1
|
Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, Dworkin L, Nemunaitis J. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer 2021; 21:1154. [PMID: 34711195 PMCID: PMC8555001 DOI: 10.1186/s12885-021-08863-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi's. Finally, standard of care treatment and synthetic lethality will be reviewed.
Collapse
Affiliation(s)
- Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Nisha S Nanavaty
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Katelyn R Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cassidy E Gillman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Danae M Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | |
Collapse
|
2
|
Mylavarapu S, Das A, Roy M. Role of BRCA Mutations in the Modulation of Response to Platinum Therapy. Front Oncol 2018. [PMID: 29459887 DOI: 10.3389/fonc.2018.00016] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen cancer emerge as one of the leading cause of mortality worldwide with breast cancer being the second most common cause of death among women. Individuals harboring BRCA mutations are at a higher risk of developing breast and/or ovarian cancers. This risk is much greater in the presence of germline mutations. BRCA1 and BRCA2 play crucial role in the DNA damage response and repair pathway, a function that is critical in preserving the integrity of the genome. Mutations that interfere with normal cellular function of BRCA not only lead to onset and progression of cancer but also modulate therapy outcome of treatment with platinum drugs. In this review, we discuss the structural and functional impact of some of the prevalent BRCA mutations in breast and ovarian cancers and their role in platinum therapy response. Understanding the response of platinum drugs in the context of BRCA mutations may contribute toward developing better therapeutics that can improve survival and quality of life of patients.
Collapse
Affiliation(s)
- Sanghamitra Mylavarapu
- Invictus Oncology Pvt. Ltd., Delhi, India.,Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
3
|
Mylavarapu S, Das A, Roy M. Role of BRCA Mutations in the Modulation of Response to Platinum Therapy. Front Oncol 2018; 8:16. [PMID: 29459887 PMCID: PMC5807680 DOI: 10.3389/fonc.2018.00016] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Recent years have seen cancer emerge as one of the leading cause of mortality worldwide with breast cancer being the second most common cause of death among women. Individuals harboring BRCA mutations are at a higher risk of developing breast and/or ovarian cancers. This risk is much greater in the presence of germline mutations. BRCA1 and BRCA2 play crucial role in the DNA damage response and repair pathway, a function that is critical in preserving the integrity of the genome. Mutations that interfere with normal cellular function of BRCA not only lead to onset and progression of cancer but also modulate therapy outcome of treatment with platinum drugs. In this review, we discuss the structural and functional impact of some of the prevalent BRCA mutations in breast and ovarian cancers and their role in platinum therapy response. Understanding the response of platinum drugs in the context of BRCA mutations may contribute toward developing better therapeutics that can improve survival and quality of life of patients.
Collapse
Affiliation(s)
- Sanghamitra Mylavarapu
- Invictus Oncology Pvt. Ltd., Delhi, India.,Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
4
|
Wang Y, Krais JJ, Bernhardy AJ, Nicolas E, Cai KQ, Harrell MI, Kim HH, George E, Swisher EM, Simpkins F, Johnson N. RING domain-deficient BRCA1 promotes PARP inhibitor and platinum resistance. J Clin Invest 2016; 126:3145-57. [PMID: 27454289 DOI: 10.1172/jci87033] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Patients with cancers that harbor breast cancer 1 (BRCA1) mutations initially respond well to platinum and poly(ADP-ribose) polymerase inhibitor (PARPi) therapy; however, resistance invariably arises in these patients and is a major clinical problem. The BRCA1185delAG allele is a common inherited mutation located close to the protein translation start site that is thought to produce a shortened, nonfunctional peptide. In this study, we investigated the mechanisms that lead to PARPi and platinum resistance in the SUM1315MO2 breast cancer cell line, which harbors a hemizygous BRCA1185delAG mutation. SUM1315MO2 cells were initially sensitive to PARPi and cisplatin but readily acquired resistance. PARPi- and cisplatin-resistant clones did not harbor secondary reversion mutations; rather, PARPi and platinum resistance required increased expression of a really interesting gene (RING) domain-deficient BRCA1 protein (Rdd-BRCA1). Initiation of translation occurred downstream of the frameshift mutation, probably at the BRCA1-Met-297 codon. In contrast to full-length BRCA1, Rdd-BRCA1 did not require BRCA1-associated RING domain 1 (BARD1) interaction for stability. Functionally, Rdd-BRCA1 formed irradiation-induced foci and supported RAD51 foci formation. Ectopic overexpression of Rdd-BRCA1 promoted partial PARPi and cisplatin resistance. Furthermore, Rdd-BRCA1 protein expression was detected in recurrent carcinomas from patients who carried germline BRCA1185delAG mutations. Taken together, these results indicate that RING-deficient BRCA1 proteins are hypomorphic and capable of contributing to PARPi and platinum resistance when expressed at high levels.
Collapse
|
5
|
BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:652017. [PMID: 26357657 PMCID: PMC4556869 DOI: 10.1155/2015/652017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC.
Collapse
|
6
|
Tulchin N, Ornstein L, Dikman S, Strauchen J, Jaffer S, Nagi C, Bleiweiss I, Kornreich R, Edelmann L, Brown K, Bodian C, Nair VD, Chambon M, Woods NT, Monteiro ANA. Localization of BRCA1 protein in breast cancer tissue and cell lines with mutations. Cancer Cell Int 2013; 13:70. [PMID: 23855721 PMCID: PMC3720266 DOI: 10.1186/1475-2867-13-70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The breast and ovarian cancer susceptibility gene (BRCA1) encodes a tumor suppressor. The BRCA1 protein is found primarily in cell nuclei and plays an important role in the DNA damage response and transcriptional regulation. Deficiencies in DNA repair capabilities have been associated with higher histopathological grade and worse prognosis in breast cancer. METHODS In order to investigate the subcellular distribution of BRCA1 in tumor tissue we randomly selected 22 breast carcinomas and tested BRCA1 protein localization in frozen and contiguous formalin-fixed, paraffin embedded (FFPE) tissue, using pressure cooker antigen-retrieval and the MS110 antibody staining. To assess the impact of BRCA1 germline mutations on protein localization, we retrospectively tested 16 of the tumor specimens to determine whether they contained the common Ashkenazi Jewish founder mutations in BRCA1 (185delAG, 5382insC), and BRCA2 (6174delT). We also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC). RESULTS In FFPE tissue, with MS110 antibody staining, we frequently found reduced BRCA1 nuclear staining in breast tumor tissue compared to normal tissue, and less BRCA1 staining with higher histological grade in the tumors. However, in the frozen sections, BRCA1 antibody staining showed punctate, intra-nuclear granules in varying numbers of tumor, lactating, and normal cells. Two mutation carriers were identified and were confirmed by gene sequencing. We have also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC) and found altered sub-nuclear and nucleolar localization patterns consistent with a functional impact of the mutation on protein localization. CONCLUSIONS The data presented here support a role for BRCA1 in the pathogenesis of sporadic and inherited breast cancers. The use of well-characterized reagents may lead to further insights into the function of BRCA1 and possibly the further development of targeted therapeutics.
Collapse
Affiliation(s)
- Natalie Tulchin
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Leonard Ornstein
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Steven Dikman
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - James Strauchen
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Shabnam Jaffer
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chandandeep Nagi
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ira Bleiweiss
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ruth Kornreich
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Lisa Edelmann
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Karen Brown
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Carol Bodian
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Nicholas T Woods
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alvaro NA Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
Novaković S, Milatović M, Cerkovnik P, Stegel V, Krajc M, Hočevar M, Zgajnar J, Vakselj A. Novel BRCA1 and BRCA2 pathogenic mutations in Slovene hereditary breast and ovarian cancer families. Int J Oncol 2012; 41:1619-1627. [PMID: 22923021 PMCID: PMC3583621 DOI: 10.3892/ijo.2012.1595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022] Open
Abstract
The estimated proportion of hereditary breast and ovarian cancers among all breast and ovarian cancer cases is 5-10%. According to the literature, inherited mutations in the BRCA1 and BRCA2 tumour-suppressor genes, account for the majority of hereditary breast and ovarian cancer cases. The aim of this report is to present novel mutations that have not yet been described in the literature and pathogenic BRCA1 and BRCA2 mutations which have been detected in HBOC families for the first time in the last three years. In the period between January 2009 and December 2011, 559 individuals from 379 families affected with breast and/or ovarian cancer were screened for mutations in the BRCA1 and BRCA2 genes. Three novel mutations were detected: one in BRCA1 - c.1193C>A (p.Ser398*) and two in BRCA2 - c.5101C>T (p.Gln1701*) and c.5433_5436delGGAA (p.Glu1811Aspfs*3). These novel mutations are located in the exons 11 of BRCA1 or BRCA2 and encode truncated proteins. Two of them are nonsense while one is a frameshift mutation. Also, 11 previously known pathogenic mutations were detected for the first time in the HBOC families studied here (three in BRCA1 and eight in BRCA2). All, except one cause premature formation of stop codons leading to truncation of the respective BRCA1 or BRCA2 proteins.
Collapse
Affiliation(s)
- Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Alameda JP, Moreno-Maldonado R, Fernández-Aceñero MJ, Navarro M, Page A, Jorcano JL, Bravo A, Ramírez Á, Casanova ML. Increased IKKα expression in the basal layer of the epidermis of transgenic mice enhances the malignant potential of skin tumors. PLoS One 2011; 6:e21984. [PMID: 21755017 PMCID: PMC3130791 DOI: 10.1371/journal.pone.0021984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair follicles. The epidermis of K5-IKKα transgenic animals shows several alterations such as hyperproliferation, mislocalized expression of integrin-α6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKα-Tg.AC mice) develop invasive tumors, instead of the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a tumor promoter role of IKKα in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-α6 in skin of transgenic mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKα skin tumors.
Collapse
Affiliation(s)
| | | | | | - Manuel Navarro
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | - Angustias Page
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | | | - Ana Bravo
- Department of Veterinary Clinical Sciences, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | - Ángel Ramírez
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | | |
Collapse
|
9
|
Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype. Proc Natl Acad Sci U S A 2010; 108:626-31. [PMID: 21187389 DOI: 10.1073/pnas.1006886108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1-silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1-silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation.
Collapse
|
10
|
Gene Mutations in Animal Models: Do Tumor Suppressor Genes, brca1 and brca2, Play a Role in Ovarian Carcinogenesis? Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.4.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|