed four major clusters among all epithelial ovarian cancers. We observed statistically significant differences in survival (log-rank test, P = 9.1 × 10-7) and genomic instability across these clusters. Within HGSC, clustering showed three subgroups with survival differences (log-rank test, P = 0.002). Comparing models with and without methylation subgroups in addition to previously identified gene expression subtypes suggested that the methylation subgroups added significant survival information (P = 0.007). CONCLUSIONS DNA methylation profiling of ovarian cancer identified novel molecular subgroups that had significant survival difference and provided insights into the molecular underpinnings of ovarian cancer.See related commentary by Ishak et al., p. 5729.
Collapse
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland.
| | - J Keith Killian
- Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - William F Anderson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Rayna Matsuno
- Foundation Medicine Inc., Cambridge, Massachusetts.,University of California, San Diego, California
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Jolanta Lissowska
- M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michael S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
| | - David D L Bowtell
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, Australia.,Peter MacCallum Cancer Center, Melbourne, Australia
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Susan J Ramus
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Aline Talhouk
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mark E Sherman
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland.,Mayo Clinic, Jacksonville, Florida
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Erol A, Niemira M, Krętowski AJ. Novel Approaches in Ovarian Cancer Research against Heterogeneity, Late Diagnosis, Drug Resistance, and Transcoelomic Metastases. Int J Mol Sci 2019; 20:E2649. [PMID: 31146417 PMCID: PMC6600293 DOI: 10.3390/ijms20112649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
The development of modern technologies has revolutionised science and has had a huge impact on biomedical studies. This review focuses on possible tools that scientists can use to face the challenges of fighting ovarian cancer. Ovarian cancer is the deadliest gynaecologic malignancy and, even after years of study, the mortality has not decreased significantly. In the era of sequencing and personalised and precision medicine, we are now closer than ever to helping patients and physicians in regard to treatment and diagnosis of this disease. This work summarises the newest findings in the development of ovarian cancer research.
Collapse
Affiliation(s)
- Anna Erol
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| |
Collapse
|
21
|
Shokoohi F, Khalili A, Asgharian M, Lin S. Capturing heterogeneity of covariate effects in hidden subpopulations in the presence of censoring and large number of covariates. Ann Appl Stat 2019. [DOI: 10.1214/18-aoas1198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Luo GF, Chen CY, Wang J, Yue HY, Tian Y, Yang P, Li YK, Li Y. FOXD3 may be a new cellular target biomarker as a hypermethylation gene in human ovarian cancer. Cancer Cell Int 2019; 19:44. [PMID: 30858761 PMCID: PMC6394078 DOI: 10.1186/s12935-019-0755-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background FOXD3 is aberrantly regulated in several tumors, but its underlying mechanisms in ovarian cancer (OC) remains largely unknown. The present study aimed to explore the role and associated mechanisms of FOXD3 in OC. Methods Microarray data from GEO was used to analyze differential CpG sites and differentially methylated regions (DMR) in tumor tissues and Illumina 450 genome-wide methylation data was employed. The FOXD3 expression level was determined through qRT-PCR and western blot analysis. Wound healing test, colony formation and flow cytometry assay were utilized to analyze cell migration, proliferation abilities, cell cycle and cell apoptosis, respectively. Finally, the effect of FOXD3 on tumor growth was investigated through in vivo xenograft experiments. Results GEO data analysis showed that FOXD3 was hypermethylated in OC tissues. Also, qRT-PCR revealed that FOXD3 was low expressed and methylation-specific PCR (MSP) confirmed that the methylation level of FOXD3 was hypermethylated. Combined treatment of 5-aza-2′-deoxycytidine (5-Aza-dC) could synergistically restored FOXD3 expression. Finally, in vitro and in vivo experiments showed that demethylated FOXD3 decreased cell proliferation and migration abilities, and increased the cell apoptosis. In vivo experiment detected that demethylated FOXD3 restrained tumor growth. Conclusions FOXD3 could act as a tumor suppressor to inhibit cell proliferation, migration and promote cell apoptosis in OC cells. Electronic supplementary material The online version of this article (10.1186/s12935-019-0755-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gui-Fang Luo
- 1Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 People's Republic of China
| | - Chang-Ye Chen
- 1Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 People's Republic of China
| | - Juan Wang
- 2Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001 Hunan People's Republic of China
| | - Hai-Yan Yue
- 3Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, No. 28 West Changsheng Road, Hengyang, 421001 Hunan People's Republic of China
| | - Yong Tian
- 4Department of Obstetrics and Gynecology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, 445000 Hubei People's Republic of China
| | - Ping Yang
- 3Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, No. 28 West Changsheng Road, Hengyang, 421001 Hunan People's Republic of China
| | - Yu-Kun Li
- 3Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, No. 28 West Changsheng Road, Hengyang, 421001 Hunan People's Republic of China
| | - Yan Li
- 5Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, No. 932 South Lushan Road, Yuelu District, Changsha, 410013 Hunan People's Republic of China.,6Reproductive and Genetic Hospital of Citic-Xiangya, No. 84 Xiangya Road, Changsha, 410078 Hunan People's Republic of China
| |
Collapse
|
23
|
Giannopoulou L, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin Chem Lab Med 2019; 56:186-197. [PMID: 28753534 DOI: 10.1515/cclm-2017-0019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Ovarian cancer remains the most lethal disease among gynecological malignancies despite the plethora of research studies during the last decades. The majority of patients are diagnosed in an advanced stage and exhibit resistance to standard chemotherapy. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) represent the main liquid biopsy approaches that offer a minimally invasive sample collection. Both have shown a diagnostic, prognostic and predictive value in many types of solid malignancies and recent studies attempted to shed light on their role in ovarian cancer. This review is mainly focused on the clinical value of both CTCs and ctDNA in ovarian cancer and, more specifically, on their potential as diagnostic, prognostic and predictive tumor biomarkers.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| |
Collapse
|
24
|
Yang Y, Wu L, Shu X, Lu Y, Shu XO, Cai Q, Beeghly-Fadiel A, Li B, Ye F, Berchuck A, Anton-Culver H, Banerjee S, Benitez J, Bjørge L, Brenton JD, Butzow R, Campbell IG, Chang-Claude J, Chen K, Cook LS, Cramer DW, deFazio A, Dennis J, Doherty JA, Dörk T, Eccles DM, Edwards DV, Fasching PA, Fortner RT, Gayther SA, Giles GG, Glasspool RM, Goode EL, Goodman MT, Gronwald J, Harris HR, Heitz F, Hildebrandt MA, Høgdall E, Høgdall CK, Huntsman DG, Kar SP, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Koushik A, Lambrechts D, Le ND, Levine DA, Massuger LF, Matsuo K, May T, McNeish IA, Menon U, Modugno F, Monteiro AN, Moorman PG, Moysich KB, Ness RB, Nevanlinna H, Olsson H, Onland-Moret NC, Park SK, Paul J, Pearce CL, Pejovic T, Phelan CM, Pike MC, Ramus SJ, Riboli E, Rodriguez-Antona C, Romieu I, Sandler DP, Schildkraut JM, Setiawan VW, Shan K, Siddiqui N, Sieh W, Stampfer MJ, Sutphen R, Swerdlow AJ, Szafron LM, Teo SH, Tworoger SS, Tyrer JP, Webb PM, Wentzensen N, White E, Willett WC, Wolk A, Woo YL, Wu AH, Yan L, Yannoukakos D, Chenevix-Trench G, Sellers TA, Pharoah PDP, Zheng W, Long J. Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk. Cancer Res 2019; 79:505-517. [PMID: 30559148 PMCID: PMC6359948 DOI: 10.1158/0008-5472.can-18-2726] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 × 10-7. Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. SIGNIFICANCE: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
Collapse
Affiliation(s)
- Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
| | - Fei Ye
- Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, California
| | - Susana Banerjee
- Gynaecology Unit, Royal Marsden Hospital, London, United Kingdom
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Butzow
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ian G Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kexin Chen
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Daniel W Cramer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Diana M Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Digna Velez Edwards
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon A Gayther
- The Center for Bioinformatics and Functional Genomics at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Graham G Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Michelle A Hildebrandt
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus K Høgdall
- The Juliane Marie Centre, Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- OVCARE, Vancouver Coastal Health Research Centre, Vancouver General Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Siddhartha P Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E Kelemen
- Hollings Cancer Center and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anita Koushik
- CHUM Research Centre (CRCHUM) and Département de Médicine Sociale et Préventive, Université de Montréal, Montréal, Quebec, Canada
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Nhu D Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Leon F Massuger
- Department of Gynaecology, Radboud Institute for Molecular Life sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Iain A McNeish
- Department Surgery & Cancer, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, United Kingdom
| | - Francesmary Modugno
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Patricia G Moorman
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Roberta B Ness
- School of Public Health, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Utrecht, UMC Utrecht, Utrecht, the Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - James Paul
- The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Celeste L Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Malcolm C Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Elio Riboli
- Imperial College London, London, United Kingdom
| | - Cristina Rodriguez-Antona
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Isabelle Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kang Shan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meir J Stampfer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rebecca Sutphen
- Epidemiology Center, College of Medicine, University of South Florida, Tampa, Florida
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Lukasz M Szafron
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Soo Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
- Research Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Yin Ling Woo
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Yan
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
25
|
Cheng FHC, Lin HY, Hwang TW, Chen YC, Huang RL, Chang CB, Yang W, Lin RI, Lin CW, Chen GCW, Mai SY, Lin JMJ, Chuang YM, Chou JL, Kuo LW, Li C, Cheng ASL, Lai HC, Wu SF, Tsai JC, Chan MWY. E2F6 functions as a competing endogenous RNA, and transcriptional repressor, to promote ovarian cancer stemness. Cancer Sci 2019; 110:1085-1095. [PMID: 30582655 PMCID: PMC6398890 DOI: 10.1111/cas.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the most lethal cancer of the female reproductive system. In that regard, several epidemiological studies suggest that long‐term exposure to estrogen could increase ovarian cancer risk, although its precise role remains controversial. To decipher a mechanism for this, we previously generated a mathematical model of how estrogen‐mediated upregulation of the transcription factor, E2F6, upregulates the ovarian cancer stem/initiating cell marker, c‐Kit, by epigenetic silencing the tumor suppressor miR‐193a, and a competing endogenous (ceRNA) mechanism. In this study, we tested that previous mathematical model, showing that estrogen treatment of immortalized ovarian surface epithelial cells upregulated both E2F6 and c‐KIT, but downregulated miR‐193a. Luciferase assays further confirmed that microRNA‐193a targets both E2F6 and c‐Kit. Interestingly, ChIP‐PCR and bisulphite pyrosequencing showed that E2F6 also epigenetically suppresses miR‐193a, through recruitment of EZH2, and by a complex ceRNA mechanism in ovarian cancer cell lines. Importantly, cell line and animal experiments both confirmed that E2F6 promotes ovarian cancer stemness, whereas E2F6 or EZH2 depletion derepressed miR‐193a, which opposes cancer stemness, by alleviating DNA methylation and repressive chromatin. Finally, 118 ovarian cancer patients with miR‐193a promoter hypermethylation had poorer survival than those without hypermethylation. These results suggest that an estrogen‐mediated E2F6 ceRNA network epigenetically and competitively inhibits microRNA‐193a activity, promoting ovarian cancer stemness and tumorigenesis.
Collapse
Affiliation(s)
- Frank H C Cheng
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzy-Wei Hwang
- Department of Mathematics, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yin-Chen Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Bin Chang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ru-Inn Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Ching-Wen Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Gary C W Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Shu-Yuan Mai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Jora M J Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Jian-Liang Chou
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wei Kuo
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chin Li
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan
| | - Je-Chiang Tsai
- Department of Mathematics, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chia-Yi, Taiwan.,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chia-Yi, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
|
27
|
Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA, Cheng WF. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics 2018; 10:1397-1413. [PMID: 30324802 DOI: 10.2217/epi-2018-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the CDH1, DLEC1 and SFRP5 gene methylation panel for advanced epithelial ovarian carcinoma (EOC). MATERIALS & METHODS One hundred and seventy-seven advanced EOC specimens were evaluated by methylation-specific PCR. We also used The Cancer Genome Atlas dataset to evaluate the panel. RESULTS The presence of two or more methylated genes was significant in recurrence (hazard ratio [HR]: 1.91 [1.33-2.76]; p = 0.002) and death (HR: 1.96 [1.26-3.06]; p = 0.006) in our cohort. In The Cancer Genome Atlas dataset, the presence of two or three methylated genes was significant in death (HR: 1.59 [1.15-2.18]; p = 0.0047) and close to the significance level in recurrence (HR: 1.37 [0.99-1.88]; p = 0.058). CONCLUSION The CDH1, DLEC1 and SFRP5 methylation panel is a potential prognostic biomarker for advanced EOC.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Chi-Feng Fu
- Department of Obstetrics & Gynecology, E-da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan 32546, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
28
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol 2018; 51:160-169. [PMID: 28782606 PMCID: PMC5976557 DOI: 10.1016/j.semcancer.2017.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is a disease with a poor prognosis and little progress has been made to improve treatment. It is now recognized that there are several histotypes of ovarian cancer, each with distinct epidemiologic and genomic characteristics. Cancer therapy is moving beyond classical chemotherapy to include epigenetic approaches. Epigenetics is the dynamic regulation of gene expression by DNA methylation and histone post translational modification in response to environmental cues. Improvement in technology to study DNA methylation has enabled a more agnostic approach and, with larger samples sets, has begun to unravel how epigenetics contributes to the etiology, response to chemotherapy and prognosis in of ovarian cancer. Investigations into histone modifications in ovarian cancer are more nascent. Much more is needed to be done to fully realize the potential that epigenetics holds for ovarian cancer clinical care.
Collapse
Affiliation(s)
- Yanina Natanzon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
One-Carbon Metabolism: Biological Players in Epithelial Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19072092. [PMID: 30029471 PMCID: PMC6073728 DOI: 10.3390/ijms19072092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Metabolism is deeply involved in cell behavior and homeostasis maintenance, with metabolites acting as molecular intermediates to modulate cellular functions. In particular, one-carbon metabolism is a key biochemical pathway necessary to provide carbon units required for critical processes, including nucleotide biosynthesis, epigenetic methylation, and cell redox-status regulation. It is, therefore, not surprising that alterations in this pathway may acquire fundamental importance in cancer onset and progression. Two of the major actors in one-carbon metabolism, folate and choline, play a key role in the pathobiology of epithelial ovarian cancer (EOC), the deadliest gynecological malignancy. EOC is characterized by a cholinic phenotype sustained via increased activity of choline kinase alpha, and via membrane overexpression of the alpha isoform of the folate receptor (FRα), both of which are known to contribute to generating regulatory signals that support EOC cell aggressiveness and proliferation. Here, we describe in detail the main biological processes associated with one-carbon metabolism, and the current knowledge about its role in EOC. Moreover, since the cholinic phenotype and FRα overexpression are unique properties of tumor cells, but not of normal cells, they can be considered attractive targets for the development of therapeutic approaches.
Collapse
|
31
|
Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K, Kasimir-Bauer S, Lianidou ES. ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecol Oncol 2018; 150:355-360. [PMID: 29807696 DOI: 10.1016/j.ygyno.2018.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Estrogen receptor, coded by the ESR1 gene, is highly expressed in epithelial ovarian cancer. ESR1 gene is frequently methylated in many types of gynecological malignancies. However, only a few studies attempted to investigate the role of ESR1 methylation and its clinical significance in ovarian cancer so far. The aim of our study was to examine ESR1 methylation status in primary tumors and corresponding circulating tumor DNA of patients with high-grade serous ovarian cancer (HGSC). METHODS ESR1 methylation was detected by a highly specific and sensitive real-time methylation-specific PCR assay. Two groups of HGSC samples were analyzed: group A (n = 66 primary tumors) and group B (n = 53 primary tumors and 50 corresponding plasma samples). RESULTS ESR1 was found methylated in both groups of primary tumors: in 32/66 (48.5%) of group A and in 15/53 (28.3%) of group B. 19/50 (38.0%) corresponding plasma samples of group B were also methylated for ESR1. A significant agreement for ESR1 methylation was observed between primary tumors and paired plasma ctDNA samples (P = 0.004). Interestingly, the presence of ESR1 methylation in primary tumor samples of group B was significantly correlated with a better overall survival (P = 0.027) and progression-free survival (P = 0.041). CONCLUSIONS We report for the first time the presence of ESR1 methylation in plasma ctDNA of patients with HGSC. The agreement between ESR1 methylation in primary tumors and paired ctDNA is statistically significant. Our results indicate a correlation between the presence of ESR1 methylation and a better clinical outcome in HGSC patients.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Kitty Pavlakis
- Pathology Department, IASO women's hospital, 15123 Marousi, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece.
| |
Collapse
|
32
|
Losi L, Fonda S, Saponaro S, Chelbi ST, Lancellotti C, Gozzi G, Alberti L, Fabbiani L, Botticelli L, Benhattar J. Distinct DNA Methylation Profiles in Ovarian Tumors: Opportunities for Novel Biomarkers. Int J Mol Sci 2018; 19:ijms19061559. [PMID: 29882921 PMCID: PMC6032431 DOI: 10.3390/ijms19061559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
Aberrant methylation of multiple promoter CpG islands could be related to the biology of ovarian tumors and its determination could help to improve treatment strategies. DNA methylation profiling was performed using the Methylation Ligation-dependent Macroarray (MLM), an array-based analysis. Promoter regions of 41 genes were analyzed in 102 ovarian tumors and 17 normal ovarian samples. An average of 29% of hypermethylated promoter genes was observed in normal ovarian tissues. This percentage increased slightly in serous, endometrioid, and mucinous carcinomas (32%, 34%, and 45%, respectively), but decreased in germ cell tumors (20%). Ovarian tumors had methylation profiles that were more heterogeneous than other epithelial cancers. Unsupervised hierarchical clustering identified four groups that are very close to the histological subtypes of ovarian tumors. Aberrant methylation of three genes (BRCA1, MGMT, and MLH1), playing important roles in the different DNA repair mechanisms, were dependent on the tumor subtype and represent powerful biomarkers for precision therapy. Furthermore, a promising relationship between hypermethylation of MGMT, OSMR, ESR1, and FOXL2 and overall survival was observed. Our study of DNA methylation profiling indicates that the different histotypes of ovarian cancer should be treated as separate diseases both clinically and in research for the development of targeted therapies.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Sara Saponaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Sonia T Chelbi
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Cesare Lancellotti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Gaia Gozzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Loredana Alberti
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Luca Fabbiani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Jean Benhattar
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
- Aurigen, Centre de Génétique et Pathologie, 1004 Lausanne, Switzerland.
| |
Collapse
|
33
|
Natanzon Y, Earp M, Cunningham JM, Kalli KR, Wang C, Armasu SM, Larson MC, Bowtell DD, Garsed DW, Fridley BL, Winham SJ, Goode EL. Genomic Analysis Using Regularized Regression in High-Grade Serous Ovarian Cancer. Cancer Inform 2018; 17:1176935118755341. [PMID: 29434467 PMCID: PMC5802704 DOI: 10.1177/1176935118755341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a complex disease in which initiation and progression have been associated with copy number alterations, epigenetic processes, and, to a lesser extent, germline variation. We hypothesized that, when summarized at the gene level, tumor methylation and germline genetic variation, alone or in combination, influence tumor gene expression in HGSOC. We used Elastic Net (ENET) penalized regression method to evaluate these associations and adjust for somatic copy number in 3 independent data sets comprising tumors from more than 470 patients. Penalized regression models of germline variation, with or without methylation, did not reveal a role in HGSOC gene expression. However, we observed significant association between regional methylation and expression of 5 genes (WDPCP, KRT6C, BRCA2, EFCAB13, and ZNF283). CpGs retained in ENET model for BRCA2 and ZNF283 appeared enriched in several regulatory elements, suggesting that regularized regression may provide a novel utility for integrative genomic analysis.
Collapse
Affiliation(s)
- Yanina Natanzon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Madalene Earp
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Melissa C Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Dl Bowtell
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Brooke L Fridley
- Biostatistics and Informatics Shared Resource, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Giannopoulou L, Chebouti I, Pavlakis K, Kasimir-Bauer S, Lianidou ES. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA. Oncotarget 2017; 8:21429-21443. [PMID: 28206954 PMCID: PMC5400595 DOI: 10.18632/oncotarget.15249] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| | - Issam Chebouti
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Kitty Pavlakis
- Pathology Department, IASO Women's Hospital, 15123, Marousi, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| |
Collapse
|
35
|
Next-Generation Sequencing Approach in Methylation Analysis of HNF1B and GATA4 Genes: Searching for Biomarkers in Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18020474. [PMID: 28241454 PMCID: PMC5344006 DOI: 10.3390/ijms18020474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is well-known to be associated with ovarian cancer (OC) and has great potential to serve as a biomarker in monitoring response to therapy and for disease screening. The purpose of this study was to investigate methylation of HNF1B and GATA4 and correlate detected methylation with clinicopathological characteristic of OC patients. The study group consisted of 64 patients with OC and 35 control patients. To determine the most important sites of HNF1B and GATA4, we used next-generation sequencing. For further confirmation of detected methylation of selected regions, we used high-resolution melting analysis and methylation-specific real-time polymerase chain reaction (PCR). Selected regions of HNF1B and GATA4 were completely methylation free in all control samples, whereas methylation-positive pattern was observed in 32.8% (HNF1B) and 45.3% (GATA4) of OC samples. Evaluating both genes together, we were able to detect methylation in 65.6% of OC patients. We observed a statistically significant difference in HNF1B methylation between samples with different stages of OC. We also detected subtype specific methylation in GATA4 and a decrease of methylation in late stages of OC. The combination of unmethylated HNF1B and methylated GATA4 was associated with longer overall survival. In our study, we employed innovative approach of methylation analysis of HNF1B and GATA4 to search for possible epigenetic biomarkers. We confirmed the significance of the HNF1B and GATA4 hypermethylation with emphasis on the need of selecting the most relevant sites for analysis. We suggest selected CpGs to be further examined as a potential positive prognostic factor.
Collapse
|
36
|
Choi JY, Han HH, Kim YT, Lee JH, Kim BG, Kang S, Cho NH. Ovarian Clear Cell Carcinoma Sub-Typing by ARID1A Expression. Yonsei Med J 2017; 58:59-66. [PMID: 27873496 PMCID: PMC5122653 DOI: 10.3349/ymj.2017.58.1.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Loss of AT-rich DNA-interacting domain 1A (ARID1A) has been identified as a driving mutation of ovarian clear cell carcinoma (O-CCC), a triple-negative ovarian cancer that is intermediary between serous and endometrioid subtypes, in regards to molecular and clinical behaviors. However, about half of O-CCCs still express BAF250a, the protein encoded by ARID1A. Herein, we aimed to identify signatures of ARID1A-positive O-CCC in comparison with its ARID1A-negative counterpart. MATERIALS AND METHODS Seventy cases of O-CCC were included in this study. Histologic grades and patterns of primary tumor, molecular marker immunohistochemistry profiles, and clinical outcomes were analyzed. RESULTS Forty-eight (69%) O-CCCs did not express BAF250a, which were designated as "ARID1A-negative." The other 22 (31%) O-CCCs were designated as "ARID1A-positive." ARID1A-positive tumors were more likely to be histologically of high grades (41% vs. 10%, p=0.003), ERβ-positive (45% vs. 17%, p=0.011), and less likely to be HNF1β-positive (77% vs. 96%, p=0.016) and E-cadherin-positive (59% vs. 83%, p=0.028) than ARID1A-negative tumors. Patient age, parity, tumor stage were not significantly different in between the two groups. Cancer-specific survival was not significantly different either. CONCLUSION We classified O-CCCs according to ARID1A expression status. ARID1A-positive O-CCCs exhibited distinct immunohistochemical features from ARID1A-negative tumors, suggesting a different underlying molecular event during carcinogenesis.
Collapse
Affiliation(s)
- Jae Yoon Choi
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Han
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Department of Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hyun Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Collins DC, Sundar R, Lim JSJ, Yap TA. Towards Precision Medicine in the Clinic: From Biomarker Discovery to Novel Therapeutics. Trends Pharmacol Sci 2016; 38:25-40. [PMID: 27871777 DOI: 10.1016/j.tips.2016.10.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 02/08/2023]
Abstract
Precision medicine continues to be the benchmark to which we strive in cancer research. Seeking out actionable aberrations that can be selectively targeted by drug compounds promises to optimize treatment efficacy and minimize toxicity. Utilizing these different targeted agents in combination or in sequence may further delay resistance to treatments and prolong antitumor responses. Remarkable progress in the field of immunotherapy adds another layer of complexity to the management of cancer patients. Corresponding advances in companion biomarker development, novel methods of serial tumor assessments, and innovative trial designs act synergistically to further precision medicine. Ongoing hurdles such as clonal evolution, intra- and intertumor heterogeneity, and varied mechanisms of drug resistance continue to be challenges to overcome. Large-scale data-sharing and collaborative networks using next-generation sequencing (NGS) platforms promise to take us further into the cancer 'ome' than ever before, with the goal of achieving successful precision medicine.
Collapse
Affiliation(s)
- Dearbhaile C Collins
- The Institute of Cancer Research and Royal Marsden Hospital, Downs Road, London SM2 5PT, UK
| | - Raghav Sundar
- The Institute of Cancer Research and Royal Marsden Hospital, Downs Road, London SM2 5PT, UK
| | - Joline S J Lim
- The Institute of Cancer Research and Royal Marsden Hospital, Downs Road, London SM2 5PT, UK
| | - Timothy A Yap
- The Institute of Cancer Research and Royal Marsden Hospital, Downs Road, London SM2 5PT, UK.
| |
Collapse
|
38
|
Su WX, Li QZ, Zhang LQ, Fan GL, Wu CY, Yan ZH, Zuo YC. Gene expression classification using epigenetic features and DNA sequence composition in the human embryonic stem cell line H1. Gene 2016; 592:227-234. [DOI: 10.1016/j.gene.2016.07.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/20/2016] [Accepted: 07/23/2016] [Indexed: 01/01/2023]
|
39
|
Lopez J, Harris S, Roda D, Yap TA. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials. TRANSLATIONAL ONCOGENOMICS 2015; 7:1-11. [PMID: 26609214 PMCID: PMC4648610 DOI: 10.4137/tog.s30533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies.
Collapse
Affiliation(s)
- Juanita Lopez
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Sam Harris
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Desam Roda
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | - Timothy A Yap
- Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| |
Collapse
|