1
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
2
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Zheng B, Geng Y, Li Y, Huang H, Liu A. Specificity protein 1/3 regulate T-cell acute lymphoblastic leukemia cell proliferation and apoptosis through β-catenin by acting as targets of miR-495-3p. Ann Hematol 2024; 103:2945-2960. [PMID: 38829410 DOI: 10.1007/s00277-024-05764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic heterogeneous disease. This study explored the mechanism of specificity protein 1/3 (Sp1/3) in T-ALL cells through β-catenin by acting as targets of miR-495-3p. Expression levels of miR-495-3p, Sp1, Sp3, and β-catenin in the serum from T-ALL children patients, healthy controls, and the T-ALL cell lines were measured. The cell proliferation ability and apoptosis rate were detected. Levels of proliferation-related proteins proliferating cell nuclear antigen (PCNA)/cyclinD1 and apoptosis-related proteins B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) were determined. The binding of Sp1/3 and β-catenin promoter and the targeted relationship between miR-495-3p with Sp1/3 were analyzed. Sp1/3 were upregulated in CD4+ T-cells in T-ALL and were linked with leukocyte count and risk classification. Sp1/3 interference prevented proliferation and promoted apoptosis in T-ALL cells. Sp1/3 transcription factors activated β-catenin expression. Sp1/3 enhanced T-ALL cell proliferation by facilitating β-catenin expression. miR-495-3p targeted and repressed Sp1/3 expressions. miR-495-3p overexpression inhibited T-ALL cell proliferation and promoted apoptosis. Conjointly, Sp1/3, as targets of miR-495-3p limit apoptosis and promote proliferation in T-ALL cells by promoting β-catenin expression.
Collapse
Affiliation(s)
- Boyang Zheng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yueqi Geng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yan Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, China
| | - Huixiong Huang
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Aichun Liu
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
4
|
Kazi SH, Sheraz MA, Musharraf SG, Ahmed S, Bano R, Haq FU, Anwar Z, Ali R. Analysis of Tolfenamic Acid using a Simple, Rapid, and Stability-indicating Validated HPLC Method. Antiinflamm Antiallergy Agents Med Chem 2024; 23:52-70. [PMID: 37291774 DOI: 10.2174/1871523022666230608094152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Tolfenamic acid (TA) belongs to the fenamates class of nonsteroidal anti-inflammatory drugs. Insufficient information is available regarding the availability of a reliable and validated stability-indicating method for the assay of TA. OBJECTIVE A relatively simple, rapid, accurate, precise, economical, robust, and stabilityindicating RP-HPLC method has been developed to determine TA in pure and tablet dosage forms. METHODS The method was validated according to the ICH guideline, and parameters like linearity, range, selectivity, accuracy, precision, robustness, specificity, and solution stability were determined. TLC and FTIR spectrometry were used to ascertain the purity of TA. The specificity was determined with known impurities and after performing forced degradation, while the robustness was established by Plackett-Burman's experimental design. The mobile phase used for the analysis was acetonitrile and water (90:10, v/v) at pH 2.5. The detection of the active drug was made at 280 nm using a C18 column (tR = 4.3 min.). The method's applicability was also checked for the yellow polymorphic form of TA. RESULTS The results indicated that the method is highly accurate (99.39-100.80%), precise (<1.5% RSD), robust (<2% RSD), and statistically comparable to the British Pharmacopoeia method with better sensitivity and specificity. CONCLUSION It was observed that the stress degradation studies do not affect the method's accuracy and specificity. Hence the proposed method can be used to assay TA and its tablet dosage form.
Collapse
Affiliation(s)
- Sadia Hafeez Kazi
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 75340, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 75340, Karachi, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Karachi, Pakistan
| | - Sofia Ahmed
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 75340, Karachi, Pakistan
| | - Raheela Bano
- Dow College of Pharmacy, Dow University of Health Sciences (Ojha Campus), Karachi, Pakistan
| | - Faraz Ul Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Karachi, Pakistan
| | - Zubair Anwar
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 75340, Karachi, Pakistan
| | - Raahim Ali
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 75340, Karachi, Pakistan
| |
Collapse
|
5
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Ma X, Liu Y, Wu H, Tan J, Yi W, Wang Z, Yu Z, Wang X. Self-assembly nanoplatform of platinum (Ⅳ) prodrug for enhanced ovarian cancer therapy. Mater Today Bio 2023; 21:100698. [PMID: 37455816 PMCID: PMC10338361 DOI: 10.1016/j.mtbio.2023.100698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cisplatin is a metal platinum complex commonly used in the field of anti-tumor and one of the most commonly used drugs in combination chemotherapy. However, chemotherapy with Cisplatin induced overexpression of cyclooxygenase-2 (COX-2) protein in tumor cells, which could impair the therapeutic effect of chemotherapy on tumor progression. Here, we presented a novel method for the treatment of ovarian cancer with a self-assembly based nano-system. Cisplatin and tolfenamic acid were each linked to linoleic acid to give them the ability to self-assemble into nanoparticles in water. TPNPs had flexible drug ratio adjustability, homogeneous stability, and high drug loading capacity. Compared with Cisplatin, TPNPs could promote cellular uptake and tumor aggregation, co-induce enhanced apoptosis and tumor growth inhibition by inhibiting COX-2 in the mice xenograft model of human ovarian cancer, and reduce systemic toxicity. Therefore, TPNPs is a promising antitumor drug as a kind of self-assembly nano-prodrug with high drug load.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, PR China
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Yangjia Liu
- Department of Medicine and Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518067, PR China
- Department of Pharmacy, Southern Medical University, Guangzhou, 510515, PR China
| | - Hanmei Wu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, PR China
| | - Jinxiu Tan
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, PR China
| | - Wenying Yi
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, PR China
| | - Zhenjie Wang
- The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Zhiqiang Yu
- Department of Pharmacy, Southern Medical University, Guangzhou, 510515, PR China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, PR China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, PR China
| |
Collapse
|
7
|
Hill J, Zawia NH. Fenamates as Potential Therapeutics for Neurodegenerative Disorders. Cells 2021; 10:702. [PMID: 33809987 PMCID: PMC8004804 DOI: 10.3390/cells10030702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative disorders are desperately lacking treatment options. It is imperative that drug repurposing be considered in the fight against neurodegenerative diseases. Fenamates have been studied for efficacy in treating several neurodegenerative diseases. The purpose of this review is to comprehensively present the past and current research on fenamates in the context of neurodegenerative diseases with a special emphasis on tolfenamic acid and Alzheimer's disease. Furthermore, this review discusses the major molecular pathways modulated by fenamates.
Collapse
Affiliation(s)
- Jaunetta Hill
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA;
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Gan Q, Shao J, Cao Y, Lei J, Xie P, Ge J, Hu G. USP33 regulates c-Met expression by deubiquitinating SP1 to facilitate metastasis in hepatocellular carcinoma. Life Sci 2020; 261:118316. [PMID: 32835698 DOI: 10.1016/j.lfs.2020.118316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
AIMS Deubiquitinase ubiquitin-specific protease 33 (USP33) is abnormally expressed in various tumors and participates in tumor progression. However, the expression and biological role of USP33 in hepatocellular carcinoma (HCC) are still unclear. MAIN METHODS We performed immunohistochemistry, western blotting, and qRT-PCR analysis to determine the expression of USP33 in HCC. We then analyzed the effects of USP33 expression on the prognosis of HCC. The roles of USP33 in regulating HCC cell migration and invasion were further explored in vitro. Animal studies were performed to investigate the effects of USP33 on tumor metastasis. RNA sequencing and luciferase reporter and immunofluorescence assays were used to identify the activation of the specificity protein 1 (SP1)/c-Met axis. KEY FINDINGS Here, for the first time, we reported an abnormal increase in the expression of USP33 in HCC tissues and that USP33 may act as a prognostic biomarker for HCC patients. We found that USP33 knockdown inhibited the invasion and metastasis in HCC cells both in vitro and in vivo, which was partly dependent on c-Met. Further investigations revealed that USP33 regulated c-Met expression by enhancing the protein stability of the transcription factor SP1 in HCC cells. Mechanistically, USP33 directly bound SP1 and decreased its ubiquitination, thereby upregulating c-Met expression. SIGNIFICANCE Our results reveal that USP33 acts as the deubiquitinating enzyme of SP1 and contributes to HCC invasion and metastasis through activation of the SP1/c-Met axis. These data indicate a previously unknown function of USP33, which may provide potential targets for the treatment of HCC patients.
Collapse
Affiliation(s)
- Qin Gan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang 332000, China; Department of Hepatobiliary and Pancreatic Surgery, Jiujiang NO.1 People's Hospital, Jiujiang 332000, China
| | - Jia Shao
- Centre for Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yan Cao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Guohui Hu
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
9
|
Hurtado M, Prokai L, Sankpal UT, Levesque B, Maram R, Chhabra J, Brown DT, Gurung RK, Holder AA, Vishwanatha JK, Basha R. Next generation sequencing and functional pathway analysis to understand the mechanism of action of copper-tolfenamic acid against pancreatic cancer cells. Process Biochem 2020; 89:155-164. [PMID: 32719579 PMCID: PMC7384693 DOI: 10.1016/j.procbio.2019.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer activity of tolfenamic acid (TA) in preclinical models for pancreatic cancer (PaCa) is well established. Since the dosage for anti-cancer actions of TA is rather high, we recently demonstrated that IC50 values of Copper-TA are 30-80% less than TA in 12 cancer cell lines. This study elucidates the underlying mechanisms of Copper-TA in PaCa cells. Control and Copper-TA (IC50) treated PaCa cells were processed by next-generation sequencing (NGS) to determine differentially expressed genes using HTG EdgeSeq Oncology Biomarker panel. Ingenuity Pathway Analysis (IPA®) was used to identify functional significance of altered genes. The conformational studies for assessing the expression of key regulators and genes were conducted by Western blot and qPCR. IPA® identified several networks, regulators, as well as molecular and cellular functions associated with cancer. The top 5 molecular and cellular functions affected by Cu-TA treatment were cell death and survival, cellular development, cell growth and proliferation, cell cycle and cellular movement. The expression of top upstream regulators was confirmed by Western blot analysis while qPCR results of selected genes demonstrated that Copper-TA is efficacious at lower doses than TA. Results suggest that Copper-TA alters genes/key regulators associated with cancer and potentially serve as an effective anti-cancer agent.
Collapse
Affiliation(s)
- Myrna Hurtado
- Biochemistry and Cancer Biology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Umesh T Sankpal
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Blair Levesque
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Rajasekhar Maram
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Jaya Chhabra
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, United States
| | - Deondra T Brown
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, United States
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, United States
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, United States
| | - Jamboor K Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| |
Collapse
|
10
|
Shelake S, Sankpal UT, Eslin D, Bowman WP, Simecka JW, Raut S, Ray A, Basha R. Clotam enhances anti-proliferative effect of vincristine in Ewing sarcoma cells. Apoptosis 2020; 24:21-32. [PMID: 30610505 DOI: 10.1007/s10495-018-1508-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current therapeutic strategies used in Ewing sarcoma (ES) especially for relapsed patients have resulted in modest improvements in survival over the past 20 years. Combination therapeutic approach presents as an alternative to overcoming drug resistance in metastatic ES. This study evaluated the effect of Clotam (tolfenamic acid or TA), a small molecule and inhibitor of Specificity protein1 (Sp1) and survivin for sensitizing ES cell lines to chemotherapeutic agent, vincristine (VCR). ES cells (CHLA-9 and TC-32) were treated with TA or VCR or TA + VCR (combination), and cell viability was assessed after 24/48/72 h. Effect of TA or VCR or TA + VCR treatment on cell cycle arrest and apoptosis were evaluated using propidium iodide, cell cycle assay and Annexin V flow cytometry respectively. The apoptosis markers, caspase 3/7 (activity levels) and cleaved-PARP (protein expression) were measured. Cardiomyocytes, H9C2 were used as non-malignant cells. While, all treatments caused time- and dose-dependent inhibition of cell viability, interestingly, combination treatment caused significantly higher response (~ 80% inhibition, p < 0.05). Cell viability inhibition was accompanied by inhibition of Sp1 and Survivin. TA + VCR treatment significantly (p < 0.05) increased caspase 3/7 activity which strongly correlated with upregulated c-PARP level and Annexin V staining. Cell cycle arrest was observed at G0/G1 (TA) or G2/M (VCR and TA + VCR). All treatments did not cause cytotoxicity in H9C2 cells. These results suggest that TA could enhance the anti-cancer activity of VCR in ES cells. Therefore, TA + VCR combination could be further tested to develop as safe/effective therapeutic strategy for treating ES.
Collapse
Affiliation(s)
- Sagar Shelake
- Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Umesh T Sankpal
- Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| | - W Paul Bowman
- Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA
| | - Jerry W Simecka
- Pre-clinical Services, UNT Systems College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Anish Ray
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA
| | - Riyaz Basha
- Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA.
| |
Collapse
|
11
|
Vellingiri B, Iyer M, Devi Subramaniam M, Jayaramayya K, Siama Z, Giridharan B, Narayanasamy A, Abdal Dayem A, Cho SG. Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice. Int J Mol Sci 2020; 21:E1153. [PMID: 32050495 PMCID: PMC7038193 DOI: 10.3390/ijms21031153] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early stages. However, recent findings show that over-expression of specificity protein 1 (Sp1) is involved in many OC cases. The ubiquitous transcription of Sp1 apparently mediates the maintenance of normal and cancerous biological processes such as cell growth, differentiation, angiogenesis, apoptosis, cellular reprogramming and tumorigenesis. Sp1 exerts its effects on cellular genes containing putative GC-rich Sp1-binding site in their promoters. A better understanding of the mechanisms underlying Sp1 transcription factor (TF) regulation and functions in OC tumorigenesis could help identify novel prognostic markers, to target cancer stem cells (CSCs) by following cellular reprogramming and enable the development of novel therapies for future generations. In this review, we address the structure, function, and biology of Sp1 in normal and cancer cells, underpinning the involvement of Sp1 in OC tumorigenesis. In addition, we have highlighted the influence of Sp1 TF in cellular reprogramming of iPSCs and how it plays a role in controlling CSCs. This review highlights the drugs targeting Sp1 and their action on cancer cells. In conclusion, we predict that research in this direction will be highly beneficial for OC treatment, and chemotherapeutic drugs targeting Sp1 will emerge as a promising therapy for OC.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India;
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Zothan Siama
- Department of Zoology, School of Life-science, Mizoram University, Aizawl 796004, Mizoram, India;
| | - Bupesh Giridharan
- R&D Wing, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chromepet, Chennai 600044, Tamil Nadu, India;
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
12
|
Effect of Selected Nonsteroidal Anti-inflammatory Drugs on the Viability of Canine Osteosarcoma Cells of the D-17 Line: In Vitro Studies. J Vet Res 2019; 63:399-403. [PMID: 31572821 PMCID: PMC6749731 DOI: 10.2478/jvetres-2019-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/26/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in veterinary medicine. They are used in pain control and in anti-inflammatory and antipyretic therapies. Some NSAIDs, e.g piroxicam, also have a documented anticancer effect. The objective of this study was to evaluate which of the commonly used NSAIDs (etodolac, flunixin, tolfenamic acid, carprofen, and ketoprofen) are cytotoxic to the D-17 cell line of canine osteosarcoma. Material and Methods The viability of the cells was evaluated using the MTT assay. Four independent repetitions were performed and the results are given as the average of these values; EC50 values (half maximal effective concentration) were also calculated. Results The analysis of results showed that carprofen and tolfenamic acid displayed the highest cytotoxicity. Other drugs either did not provide such effects or they were very poor. For carprofen, it was possible to determine an EC50 which fell within the limits of concentrations obtainable in canine serum after the administration of routinely used doses. Conclusion The results are promising but further studies should be conducted to confirm them, since this study is only preliminary. The possibility of introducing carprofen and tolfenamic acid into the routine treatment of osteosarcoma in dogs should be considered.
Collapse
|
13
|
Guo Y, Chen Y, Liu H, Yan W. Alpinetin Inhibits Oral Squamous Cell Carcinoma Proliferation via miR-211-5p Upregulation and Notch Pathway Deactivation. Nutr Cancer 2019; 72:757-767. [PMID: 31403340 DOI: 10.1080/01635581.2019.1651878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: The effect of alpinetin (ALP) on miR-211-5p level and function in oral squamous cell carcinoma (OSCC) remains unclear.Materials and methods: Human OSCC cell lines (CAL-27 and TCA-8113) and a mouse xenograft model with subcutaneously injected TCA-8113 cells were used. Effect of ALP treatment on cell viability, cell cycle distributions, and p-p53, p21, c-PARP, cyclin D1, NICD, HES1, and miR-211-5p expression levels was analyzed. Influence of ALP on tumor volume and weight was determined.Results: ALP treatment (at doses 400 and 500 µM) significantly decreased the viability of CAL-27 and TCA-8113 cells (P < 0.05). It upregulated the number of cells in G1 phase and miR-211-5p expression, increased p-p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Furthermore, miR-211-5p mimic treatment increased the number of cells in G1 phase, and p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Contrasting effects were observed under anti-miR-211-5p treatment. ALP downregulated NICD and HES1, whereas anti-miR-211-5p increased NICD and HES1 expression. ALP effects were alleviated in both cell lines under Jagged-1 overexpression plasmid treatment. Finally, ALP inhibited tumor growth and increased miR-211-5p expression in vivo.Conclusion: ALP-induced miR-211-5p upregulation and Notch pathway deactivation may be involved in its anti-proliferative effects in OSCC.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Chen
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Hongli Liu
- Department of Stomatology, Cangzhou Medical College, Cangzhou, China
| | - Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
14
|
Combination of clotam and vincristine enhances anti-proliferative effect in medulloblastoma cells. Gene 2019; 705:67-76. [PMID: 30991098 DOI: 10.1016/j.gene.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is characterized by highly invasive embryonal neuro-epithelial tumors that metastasize via cerebrospinal fluid. MB is difficult to treat and the chemotherapy is associated with significant toxicities and potential long-term disabilities. Previously, we showed that small molecule, clotam (tolfenamic acid: TA) inhibited MB cell proliferation and tumor growth in mice by targeting, survivin. Overexpression of survivin is associated with aggressiveness and poor prognosis in several cancers, including MB. The aim of this study was to test combination treatment involving Vincristine® (VCR), a standard chemotherapeutic drug for MB and TA against MB cells. DAOY and D283 MB cells were treated with 10 μg/mL TA or VCR (DAOY: 2 ng/mL; D283: 1 ng/mL) or combination (TA + VCR). These optimized doses were lower than individual IC50 values. The effect of single or combination treatment on cell viability (CellTiterGlo kit), Combination Index (Chou-Talalay method based on median-drug effect analysis), activation of apoptosis and cell cycle modulation (by flow cytometry using Annexin V and propidium iodide respectively) and the expression of associated markers including survivin (Western immunoblot) were determined. Combination Index showed moderate synergistic cytotoxic effect in both cells. When compared to individual agents, the combination of TA and VCR increased MB cell growth inhibition, induced apoptosis and caused cell cycle (G2/M phase) arrest. Survivin expression was also decreased by the combination treatment. TA is effective for inducing the anti-proliferative response of VCR in MB cells. MB has four distinct genetic/molecular subgroups. Experiments were conducted with MB cells representing two subgroups (DAOY: SHH group; D283: group 4/3). TA-induced inhibition of survivin expression potentially destabilizes mitotic microtubule assembly, sensitizing MB cells and enhancing the efficacy of VCR.
Collapse
|
15
|
Lewis TD, Malik M, Britten J, Parikh T, Cox J, Catherino WH. Ulipristal acetate decreases active TGF-β3 and its canonical signaling in uterine leiomyoma via two novel mechanisms. Fertil Steril 2019; 111:806-815.e1. [PMID: 30871768 DOI: 10.1016/j.fertnstert.2018.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize the effect of ulipristal acetate (UPA) treatment on transforming growth factor (TGF) canonical and noncanonical signaling pathways in uterine leiomyoma tissue and cells. UPA decreased extracellular matrix in surgical specimens; we characterize the mechanism in this study. DESIGN Laboratory study. SETTING University. INTERVENTION(S) Exposure of leiomyoma cell lines to UPA. MAIN OUTCOME MEASURE(S) RNAseq was performed on matched myometrium and leiomyoma surgical specimens of placebo- and UPA-treated patients. Changes in gene expression and protein were measured using quantitative polymerase chain reaction and western immunoblot analysis, respectively. RESULT(S) In surgical specimen, mRNA for TGF-β3 was elevated 3.75-fold and TGFR2 was decreased 0.50-fold in placebo leiomyomas compared with myometrium. Analysis of leiomyomas from UPA-treated women by western blot revealed significant reductions of active TGF-β3 (0.64 ± 0.12-fold), p-TGFR2 (0.56 ± 0.23-fold), pSmad 2 (0.54 ± 0.04-fold), and pSmad 3 (0.65 ± 0.09-fold) compared with untreated leiomyomas. UPA treatment demonstrated statistically significant reduction in collagen 1, fibronectin, and versican proteins. Notably, there was a statistically significant increase of the extracellular matrix protein fibrillin in leiomyoma treated with UPA (1.48 ± 0.41-fold). Data from in vitro assays with physiologic concentrations of UPA supported the in vivo findings. CONCLUSION(S) TGF-β pathway is highly up-regulated in leiomyoma and is directly responsible for development of the fibrotic phenotype. UPA attenuates this pathway by reducing TGF-β3 message and protein expression, resulting in a reduction in TGF-β canonical signaling. In addition, UPA significantly increased fibrillin protein expression, which can serve to bind inactive TGF-β complexes. Therefore, UPA inhibits leiomyoma fibrosis by decreasing active TGF-β3 and diminishing signaling through the canonical pathway. CLINICAL TRIAL REGISTRATION NUMBER NCT00290251.
Collapse
Affiliation(s)
- Terrence D Lewis
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Toral Parikh
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jeris Cox
- Fort Belvoir Community Hospital, Fort Belvoir, Virginia
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Hurtado M, Sankpal UT, Kaba A, Mahammad S, Chhabra J, Brown DT, Gurung RK, Holder AA, Vishwanatha JK, Basha R. Novel Survivin Inhibitor for Suppressing Pancreatic Cancer Cells Growth via Downregulating Sp1 and Sp3 Transcription Factors. Cell Physiol Biochem 2018; 51:1894-1907. [PMID: 30504717 DOI: 10.1159/000495715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Targeting survivin, an anti-apoptotic protein and mitotic regulator, is considered as an effective therapeutic option for pancreatic cancer (PaCa). Tolfenamic acid (TA) showed anti-cancer activity in pre-clinical studies. A recent discovery demonstrated a copper(II) complex of TA (Cu-TA) can result in higher activity. In this study, the ability of Cu-TA to inhibit survivin and its transcription factors, Specificity protein (Sp) 1 and 3 in PaCa cell lines and tumor growth in mouse xenograft model were evaluated. METHODS Cell growth inhibition was measured in MIA PaCa-2 and Panc1 cells for 2 days using CellTiter-Glo kit. Sp1, Sp3 and survivin expression (by Western blot and qPCR), apoptotic cells and cell cycle phase distribution (by flow cytometry) were evaluated. A pilot study was performed using athymic nude mice [treated with vehicle/Cu-TA (25 or 50 mg/kg) 3 times/week for 4 weeks. RESULTS The IC50 value for Cu-TA was about half than TA.Both agents repressed the protein expression of Sp1/Sp3/survivin, Cu-TA was more effective than TA. Especially effect on survivin inhibition was 5.2 (MIA PaCa-2) or 6.4 (Panc1) fold higher and mRNA expression of only survivin was decreased. Apoptotic cells increased with Cu-TA treatment in both cell lines, while Panc1 showed both effect on apoptosis and cell cycle (G2/M) arrest. Cu-TA decreased the tumor growth in mouse xenografts (25 mg/kg: 48%; 50 mg/kg: 68%). Additionally, there was no change observed in mice body weights, indicating no overt toxicity was occurring. CONCLUSION These results show that Cu-TA can serve as an effective survivin inhibitor for inhibiting PaCa cell growth.
Collapse
Affiliation(s)
- Myrna Hurtado
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Umesh T Sankpal
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas, USA
| | - Aboubacar Kaba
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Shahela Mahammad
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas, USA
| | - Jaya Chhabra
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Deondra T Brown
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry Old Dominion University, Norfolk, Virginia, USA
| | - Jamboor K Vishwanatha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, USA
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas, .,Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, Texas,
| |
Collapse
|
17
|
Mahalaxmi I, Santhy K. Role and hallmarks of Sp1 in promoting ovarian cancer. JOURNAL OF ONCOLOGICAL SCIENCES 2018. [DOI: 10.1016/j.jons.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Ahmed S, Sheraz MA, Ahmad I. Tolfenamic Acid. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2018; 43:255-319. [PMID: 29678262 DOI: 10.1016/bs.podrm.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tolfenamic acid (TA) is a nonsteroidal antiinflammatory drug and belongs to the group of fenamates. It is used as a potent pain reliever in the treatment of acute migraine attacks, and disorders like dysmenorrhea, rheumatoid, and osteoarthritis. TA has shown excellent in vitro antibacterial activity against certain ATCC strains of bacteria when complexed with bismuth(III). It has also been reported to block pathological processes associated with Alzheimer's disease. In the recent past, TA has also been used as a novel anticancer agent for the treatment of various cancers. In view of the clinical importance of TA, a comprehensive review of the physical and pharmaceutical properties and details of the various analytical methods used for the assay of the drug in pharmaceutical and biological systems has been made. The methods reviewed include identification tests and titrimetric, spectrophotometric, chromatographic, electrochemical, thermal, microscopic, enzymatic, and solid-state techniques. Along with the analytical profile, the stability and degradation of TA, its pharmacology and pharmacokinetics, dosage forms and dose, adverse effects and toxicity, and interactions have been discussed.
Collapse
Affiliation(s)
- Sofia Ahmed
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
19
|
Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res 2017; 26:3038-3045. [PMID: 29104411 PMCID: PMC5656725 DOI: 10.1007/s00044-017-2001-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
As part of an ongoing program to study the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) through generating diversity libraries of multiple NSAID scaffolds, we synthesized a series of NSAID amide derivatives and screened these sets against three cancer cell lines (prostate, colon and breast) and Wnt/β-catenin signaling. The evaluated amide analog libraries show significant anticancer activity/cell proliferation inhibition, and specific members of the sets show inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Judith V. Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Wenyan Lu
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Yonghe Li
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205 USA
| | - Robert C. Reynolds
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| |
Collapse
|
20
|
Sankpal UT, Goodison S, Jones-Pauley M, Hurtado M, Zhang F, Basha R. Tolfenamic acid-induced alterations in genes and pathways in pancreatic cancer cells. Oncotarget 2017; 8:14593-14603. [PMID: 28099934 PMCID: PMC5362428 DOI: 10.18632/oncotarget.14651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are being tested extensively for their role in the treatment and prevention of several cancers. Typically NSAIDs exhibit anti-tumor activities via modulation of cyclooxygenase (COX)-dependent mechanisms, however, an anti-cancer NSAID tolfenamic acid (TA) is believed to work through COX-independent pathways. Results from our laboratory and others have demonstrated the anti-cancer activity of TA in various cancer models including pancreatic cancer. TA has been shown to modulate certain cellular processes including, apoptosis, reactive oxygen species and signaling. In this study, molecular profiling was performed to precisely understand the mode of action of TA. Three pancreatic cancer cell lines, L3.6pl, MIA PaCa-2, and Panc1 were treated with TA (50 μM for 48 h) and the changes in gene expression was evaluated using the Affymetrix GeneChip Human Gene ST Array platform. Microarray results were further validated using quantitative PCR for seven genes altered by TA treatment in all three cell lines. Functional analysis of differentially expressed genes (2 fold increase or decrease, p < 0.05) using Ingenuity Pathway Analysis software, revealed that TA treatment predominantly affected the genes involved in cell cycle, cell growth and proliferation, and cell death and survival. Promoter analysis of the differentially expressed genes revealed that they are enriched for Sp1 binding sites, suggesting that Sp1 could be a major contributor in mediating the effect of TA. The gene expression studies identified new targets involved in TA's mode of action, while supporting the hypothesis about the association of Sp1 in TA mediated effects in pancreatic cancer.
Collapse
Affiliation(s)
- Umesh T. Sankpal
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
| | - Steve Goodison
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Michelle Jones-Pauley
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
| | - Myrna Hurtado
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| | - Fan Zhang
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| |
Collapse
|
21
|
Basha R, Mohiuddin Z, Rahim A, Ahmad S. Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:511-537. [DOI: 10.1007/978-3-319-48683-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
22
|
Rauf A, Ali S, Khan MT, Asad-ur-Rahman, Ahmad S. The Expanding Role of Sp1 in Pancreatic Cancer: Tumorigenic and Clinical Perspectives. ROLE OF TRANSCRIPTION FACTORS IN GASTROINTESTINAL MALIGNANCIES 2017:391-402. [DOI: 10.1007/978-981-10-6728-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Sankpal UT, Ingersoll SB, Ahmad S, Holloway RW, Bhat VB, Simecka JW, Daniel L, Kariali E, Vishwanatha JK, Basha R. Association of Sp1 and survivin in epithelial ovarian cancer: Sp1 inhibitor and cisplatin, a novel combination for inhibiting epithelial ovarian cancer cell proliferation. Tumour Biol 2016; 37:14259-14269. [PMID: 27581819 DOI: 10.1007/s13277-016-5290-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022] Open
Abstract
The expression of specificity protein 1 (Sp1) and survivin was evaluated in clinical specimens of epithelial ovarian cancer (EOC) patients. When compared to normal tissue, EOC samples showed high expression of Sp1 and survivin using qPCR (Sp1: ∼2-fold; survivin: ∼5-fold) and Western blot (Sp1: >2.6-fold; survivin: >100-fold). The Sp1 inhibitor, and anti-cancer small molecule, tolfenamic acid (TA), was tested to enhance the response of Cisplatin (Cis) in EOC cell lines. Cell viability (CellTiter-Glo), combination index (CalcuSyn software), apoptosis (Annexin-V staining), cell cycle analyses (flow cytometry), and reactive oxygen species (flow cytometry) were determined. Cell migration and invasion was assessed using matrigel coated transwell chambers. Agilent Technologies proteomics analysis identified potential signaling pathways involved. The combination of TA (50 μM) and Cis (5 μM) synergistically increased the growth inhibition in ES2 (∼80 %, p < 0.001) and OVCAR-3 (60 %, p < 0.001) cells. TA or TA + Cis treatment in ES2 cells caused cell cycle arrest in G1 Phase (TA) or S-Phase (TA + Cis) and unregulated reactive oxygen species. Invasion and migration was decreased in ES2 cells. Global proteomic profiling showed modulation of proteins associated with oxidative phosphorylation, apoptosis, electron transport chain, DNA damage, and cell cycle proteins. These results demonstrate an association of Sp1 and survivin in EOC and confirm targeting these candidates with TA potentially sensitizes EOC cells to cisplatin.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Ovarian Epithelial
- Cell Cycle/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Drug Therapy, Combination
- Female
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Proteomics/methods
- RNA, Messenger/genetics
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Survivin
- Tumor Cells, Cultured
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Umesh T Sankpal
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Susan B Ingersoll
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | - Sarfraz Ahmad
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | - Robert W Holloway
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | | | - Jerry W Simecka
- Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Liz Daniel
- MD Anderson Cancer Center Orlando, Orlando, FL, 32806, USA
| | - Ekamber Kariali
- Department of Biotechnology, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India
| | - Jamboor K Vishwanatha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Riyaz Basha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
24
|
Ha T, Lou Z, Baek SJ, Lee SH. Tolfenamic acid downregulates β-catenin in colon cancer. Int Immunopharmacol 2016; 35:287-293. [PMID: 27089389 DOI: 10.1016/j.intimp.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Tolfenamic acid is one of the fenamic acid-derived non-steroid anti-inflammatory drugs (NSAIDs) and has been shown to exhibit anti-cancer activities in several types of cancer. Both mutations and aberrant expression of β-catenin are highly associated with progression of cancer. Therefore, β-catenin is considered to be a promising molecular target for cancer prevention and treatment. The current study investigates the role of tolfenamic acid on β-catenin expression in colon cancer. Treatment with tolfenamic acid led to inhibition of cell growth and down-regulation of β-catenin expression in a dose- and time-dependent manner in human colon cancer cell lines. Reduction of β-catenin upon tolfenamic acid treatment was associated with ubiquitin-mediated proteasomal degradation, without affecting mRNA level and promoter activity of β-catenin. In addition, treatment with tolfenamic acid downregulated Smad2 and Smad3 expression, while overexpression of Smad2, but not Smad3, blocked tolfenamic acid-induced suppression of β-catenin expression. Tolfenamic acid also decreased expression of β-catenin target genes, including vascular endothelial growth factor (VEGF). Compared to adjacent normal tissue, intestinal tumor tissues of Apc(Min/+) mice exhibited increased expression of β-catenin, Smad2, Smad3, and VEGF, which were down-regulated with tolfenamic acid treatment at a dose of 50mg/kg body weight. In conclusion, our findings suggest that tolfenamic acid inhibits growth of colon cancer cells through downregulation of Smad2 and, subsequently, facilitating ubiquitin-proteasome-mediated β-catenin degradation in colon cancer.
Collapse
Affiliation(s)
- Taekyu Ha
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Zhiyuan Lou
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Basha R, Connelly SF, Sankpal UT, Nagaraju GP, Patel H, Vishwanatha JK, Shelake S, Tabor-Simecka L, Shoji M, Simecka JW, El-Rayes B. Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution. J Nutr Biochem 2016; 31:77-87. [PMID: 27133426 DOI: 10.1016/j.jnutbio.2016.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines. L3.6pl and MIA PaCa-2 cells were treated with Cur (5-25μM) or TA (25-100μM) or combination of Cur (7.5μM) and TA (50μM). Cell viability was measured at 24-72h posttreatment using CellTiter-Glo kit. While both agents showed a steady/consistent effect, Cur+TA caused higher growth inhibition. Antiproliferative effect was compared with COX inhibitors, Ibuprofen and Celebrex. Cardiotoxicity was assessed using cordiomyocytes (H9C2). The expression of Sp proteins, survivin and apoptotic markers (western blot), caspase 3/7 (caspase-Glo kit), Annexin-V staining (flow cytometry), reactive oxygen species (ROS) and cell cycle phase distribution (flow cytometry) was measured. Cells were treated with TNF-α, and NF-kB translocation from cytoplasm to nucleus was evaluated (immunofluorescence). When compared to individual agents, combination of Cur+TA caused significant increase in apoptotic markers, ROS levels and inhibited NF-kB translocation to nucleus. TA caused cell cycle arrest in G0/G1, and the combination treatment showed mostly DNA synthesis phase arrest. These results suggest that combination of Cur+TA is less toxic and effectively enhance the therapeutic efficacy in PC cells via COX-independent mechanisms.
Collapse
Affiliation(s)
- Riyaz Basha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107; Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107.
| | | | - Umesh T Sankpal
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322
| | - Hassaan Patel
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Jamboor K Vishwanatha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Sagar Shelake
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Leslie Tabor-Simecka
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Mamoru Shoji
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322
| | - Jerry W Simecka
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107; Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107; College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322
| |
Collapse
|
26
|
Sankpal UT, Nagaraju GP, Gottipolu SR, Hurtado M, Jordan CG, Simecka JW, Shoji M, El-Rayes B, Basha R. Combination of tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species. Oncotarget 2016; 7:3186-200. [PMID: 26672603 PMCID: PMC4823099 DOI: 10.18632/oncotarget.6553] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/21/2015] [Indexed: 12/13/2022] Open
Abstract
Curcumin (Cur) has been extensively studied in several types of malignancies including colorectal cancer (CRC); however its clinical application is greatly affected by low bioavailability. Several strategies to improve the therapeutic response of Cur are being pursued, including its combination with small molecules and drugs. We investigated the therapeutic efficacy of Cur in combination with the small molecule tolfenamic acid (TA) in CRC cell lines. TA has been shown to inhibit the growth of human cancer cells in vitro and in vivo, via targeting the transcription factor specificity protein1 (Sp1) and suppressing survivin expression. CRC cell lines HCT116 and HT29 were treated with TA and/or Cur and cell viability was measured 24-72 hours post-treatment. While both agents caused a steady reduction in cell viability, following a clear dose/ time-dependent response, the combination of TA+Cur showed higher growth inhibition when compared to either single agent. Effects on apoptosis were determined using flow cytometry (JC-1 staining to measure mitochondrial membrane potential), Western blot analysis (c-PARP expression) and caspase 3/7 activity. Reactive oxygen species (ROS) levels were measured by flow cytometry and the translocation of NF-kB into the nucleus was determined using immunofluorescence. Results showed that apoptotic markers and ROS activity were significantly upregulated following combination treatment, when compared to the individual agents. This was accompanied by decreased expression of Sp1, survivin and NF-kB translocation. The combination of TA+Cur was more effective in HCT116 cells than HT29 cells. These results demonstrate that TA may enhance the anti-proliferative efficacy of Cur in CRC cells.
Collapse
Affiliation(s)
- Umesh T. Sankpal
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sriharika R. Gottipolu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Myrna Hurtado
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Christopher G. Jordan
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- JPS Center for Cancer Care, Fort Worth, TX 76104, USA
| | - Jerry W. Simecka
- Preclinical Services, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mamoru Shoji
- Department of Hematology Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Bassel El-Rayes
- Department of Hematology Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Riyaz Basha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Preclinical Services, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
27
|
Shelake S, Eslin D, Sutphin RM, Sankpal UT, Wadwani A, Kenyon LE, Tabor-Simecka L, Bowman WP, Vishwanatha JK, Basha R. Combination of 13 cis-retinoic acid and tolfenamic acid induces apoptosis and effectively inhibits high-risk neuroblastoma cell proliferation. Int J Dev Neurosci 2015; 46:92-9. [PMID: 26287661 DOI: 10.1016/j.ijdevneu.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/15/2015] [Accepted: 07/08/2015] [Indexed: 11/26/2022] Open
Abstract
Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30μM) or RA (20μM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.
Collapse
Affiliation(s)
- Sagar Shelake
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, FL 32806, United States
| | - Robert M Sutphin
- Arnold Palmer Hospital for Children, Orlando, FL 32806, United States
| | - Umesh T Sankpal
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Anmol Wadwani
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Laura E Kenyon
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Leslie Tabor-Simecka
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - W Paul Bowman
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Cook Children's Medical Center, Fort Worth, TX 76104, United States
| | - Jamboor K Vishwanatha
- Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Department of Molecular & Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Riyaz Basha
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Institute of Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States; Department of Molecular & Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
28
|
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152:111-24. [PMID: 25960131 DOI: 10.1016/j.pharmthera.2015.05.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Collapse
Affiliation(s)
- Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
29
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Pathi S, Li X, Safe S. Tolfenamic acid inhibits colon cancer cell and tumor growth and induces degradation of specificity protein (Sp) transcription factors. Mol Carcinog 2014; 53 Suppl 1:E53-E61. [PMID: 23670891 DOI: 10.1002/mc.22010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 11/09/2022]
Abstract
Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug (NSAID) that inhibits lung, esophageal, breast and pancreatic cancer cell and tumor growth, and this study investigated the anticancer activity of TA in colon cancer. TA inhibited growth and induced apoptosis in RKO, SW480, HT-29, and HCT-116 colon cancer cells, and TA (50 mg/kg/d) also inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts. TA downregulated expression of Sp proteins (Sp1, Sp3, and Sp4) in colon cancer cells and this was accompanied by decreased expression of several Sp-regulated growth promoting (cyclin D1, hepatocyte growth factor receptor), angiogenic (vascular endothelial growth factor (VEGF) and its receptor 1), survival (survivin and bcl-2), and inflammatory (NFκBp65/p50) gene products. The mechanism of TA-mediated effects on Sp proteins was due to activation of caspases. These results now extend the number of NSAIDs that may have clinical potential for colon cancer chemotherapy and show that the anticancer activity of TA is due, in part, to targeting Sp transcription factors.
Collapse
Affiliation(s)
- Satya Pathi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | | |
Collapse
|
31
|
Liggett JL, Zhang X, Eling TE, Baek SJ. Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenase-independent targets. Cancer Lett 2014; 346:217-24. [PMID: 24486220 DOI: 10.1016/j.canlet.2014.01.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively for analgesic and antipyretic treatments. In addition, NSAIDs reduce the risk and mortality to several cancers. Their mechanisms in anti-tumorigenesis are not fully understood, but both cyclooxygenase (COX)-dependent and -independent pathways play a role. We and others have been interested in elucidating molecular targets of NSAID-induced apoptosis. In this review, we summarize updated literature regarding cellular and molecular targets modulated by NSAIDs. Among those NSAIDs, sulindac sulfide and tolfenamic acid are emphasized in this review because these two drugs have been well investigated for their anti-tumorigenic activity in many different types of cancer.
Collapse
Affiliation(s)
- Jason L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA
| | - Xiaobo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thomas E Eling
- Laboratory of Molecular Carcinogenesis, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA.
| |
Collapse
|
32
|
Zhang X, Lee SH, Min KW, McEntee MF, Jeong JB, Li Q, Baek SJ. The involvement of endoplasmic reticulum stress in the suppression of colorectal tumorigenesis by tolfenamic acid. Cancer Prev Res (Phila) 2013; 6:1337-47. [PMID: 24104354 DOI: 10.1158/1940-6207.capr-13-0220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nonsteroidal anti-inflammatory drug tolfenamic acid has been shown to suppress cancer cell growth and tumorigenesis in different cancer models. However, the underlying mechanism by which tolfenamic acid exerts its antitumorigenic effect remains unclear. Previous data from our group and others indicate that tolfenamic acid alters expression of apoptosis- and cell-cycle arrest-related genes in colorectal cancer cells. Here, we show that tolfenamic acid markedly reduced the number of polyps and tumor load in APC(min)(/+) mice, accompanied with cyclin D1 downregulation in vitro and in vivo. Mechanistically, tolfenamic acid promotes endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR) signaling pathway, of which PERK-mediated phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) induces the repression of cyclin D1 translation. Moreover, the PERK-eIF2α-ATF4 branch of the UPR pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells, as silencing ATF4 attenuates tolfenamic acid-induced apoptosis. Taken together, these results suggest ER stress is involved in tolfenamic acid-induced inhibition of colorectal cancer cell growth, which could contribute to antitumorigenesis in a mouse model.
Collapse
Affiliation(s)
- Xiaobo Zhang
- College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996-4542. Phone: 865-974-8216; Fax: 865-974-5616; ; Qingwang Li, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Liu JH, Chai K, Tashiro SI, Onodera S, Ikejima T. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. ACTA ACUST UNITED AC 2013; 65:1622-42. [PMID: 24102522 DOI: 10.1111/jphp.12140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/02/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Herein, inhibition of hepatocyte growth factor receptor, c-Met, significantly increased cytochrome c release and Bax/Bcl-2 ratio, indicating that c-Met played an anti-apoptotic role. The following experiments are to elucidate this anti-apoptotic mechanism, then the effect of c-Met on autophagy has also been discussed. METHODS Investigated was the influence of c-Met on apoptosis, autophagy and loss of mitochondrial transmembrane potential (Δψm), and the relevant proteins were examined. KEY FINDINGS First, we found that activation of extracellular signal-regulated kinase (ERK), p53 was promoted by c-Met interference. Subsequent studies indicated that ERK was the upstream effector of p53, and this ERK-p53 pathway mediated release of cytochrome c and up-regulation of Bax/Bcl-2 ratio. Secondly, the inhibition of c-Met augmented oridonin-induced loss of mitochondrial transmembrane potential (Δψm), resulting apoptosis. Finally, the inhibition of c-Met increased oridonin-induced A549 cell autophagy accompanied by Beclin-1 activation and conversion from microtubule-associated protein light chain 3 (LC3)-I to LC3-II. Activation of ERK-p53 was also detected in autophagy process and could be augmented by inhibition of c-Met. Moreover, suppression of autophagy by 3-methyladenine (3-MA) or small interfering RNA against Beclin-1 or Atg5 decreased oridonin-induced apoptosis. Inhibition of apoptosis by pan-caspase inhibitor (z-VAD-fmk) decreased oridonin-induced autophagy as well and Loss of Δψm also occurred during autophagic process. CONCLUSION Thus, inhibiting c-Met enhanced oridonin-induced apoptosis, autophagy and loss of Δψm in A549 cells.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
34
|
Jeong JB, Choi J, Baek SJ, Lee SH. Reactive oxygen species mediate tolfenamic acid-induced apoptosis in human colorectal cancer cells. Arch Biochem Biophys 2013; 537:168-75. [PMID: 23896517 DOI: 10.1016/j.abb.2013.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023]
Abstract
Several studies have shown substantial evidences that non-steroidal anti-inflammatory drugs (NSAIDs) exert anticancer effects by generating reactive oxygen species (ROS). Tolfenamic acid (TA) is one of the traditional NSAIDs widely used for treatment of migraine. TA has anti-cancer activities in several human cancer models. In this study, we report that generation of ROS by TA leads to apoptosis through modulation of several pathways in human colorectal cancer cells. TA induced rapid generation of intracellular ROS and led to an increase of phosphorylation of H2AX, a tail moment of comet and distribution of fragmented genomic DNA traces. Treatment of N-acetyl-l-cysteine (NAC) abolished TA-induced phosphorylation of H2AX and apoptosis. Treatment of TA resulted in an increase of nuclear factor-kappaB (NF-κB) transcriptional activity through inhibitor of kappa B (IκB-α) degradation and subsequent p65 nuclear translocation. In addition, TA increased apoptosis-inducing activating transcription factor 3 (ATF3) expression. However, the treatment of NAC abolished TA-mediated NF-κB activation and ATF3 expression and chemical inhibition of NF-κB or knockdown of p65 significantly attenuated TA-induced ATF3 expression. Our finding indicates that ROS-mediated DNA damage and subsequent activation of NF-κB and ATF3 expression plays a significant role in TA-induced apoptosis in human colorectal cancer cells.
Collapse
Affiliation(s)
- Jin Boo Jeong
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
35
|
Kim HJ, Cho SD, Kim J, Kim SJ, Choi C, Kim JS, Nam JS, Han Kwon K, Kang KS, Jung JY. Apoptotic effect of tolfenamic acid on MDA-MB-231 breast cancer cells and xenograft tumors. J Clin Biochem Nutr 2013; 53:21-6. [PMID: 23874066 PMCID: PMC3705153 DOI: 10.3164/jcbn.12-78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 03/21/2013] [Indexed: 01/08/2023] Open
Abstract
Recent studies have indicated that non-steroidal anti-inflammatory drug (NSAID), particularly tolfenamic acid, can inhibit proliferation and induce apoptosis invarious cancer cells. Breast cancer represents one-third of all cancers diagnosed in women and is the second leading cause of cancer death in Western European and North American women. In the present study, we investigated the apoptotic effect of tolfenamic acid in MDA-MB-231 estrogen receptor-negative human breast carcinoma cells and in a xenograft tumor model. Treatment of cells with tolfenamic acid significantly decreased cell viability in a concentration-dependent manner. Notably, tolfenamic acid increased apoptosis-related proteins, such as p53 and p21, within 48 h. Furthermore, in vivo experiments showed that tolfenamic acid treatment resulted in a significant reduction in tumor volume over 5 weeks. Immunohistochemistry results showed that apoptosis-related protein induction by tolfenamic acid was significantly higher in the 50 mg/kg-treated group compared to the control group. Together, these results indicate that tolfenamic acid induces apoptosis in MDA-MB-231 breast cancer cells and tumor xenograft model and it may be a potential chemotherapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Hyeong-Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Anticancer activity of tolfenamic acid in medulloblastoma: a preclinical study. Tumour Biol 2013; 34:2781-9. [PMID: 23686785 DOI: 10.1007/s13277-013-0836-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/01/2013] [Indexed: 02/04/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignancy in children arising in the brain. Morbidities associated with intensive therapy are serious concerns in treating MB. Our aim was to identify novel targets and agents with less toxicity for treating MB. Specificity protein 1 (Sp1) transcription factor regulates several genes involved in cell proliferation and cell survival including survivin, an inhibitor of apoptosis protein. We previously showed that tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, inhibits neuroblastoma cell growth by targeting Sp1. We investigated the anticancer activity of TA using human MB cell lines and a mouse xenograft model. DAOY and D283 cells were treated with vehicle (dimethyl sulfoxide) or TA (5-50 μg/ml), and cell viability was measured at 1-3 days posttreatment. TA inhibited MB cell growth in a time- and dose-dependent manner. MB cells were treated with vehicle or TA (10 μg/ml), and the effect on cell apoptosis was measured. Apoptosis was analyzed by flow cytometry (annexin V staining), and caspase 3/7 activity was determined using Caspase-Glo kit. The expression of Sp1, cleaved poly(ADP-ribose) polymerase (c-PARP), and survivin was determined by Western blot analysis. TA inhibited the expression of Sp1 and survivin and upregulated c-PARP. Athymic nude mice were subcutaneously injected with D283 cells and treated with TA (50 mg/kg, three times per week) for 4 weeks. TA caused a decrease of ~40 % in tumor weight and volume. The tumor growth inhibition was accompanied by a decrease in Sp1 and survivin expression in tumor tissue. These preclinical data demonstrate that TA acts as an anticancer agent in MB potentially targeting Sp1 and survivin.
Collapse
|
37
|
Subaiea GM, Adwan LI, Ahmed AH, Stevens KE, Zawia NH. Short-term treatment with tolfenamic acid improves cognitive functions in Alzheimer's disease mice. Neurobiol Aging 2013; 34:2421-30. [PMID: 23639209 DOI: 10.1016/j.neurobiolaging.2013.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Tolfenamic acid lowers the levels of the amyloid precursor protein (APP) and amyloid beta (Aβ) when administered to C57BL/6 mice by lowering their transcriptional regulator specificity protein 1 (SP1). To determine whether changes upstream in the amyloidogenic pathway that forms Aβ plaques would improve cognitive outcomes, we administered tolfenamic acid for 34 days to hemizygous R1.40 transgenic mice. After the characterization of cognitive deficits in these mice, assessment of spatial learning and memory functions revealed that treatment with tolfenamic acid attenuated long-term memory and working memory deficits, determined using Morris water maze and the Y-maze. These improvements occurred within a shorter period of exposure than that seen with clinically approved drugs. Cognitive enhancement was accompanied by reduction in the levels of the SP1 protein (but not messenger RNA [mRNA]), followed by lowering both the mRNA and the protein levels of APP and subsequent Aβ levels. These findings provide evidence that tolfenamic acid can disrupt the pathologic processes associated with Alzheimer's disease (AD) and are relevant to its scheduled biomarker study in AD patients.
Collapse
Affiliation(s)
- Gehad M Subaiea
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | | | | | | |
Collapse
|
38
|
Sutphin RM, Connelly SF, Lee CM, Sankpal UT, Eslin D, Khan M, Pius H, Basha R. Anti-leukemic response of a NSAID, tolfenamic acid. Target Oncol 2013; 9:135-44. [PMID: 23609055 DOI: 10.1007/s11523-013-0274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/17/2013] [Indexed: 12/23/2022]
Abstract
Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to inhibit human cancer cells and mouse tumor growth in some cancer models; however, its anti-leukemic response has not been evaluated. TA targets specificity protein (Sp) transcription factors that mediate the expression of several genes associated with cancer including survivin, a key member of inhibitor of apoptosis protein family. Our aim was to test the anti-leukemic efficacy of TA in pre-clinical experiments. The anti-leukemic response of TA was determined using Jurkat and Nalm-6 cell lines. Cells were treated with increasing (25/50/75 μM) concentrations of TA, and cell viability was measured at 24, 48, and 72 h post-treatment. TA showed a steady and consistent decrease in cell viability following a clear dose and time dependent response. Apoptosis and cell cycle analysis was performed using flow cytometry. Results showed a significant increase in the apoptotic fraction (annexin V positive) following TA treatment, while cell cycle phase distribution analysis showed G0/G1 arrest. TA-induced apoptosis was further confirmed by examining the activation of caspase 3/7 and the expression of cleaved PARP. TA modulated the expression of critical candidates associated with the early phases of cell cycle and validated its efficacy in causing G0/G1 arrest. The Western blot results revealed that TA significantly decreases Sp1 and survivin expression. These results demonstrate that the anti-leukemic response of TA occurs potentially through targeting Sp1 and inhibiting survivin and suggest the efficacy of TA as a novel therapeutic agent for leukemia.
Collapse
|
39
|
Marchion DC, Bicaku E, Xiong Y, Bou Zgheib N, Al Sawah E, Stickles XB, Judson PL, Lopez AS, Cubitt CL, Gonzalez-Bosquet J, Wenham RM, Apte SM, Berglund A, Lancaster JM. A novel c-Met inhibitor, MK8033, synergizes with carboplatin plus paclitaxel to inhibit ovarian cancer cell growth. Oncol Rep 2013; 29:2011-8. [PMID: 23467907 PMCID: PMC4536335 DOI: 10.3892/or.2013.2329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Abstract
Elevated serum levels of hepatocyte growth factor (HGF) and high tumor expression of c-Met are both indicators of poor overall survival from ovarian cancer (OVCA). In the present study, we evaluated the role of the HGF signaling pathway in OVCA cell line chemoresistance and OVCA patient overall survival as well as the influence of HGF/c-Met signaling inhibition on the sensitivity of OVCA cells to combinational carboplatin plus paclitaxel therapy. The prevalence of the HGF receptor, c-Met, was determined by immunohistochemistry in primary OVCA samples (n=79) and OVCA cell lines (n=41). The influence of the c-Met-specific inhibitor MK8033 on OVCA cell sensitivity to combinations of carboplatin plus paclitaxel was examined in a subset of OVCA cells (n=8) by CellTiter-Blue cell viability assays. Correlation tests were used to identify genes associated with response to MK8033 and carboplatin plus paclitaxel. Identified genes were evaluated for influence on overall survival from OVCA using principal component analysis (PCA) modeling in an independent clinical OVCA dataset (n=218). Immunohistochemistry analysis indicated that 83% of OVCA cells and 92% of primary OVCA expressed the HGF receptor, c-Met. MK8033 exhibited significant anti-proliferative effects against a panel of human OVCA cell lines. Combination index values determined by the Chou-Talalay isobologram equation indicated synergistic activity in combinations of MK8033 and carboplatin plus paclitaxel. Pearson's correlation identified a 47-gene signature to be associated with MK8033-carboplatin plus paclitaxel response. PCA modeling indicated an association of this 47-gene response signature with overall survival from OVCA (P=0.013). These data indicate that HGF/c-Met pathway signaling may influence OVCA chemosensitivity and overall patient survival. Furthermore, HGF/c-Met inhibition by MK8033 represents a promising new therapeutic avenue to increase OVCA sensitivity to carboplatin plus paclitaxel.
Collapse
Affiliation(s)
- Douglas C Marchion
- Department of Women's Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen S, Xu D, Jiang H, Xi Z, Zhu P, Liu Y. Trans-Platinum/Thiazole Complex Interferes with Sp1 Zinc-Finger Protein. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Chen S, Xu D, Jiang H, Xi Z, Zhu P, Liu Y. Trans-Platinum/Thiazole Complex Interferes with Sp1 Zinc-Finger Protein. Angew Chem Int Ed Engl 2012; 51:12258-62. [DOI: 10.1002/anie.201206596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/17/2012] [Indexed: 11/11/2022]
|
42
|
Sankpal UT, Abdelrahim M, Connelly SF, Lee CM, Madero-Visbal R, Colon J, Smith J, Safe S, Maliakal P, Basha R. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 2012; 72:1648-1658. [PMID: 22473873 DOI: 10.1002/pros.22518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Specificity protein (Sp) transcription factors are implicated in critical cellular and molecular processes associated with cancer that impact tumor growth and metastasis. The non-steroidal anti-inflammatory drug, tolfenamic acid (TA) is known to inhibit Sp proteins in some human cancer cells and laboratory animal models. We evaluated the anti-cancer activity of TA using in vitro and in vivo models for prostate cancer. METHODS The anti-proliferative efficacy of TA was evaluated using DU-145, PC-3, and LNCaP cells. PC-3 cells were treated with DMSO or 50 µM TA for 48 hr. Whole cell lysates were evaluated for the expression of Sp1, survivin, c-PARP, Akt/p-Akt, c-Met, cdk4, cdc2, cyclin D3, and E2F1 by Western blot analysis. Cell invasion was assessed by Boyden-chamber assay and flow cytometry analysis was used to study apoptosis and cell cycle distribution. An orthotopic mouse model for prostate cancer with PC-3-Luc cells was used to study the in vivo effect of TA. RESULTS TA inhibited the expression of Sp1, c-Met, p-Akt, and survivin; increased c-PARP expression and caspases activity in PC-3 cells. TA caused cell arrest at G(0) /G(1) phase accompanied by a decrease in cdk4, cdc2, cyclin D3, and E2F1 and an increase in critical apoptotic markers. TA augmented annexin-V staining, caspase activity, and c-PARP expression indicating the activation of apoptotic pathways. TA also decreased PC-3 cell invasion. TA significantly decreased the tumor weight and volume which was associated with low expression of Sp1 and survivin in tumor sections. CONCLUSION TA targets critical pathways associated with tumorigenesis and invasion. These pre-clinical data strongly demonstrated the anti-cancer activity of TA in prostate cancer.
Collapse
Affiliation(s)
- Umesh T Sankpal
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stein GY, Yosef N, Reichman H, Horev J, Laser-Azogui A, Berens A, Resau J, Ruppin E, Sharan R, Tsarfaty I. Met kinetic signature derived from the response to HGF/SF in a cellular model predicts breast cancer patient survival. PLoS One 2012; 7:e45969. [PMID: 23049908 PMCID: PMC3457970 DOI: 10.1371/journal.pone.0045969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
To determine the signaling pathways leading from Met activation to metastasis and poor prognosis, we measured the kinetic gene alterations in breast cancer cell lines in response to HGF/SF. Using a network inference tool we analyzed the putative protein-protein interaction pathways leading from Met to these genes and studied their specificity to Met and prognostic potential. We identified a Met kinetic signature consisting of 131 genes. The signature correlates with Met activation and with response to anti-Met therapy (p<0.005) in in-vitro models. It also identifies breast cancer patients who are at high risk to develop an aggressive disease in six large published breast cancer patient cohorts (p<0.01, N>1000). Moreover, we have identified novel putative Met pathways, which correlate with Met activity and patient prognosis. This signature may facilitate personalized therapy by identifying patients who will respond to anti-Met therapy. Moreover, this novel approach may be applied for other tyrosine kinases and other malignancies.
Collapse
Affiliation(s)
- Gideon Y. Stein
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine “B”, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - Nir Yosef
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Horev
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Laser-Azogui
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angelique Berens
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - James Resau
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Eytan Ruppin
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
44
|
Shukoor MI, Tiwari S, Sankpal UT, Maliakal P, Connelly SF, Siddiqi S, Siddiqi SA, Basha R. Tolfenamic acid suppresses cytochrome P450 2E1 expression in mouse liver. Integr Biol (Camb) 2012; 4:1122-9. [PMID: 22832660 DOI: 10.1039/c2ib20127e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) play a significant role in the chemoprevention of cancer. We recently showed the chemopreventive response of a NSAID, 2-[(3-chloro-2-methylphenyl)amino]benzoic acid) known as tolfenamic acid (TA) in N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumors in rats. Pre-clinical studies showed that TA inhibits Specificity protein (Sp) transcription factors and acts as an anti-cancer agent in several cancer models; however the pertinent mechanisms associated with its chemopreventive response in esophageal cancer are not known. Since the bioactivation of carcinogens through cytochrome P450 (CYP) is critical for the induction of cancer, we have studied the effect of TA on critical CYP isozymes in mouse liver samples. Athymic nude mice were treated with vehicle (corn oil) or TA (50 mg kg(-1), 3 times per week) for 4 weeks. Protein extracts (whole cell lysates and microsomal fractions) were prepared from liver tissue and the expression of various CYP isozymes was determined by Western blot analysis. Rat (Sprague-Dawley) livers were harvested and primary hepatocyte cultures were treated with vehicle (DMSO) or TA (50 μM) and cell viability was assessed at 2 and 5 days post-treatment. TA caused remarkable decrease in the expression of CYP2E1 in both liver lysates and sub-cellular fraction, while its response on other tested isozymes was marginal. TA did not affect the body weight of animals (mice) and viability of rat hepatocytes. These results demonstrate that TA modulates the expression of CYP2E1 which is associated with the bioactivation of carcinogens without causing apparent toxicity. These data suggest that TA-induced inhibition of CYP2E1 attenuates the bioactivation of carcinogens potentially leading to the chemoprevention of NMBA-induced esophageal tumorigenesis in rats.
Collapse
Affiliation(s)
- Mohammed I Shukoor
- Cancer Research Institute, MD Anderson Cancer Center Orlando, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kanwar JR, Kamalapuram SK, Kanwar RK. Survivin Signaling in Clinical Oncology: A Multifaceted Dragon. Med Res Rev 2012; 33:765-89. [DOI: 10.1002/med.21264] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jagat R. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Sishir K. Kamalapuram
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Rupinder K. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| |
Collapse
|
46
|
Eslin D, Sankpal UT, Lee C, Sutphin RM, Maliakal P, Currier E, Sholler G, Khan M, Basha R. Tolfenamic acid inhibits neuroblastoma cell proliferation and induces apoptosis: a novel therapeutic agent for neuroblastoma. Mol Carcinog 2011; 52:377-86. [PMID: 22213339 DOI: 10.1002/mc.21866] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/14/2011] [Accepted: 12/02/2011] [Indexed: 12/21/2022]
Abstract
Current therapeutic options for recurrent neuroblastoma have poor outcomes that warrant the development of novel therapeutic strategies. Specificity protein (Sp) transcription factors regulate several genes involved in cell proliferation, survival, and angiogenesis. Sp1 regulates genes believed to be important determinants of the biological behavior of neuroblastoma. Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to induce the degradation of Sp proteins and may serve as a novel anti-cancer agent. The objective of this investigation was to examine the anti-cancer activity of TA using established human neuroblastoma cell lines. We tested the anti-proliferative effect of TA using SH-SY5Y, CHLA90, LA1 55n, SHEP, Be2c, CMP 13Y, and SMS KCNR cell lines. Cells were treated with TA (0/25/50/100 µM) and cell viability was measured at 24, 48, and 72 h post-treatment. Selected neuroblastoma cell lines were treated with 50 µM TA for 24 and 48 h and tested for cell apoptosis using Annexin-V staining. Caspase activity was measured with caspase 3/7 Glo kit. Cell lysates were prepared and the expression of Sp1, survivin, and c-PARP were evaluated through Western blot analysis. TA significantly inhibited the growth of neuroblastoma cells in a dose/time-dependent manner and significantly decreased Sp1 and survivin expression. Apart from cell cycle (G0/G1) arrest, TA caused significant increase in the apoptotic cell population, caspase 3/7 activity, and c-PARP expression. These results show that TA effectively inhibits neuroblastoma cell growth potentially through suppressing mitosis, Sp1, and survivin expression, and inducing apoptosis. These results show TA as a novel therapeutic agent for neuroblastoma.
Collapse
Affiliation(s)
- Don Eslin
- MD Anderson Cancer Center Orlando, Orlando, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hwang CI, Choi J, Zhou Z, Flesken-Nikitin A, Tarakhovsky A, Nikitin AY. MET-dependent cancer invasion may be preprogrammed by early alterations of p53-regulated feedforward loop and triggered by stromal cell-derived HGF. Cell Cycle 2011; 10:3834-40. [PMID: 22071625 DOI: 10.4161/cc.10.22.18294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MET, a receptor protein tyrosine kinase activated by hepatocyte growth factor (HGF), is a crucial determinant of metastatic progression. Recently, we have identified p53 as an important regulator of MET-dependent cell motility and invasion. This regulation occurs via feedforward loop suppressing MET expression by miR-34-dependent and -independent mechanisms. Here, by using Dicer conditional knockout, we provide further evidence for microRNA-independent MET regulation by p53. Furthermore, we show that while MET levels increase immediately after p53 inactivation, mutant cells do not contain active phosphorylated MET and remain non-invasive for a long latency period at contrary to cell culture observations. Evaluation of mouse models of ovarian and prostate carcinogenesis indicates that formation of desmoplastic stroma, associated production of HGF by stromal cells and coinciding MET phosphorylation precede cancer invasion. Thus, initiation mutation of p53 is sufficient for preprogramming motile and invasive properties of epithelial cells, but the stromal reaction may represent a critical step for their manifestation during cancer progression.
Collapse
Affiliation(s)
- Chang-Il Hwang
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|