1
|
Caffo M, Fusco R, Siracusa R, Caruso G, Barresi V, Di Paola R, Cuzzocrea S, Germanò AF, Cardali SM. Molecular Investigation of DKK3 in Cerebral Ischemic/Reperfusion Injury. Biomedicines 2023; 11:biomedicines11030815. [PMID: 36979794 PMCID: PMC10045463 DOI: 10.3390/biomedicines11030815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Dickkopf-3 (Dkk3) is an atypical member of the Dkk family of Wnt inhibitors, which has been implicated in the pathophysiology of neurodegenerative disorders. Its role in the mechanisms of cellular degeneration and protection is still unknown. The aim of our work is to investigate the endogenous activation of the DKK3 pathway in a model of transient occlusion of the middle cerebral artery in rats. In particular, the animals were subjected to 1 h of ischemia followed by different reperfusion times (1 h, 6 h, 12 h and 24 h) to evaluate the downstream pathway and the time course of its activation. Western blot analysis showed increased Dkk3 expression in animals with the highest time of reperfusion. The increased levels of Dkk3 were accompanied by reduced Wnt3a, Frz1 and PIWI1a expression in the cytosol while FOXM1 and β-catenin decreased in the nucleus. These molecular changes led to an increase in the apoptotic pathway, as showed by the increased expression of Caspase 3 and Bax and the reduced levels of Bcl-2, and to a decrease in neurogenesis, as shown by the decreased expression of Tbr2, Ngn2 and Pax6. In the second part of the study, we decided to employ curcumin, an activator of the Wnt/β-catenin signaling, to investigate its effect on Dkk3. In particular, curcumin was administered 1 and 6 h after ischemia, and animals were sacrificed 24 h later when the expression of Dkk3 was higher. Our data displayed that curcumin administration decreased Dkk3 expression, and increased Wnt3a, Frz1 and PIWI1a levels. Well in line with these data, curcumin administration increased nuclear β-catenin and FOXM1 expression. The down-regulation of Dkk3 by curcumin led to reduced apoptosis and increased neurogenesis. Summarizing, our results showed that Dkk3 acts as an inhibitor of Wnt/β-catenin signaling during cerebral ischemia. Additionally, its inhibition and the contextual activation of the Wnt/β-catenin pathway are protective against ischemic stroke.
Collapse
Affiliation(s)
- Maria Caffo
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, n 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, n 31, 98166 Messina, Italy
| | - Gerardo Caruso
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Piazzale Ludovico Antonio Scuro, 37124 Verona, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, n 31, 98166 Messina, Italy
| | - Antonino Francesco Germanò
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Massimo Cardali
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
2
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
4
|
De P, Aske JC, Dale A, Rojas Espaillat L, Starks D, Dey N. Addressing activation of WNT beta-catenin pathway in diverse landscape of endometrial carcinogenesis. Am J Transl Res 2021; 13:12168-12180. [PMID: 34956444 PMCID: PMC8661239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 06/14/2023]
Abstract
The WNT-beta-catenin pathway (WP) is one of the major oncogenic pathways in solid tumors. Wnt beta-catenin pathway plays a unique role in a wide range of endometrial dysfunctions, from embryo implantation failure to severe pathogenic changes like endometriosis and endometrial cancer. Although abnormal activation of the pathway has long been known to be associated with endometrial tumorigenesis, the pathway's exact mode of involvement remains to be understood. As more evidence has been presented in favor of a crucial role of the WP in solid tumors, including endometrial cancer, anti-WP drugs are currently being tested to manage the disease. Aggressive tumor cells are nurtured by the tumor microenvironment (TME). The genetic alterations within tumor cells are the primary driving force to activate the extra-tumoral micro-environment. TME (a) provides metabolic support for the proliferation of tumor cells, (b) orchestrates immune-evasion, (c) initiates mechanistic signaling for several metastasis-associated phenotypes, and (d) supports cellular events for the development of drug resistance. To get metabolic as well as immune support from the tumor microenvironment, tumor cells cross-talk with components of the TME, most critically to the cancer-associated fibroblasts. Thus it is expected that the tumor-TME cross-talk throughout the process of tumorigenesis and metastasis is one of the characteristic features of an aggressive tumor. Here we review the WP's mechanistic involvement as a common culprit (Un Colpevole Comune) in endometrial tumor cells and endometrial cancer-associated fibroblast (CAF). In this review, we have attempted to discuss the activation of the WP in the genesis and progression of endometrial cancers, including endometrial tumor biology, tumor microenvironment, cancer-associated fibroblasts, and wnt-beta catenin genetic alteration. We interrogated the available literature on the various aspects of endometrial carcinogenesis leading to the pathway's activation. We examined how genetic alterations in WP directly influence tumor cell signaling to bring out different tumor cell phenotypes, and present palpable evidence to envision a role of WP inhibitors in the future management of the disease.
Collapse
Affiliation(s)
- Pradip De
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD 57105, USA
| | | | - Adam Dale
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Division of Gynecological Oncology, Avera Cancer InstituteSioux Falls, SD 57105, USA
| | - David Starks
- Division of Gynecological Oncology, Avera Cancer InstituteSioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD 57105, USA
| |
Collapse
|
5
|
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao F, Ma X, Sun X, Liang Q, Xu H, Wang Y, Yang Y. Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation and LEF1 translation. Int J Biol Sci 2021; 17:2504-2522. [PMID: 34326690 PMCID: PMC8315017 DOI: 10.7150/ijbs.51638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: As the leading primary bone cancer in adolescents and children, osteosarcoma patients with metastasis show a five-year-survival-rate of 20-30%, without improvement over the past 30 years. Wnt/β-catenin is important in promoting osteosarcoma development. DKK3 is a Wnt/β-catenin antagonist and predicted to have the specific binding site in 3′-UTR with miR-214-3p. Methods: miR-214-3p and DKK3 levels were investigated in human osteosarcoma tissues and cells by RT-qPCR; the prognostic importance of DKK3 level in osteosarcoma patients was determined with Log-rank test; direct binding between DKK3 with miR-214-3p was identified with targetscan; anti-osteosarcoma mechanism of cantharidin was investigated by miR-214-3p silence/over-expression with or without cantharidin treatment, and nuclear/cytoplasmic protein assay in osteosarcoma cells. Results: Down-regulated DKK3 indicated poor prognosis of osteosarcoma patients. Up-regulated miR-214-3p promoted proliferation and migration, while suppressed apoptosis of osteosarcoma cells by increasing β-catenin nuclear translocation and LEF1 translation via degradation of DKK3. Cantharidin suppressed viabilities, migration and invasion, while promoted cell cycle arrest and apoptosis in 143B and U-2 OS cells via down-regulating miR-214-3p to up-regulate DKK3, thus inhibited p-GSK-3β expression, β-catenin nuclear translocation and LEF1 translation. Meanwhile, cantharidin inhibited tumor growth in xenograft-bearing mice with 143B cell injection in tibia. Conclusion: miR-214-3p mediated Wnt/β-catenin/LEF1 signaling activation by targeting DKK3 to promote oncogenesis of osteosarcoma; cantharidin inhibited proliferation and metastasis of osteosarcoma cells via down-regulating miR-214-3p to up-regulate DKK3 and decrease β-catenin nuclear translocation, indicating that cantharidin may be a prospective candidate for osteosarcoma treatment by targeting miR-214-3p/DKK3/β-catenin signaling.
Collapse
Affiliation(s)
- Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hongfeng Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Wenlan Zhi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xiaobo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Fulai Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
6
|
Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers (Basel) 2020; 12:cancers12092405. [PMID: 32854182 PMCID: PMC7564920 DOI: 10.3390/cancers12092405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dogs develop osteosarcoma (OSA) and the disease process closely resembles that of human OSA. OSA has a poor prognosis in both species and disease-free intervals and cure rates have not improved in recent years. Gene expression in canine OSAs was compared with non-tumor tissue utilising RNA sequencing, validated by qRT-PCR and immunohistochemistry (n = 16). Polymorphic polyglutamine (polyQ) tracts in the androgen receptor (AR/NR3C4) and nuclear receptor coactivator 3 (NCOA3) genes were investigated in control and OSA patients using polymerase chain reaction (PCR), Sanger sequencing and fragment analysis (n = 1019 Rottweilers, 379 Irish Wolfhounds). Our analysis identified 1281 significantly differentially expressed genes (>2 fold change, p < 0.05), specifically 839 lower and 442 elevated gene expression in osteosarcoma (n = 3) samples relative to non-malignant (n = 4) bone. Enriched pathways and gene ontologies were identified, which provide insight into the molecular pathways implicated in canine OSA. Expression of a subset of these genes (SLC2A1, DKK3, MMP3, POSTN, RBP4, ASPN) was validated by qRTPCR and immunohistochemistry (MMP3, DKK3, SLC2A1) respectively. While little variation was found in the NCOA3 polyQ tract, greater variation was present in both polyQ tracts in the AR, but no significant associations in length were made with OSA. The data provides novel insights into the molecular mechanisms of OSA in high risk breeds. This knowledge may inform development of new prevention strategies and treatments for OSA in dogs and supports utilising spontaneous OSA in dogs to improve understanding of the disease in people.
Collapse
|
7
|
Bai DP, Chen Y, Hu YQ, He WF, Shi YZ, Fan QM, Luo RT, Li A. Transcriptome analysis of genes related to gonad differentiation and development in Muscovy ducks. BMC Genomics 2020; 21:438. [PMID: 32590948 PMCID: PMC7318502 DOI: 10.1186/s12864-020-06852-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sex-related genes play a crucial role in gonadal differentiation into testes or ovaries. However, the genetic control of gonadal differentiation in Muscovy ducks remains unknown. Therefore, the objective of our study was to screen new candidate genes associated with ovarian and testicular development. RESULTS In this study, 24 males before gonadal differentiation (MB), 24 females before gonadal differentiation (FB), 24 males after gonadal differentiation (MA) and 24 females after gonadal differentiation (FA) were selected from Putian Muscovy ducks, forming 4 groups. RNA-Seq revealed 101.76 Gb of clean reads and 2800 differentially expressed genes (DEGs), including 46 in MB vs FB, 609 in MA vs FA, 1027 in FA vs FB, and 1118 in MA vs MB. A total of 146 signalling pathways were enriched by KEGG analysis, among which 20, 108, 108 and 116 signalling pathways were obtained in MB vs FB, MA vs MB, MA vs FA and FA vs FB, respectively. In further GO and KEGG analyses, a total of 21 candidate genes related to gonad differentiation and development in Muscovy ducks were screened. Among these, 9 genes were involved in the differentiation and development of the testes, and 12 genes were involved in the differentiation and development of the ovaries. In addition, RNA-Seq data revealed 2744 novel genes. CONCLUSIONS RNA-Seq data revealed 21 genes related to gonadal differentiation and development in Muscovy ducks. We further identified 12 genes, namely, WNT5B, HTRA3, RSPO3, BMP3, HNRNPK, NIPBL, CREB3L4, DKK3, UBE2R2, UBPL3KCMF1, ANXA2, and OSR1, involved in the differentiation and development of ovaries. Moreover, 9 genes, namely, TTN, ATP5A1, DMRT1, DMRT3, AMH, MAP3K1, PIK3R1, AGT and ADAMTSL1, were related to the differentiation and development of testes. Moreover, after gonadal differentiation, DMRT3, AMH, PIK3R1, ADAMTSL1, AGT and TTN were specifically highly expressed in males. WNT5B, ANXA2 and OSR1 were specifically highly expressed in females. These results provide valuable information for studies on the sex control of Muscovy ducks and reveal novel candidate genes for the differentiation and development of testes and ovaries.
Collapse
Affiliation(s)
- Ding-Ping Bai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yue Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yu-Qiong Hu
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Wen-Feng He
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yu-Zhu Shi
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Qin-Ming Fan
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Ru-Tang Luo
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Ang Li
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
8
|
Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci 2020; 62:9-15. [PMID: 32032750 DOI: 10.1016/j.job.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer arises from cumulative genetic or epigenetic aberrations, or the destabilization of central signaling pathways that regulate cell proliferation, differentiation, cell cycle, gene transcription, migration, angiogenesis and apoptosis. Investigating the cancer-specific genetic background is important to get deeper apprehension of cancer biology. In this review, we aimed to identify head and neck squamous cell carcinoma (HNSCC)-specific genes and identified DKK3 gene as a candidate. HIGHLIGHT DKK3 belongs to the DKK family (DKK1, DKK2, DKK3 and DKK4), which codes for an evolutionally conserved secreted glycoprotein that is characterized by two distinct cysteine rich domains and functions as an antagonist of the oncogenic Wnt signaling pathway. It has been reported that DKK3 expression is decreased in many kinds of cancers, and it is thus thought to be a tumor suppressor gene. However, our investigations have demonstrated unique expression and function of DKK3 in HNSCC. DKK3 protein expression is predominantly positive in HNSCC, and DKK3-positive patients show significantly shorter disease-free survival rates, whereas DKK3-negative cases do not show metastasis. Molecular biological analyses demonstrated that DKK3 over expression significantly increased HNSCC cell proliferation, migration, and invasion via increased phosphorylation of AKT. Moreover, DKK3 knockdown in HNSCC cells significantly decreased these malignant potentials through decreased AKT phosphorylation. CONCLUSION Our previously published data, alongside those from other reports, indicate that DKK3 may have an additional oncogenic function other than tumor suppression.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Kenichi Nagano
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Shuichi Fujita
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| |
Collapse
|
9
|
Zhou C, Zhao J, Liu J, Wei S, Xia Y, Xia W, Bi Y, Yan Z, Huang H. LncRNA SNHG16 promotes epithelial- mesenchymal transition via down-regulation of DKK3 in gastric cancer. Cancer Biomark 2019; 26:393-401. [PMID: 31561329 DOI: 10.3233/cbm-190497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chunhuan Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Juanjuan Zhao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Juanjuan Liu
- Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xia
- Department of Clinical Laboratory, The First Hospital Attached to Guiyang College of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wansong Xia
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Bi
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Pang Q, Hu W, Zhang X, Pang M. Wnt/β-Catenin Signaling Pathway-Related Proteins (DKK-3, β-Catenin, and c-MYC) Are Involved in Prognosis of Nasopharyngeal Carcinoma. Cancer Biother Radiopharm 2019; 34:436-443. [PMID: 31025872 DOI: 10.1089/cbr.2019.2771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is one of the highly conserved signaling pathway widely reported to play essential roles in the development of various tumors and human cancers, thus serving as a potential target for anticancer therapy. However, the specific effects of the related proteins in the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC) still remain elusive. Thus, this study was performed to uncover the correlation between the Wnt/β-catenin signaling pathway-related proteins and the clinical characteristics and prognosis of NPC. NPC tissues were revealed to present high expression of β-catenin and v-myc myelocytomatosis viral oncogene homolog (c-MYC) but low expression of Dickkopf-3 (DKK-3). Immunohistochemical staining revealed that DKK-3 was positively linked to but β-catenin and c-MYC were negatively linked to differentiation, tumor-node-metastasis (TNM) stage and lymph node metastasis of patients with NPC. In addition, c-MYC was identified to be positively correlated to DKK-3 in NPC tissues. The positive expression of β-catenin and c-MYC had negative relations with and that of DKK-3 had positive relations with survival rate of patients with NPC, which was analyzed by Kaplan-Meier method. Moreover, it was shown that later TNM stage and positive expression of β-catenin were risk factors for NPC-related death. These findings provide evidence that the proteins related to the Wnt/β-catenin signaling pathway (DKK-3, β-catenin, and c-MYC) participate in the development of NPC and positive expression of DKK-3 and negative expression of β-catenin, and c-MYC can serve as essential prognostic biomarkers, shedding new light on the prognosis and treatment of NPC.
Collapse
Affiliation(s)
- Qiran Pang
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Wenting Hu
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Xinglin Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Mingjie Pang
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| |
Collapse
|
11
|
Yan Y, Yan H, Wang Q, Zhang L, Liu Y, Yu H. Micro
RNA
10a induces glioma tumorigenesis by targeting myotubularin‐related protein 3 and regulating the Wnt/β‐catenin signaling pathway. FEBS J 2019; 286:2577-2592. [PMID: 30927504 DOI: 10.1111/febs.14824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Hua Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Qin Wang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Le Zhang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Ying Liu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Haimiao Yu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| |
Collapse
|
12
|
Busceti CL, Di Menna L, Bianchi F, Mastroiacovo F, Di Pietro P, Traficante A, Bozza G, Niehrs C, Battaglia G, Bruno V, Fornai F, Volpe M, Rubattu S, Nicoletti F. Dickkopf-3 Causes Neuroprotection by Inducing Vascular Endothelial Growth Factor. Front Cell Neurosci 2018; 12:292. [PMID: 30258353 PMCID: PMC6143799 DOI: 10.3389/fncel.2018.00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Dickkopf-3 (Dkk3) is an atypical member of the Dkk family of Wnt inhibitors, which has been implicated in the pathophysiology of neurodegenerative disorders. However, the role of Dkk3 in mechanisms of cell degeneration and protection is unknown. We used Dkk3 knockout mice to examine how endogenous Dkk3 influences ischemic brain damage. In addition, we used primary cultures of astrocytes or mixed cultures of astrocytes and neurons to investigate the action of Dkk3 on cell damage and dissect the underlying molecular mechanisms. In a model of focal brain ischemia induced by permanent middle cerebral artery (MCA) occlusion (MCAO) Dkk3−/− mice showed a significantly greater infarct size with respect to their wild-type counterparts at all time points investigated (1, 3 and 7 days after MCAO). Immunohistochemical analysis showed that Dkk3 expression was enhanced at the borders of the ischemic focus, and was predominantly detected in astrocytes. This raised the possibility that Dkk3 produced by astrocytes acted as a protective molecule. We tested this hypothesis using either primary cultures of cortical astrocytes or mixed cortical cultures containing both neurons and astrocytes. Genetic deletion of Dkk3 was permissive to astrocyte damage induced by either oxidative stress or glucose deprivation. In addition, application of human recombinant Dkk3 (hrDkk3) was highly protective against oxidative stress in cultured astrocytes. We tested the hypothesis that the protective activity of Dkk3 was mediated byvascular endothelial growth factor (VEGF). Interestingly, glucose deprivation up-regulated both Dkk3 and VEGF in cultured astrocytes prepared from wild-type mice. VEGF induction was not observed in astrocytes lacking Dkk3 (i.e., in cultures prepared from Dkk3−/− mice). In mixed cultures of cortical cells, excitotoxic neuronal death induced by a brief pulse with N-methyl-D-aspartate (NMDA) was significantly enhanced when Dkk3 was lacking in astrocytes, whereas post-NMDA addition of hrDkk3 was neuroprotective. Neuroprotection by hrDkk3 was significantly reduced by pharmacological blockade of type-2 VEGF receptors and was mimicked by hrVEGF. These data offer the first evidence that Dkk3 protects both neurons and astrocytes against a variety of toxic insults, and at least in culture, protection involves VEGF induction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| |
Collapse
|
13
|
Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers? J Cell Physiol 2018; 233:4595-4605. [PMID: 29206297 DOI: 10.1002/jcp.26313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022]
Abstract
Wnt signaling is an evolutionary highly conserved pathway that is modulated by several inhibitors and activators, and plays a key role in numerous physiological processes. One of the extracellular Wnt inhibitors is the DKK (Dickkopf Homolog) family which has four members (Dkk1-4) and a unique Dkk3-related gene, Dkkl1 (soggy). DKK3 is a divergent member of the DKK protein family. Evidence suggests that DKK3 may serve as a potential therapeutic target in several types of human cancers. We review here the biological role of DKK3 as a tumor suppressor gene (TSG) or oncogene, and its correlation with various miRNAs. In addition, we discuss the role of polymorphisms and promoter methylation of the DKK3 gene, and of its expression in regulating cancer cell proliferation. Finally, we propose that DKK3 may be considered as both a biomarker and a therapeutic target in different cancers.
Collapse
Affiliation(s)
- Leila Hamzehzadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
MacKay HJ, Levine DA, Bae-Jump VL, Bell DW, McAlpine JN, Santin A, Fleming GF, Mutch DG, Nephew KP, Wentzensen N, Goodfellow PJ, Dorigo O, Nijman HW, Broaddus R, Kohn EC. Moving forward with actionable therapeutic targets and opportunities in endometrial cancer: NCI clinical trials planning meeting report on identifying key genes and molecular pathways for targeted endometrial cancer trials. Oncotarget 2017; 8:84579-84594. [PMID: 29137450 PMCID: PMC5663622 DOI: 10.18632/oncotarget.19961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
The incidence and mortality rates from endometrial cancer are increasing. There have been no new drugs approved for the treatment of endometrial cancer in decades. The National Cancer Institute, Gynecologic Cancer Steering Committee identified the integration of molecular and/or histologic stratification into endometrial cancer management as a top strategic priority. Based on this, they convened a group of experts to review the molecular data in this disease. Here we report on the actionable opportunities and therapeutic directions identified for incorporation into future clinical trials.
Collapse
Affiliation(s)
- Helen J. MacKay
- Division of Medical Oncology & Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Douglas A. Levine
- Division of Gynecologic Cancer, Department of OB/GYN, NYU Langone Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, CA, United States
| | - Daphne W. Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute/NIH, MSC 8000, Bethesda, ML, United States
| | - Jessica N. McAlpine
- University of British Columbia & BC Cancer Agency, Division of Gynecologic Oncology, Vancouver, British Columbia, Canada
| | - Alessandro Santin
- Department of Gynecology, Obstetrics and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Gini F. Fleming
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - David G. Mutch
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, United States
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, ML, United States
| | - Paul J. Goodfellow
- James Comprehensive Cancer Center and The Department of Obstetrics and Gynecology, Ohio State University, Columbus, OH, United States
| | - Oliver Dorigo
- Division Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford, CA, United States
| | - Hans W. Nijman
- Department of Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Russell Broaddus
- Department of Pathology, Unit 85, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Elise C. Kohn
- Clinical Investigations Branch of The Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, ML, United States
| |
Collapse
|
15
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
16
|
Wu Y, He J, Guo C, Zhang Y, Yang W, Xin M, Liang X, Yin X, Wang J, Liu Y. Serum biomarker analysis in patients with recurrent spontaneous abortion. Mol Med Rep 2017; 16:2367-2378. [PMID: 28677727 PMCID: PMC5547932 DOI: 10.3892/mmr.2017.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) occurs in 1–5% of parturients. The sustained therapy and research for RSA is expensive, which is a serious issue faced by both patients and doctors. The aim of the present study was to detect protein expression profiles in the serum of RSA patients and healthy controls, and to identify potential biomarkers for this disease. A 1,000-protein microarray consisting of a combination of Human L-507 and L-493 was used. The microarray data revealed that eight serum protein expression levels were significantly upregulated and 143 proteins were downregulated in RSA patients compared with the healthy controls. ELISA individually validated 5 of these 151 proteins in a larger cohort of patients and control samples, demonstrating a significant decrease in insulin-like growth factor-binding protein-related protein 1 (IFGBP-rp1)/IGFBP-7, Dickkopf-related protein 3 (Dkk3), receptor for advanced glycation end products (RAGE) and angiopoietin-2 levels in patients with RSA. Sensitivity and specificity analyses were calculated by a receiver operating characteristics curve, and were revealed to be 0.881, 0.823, 0.79 and 0.814, with diagnostic cut-off points of 95.44 ng/ml for IFGBP-rp1, 32.84 ng/ml for Dkk3, 147.27 ng/ml for RAGE and 441.40 ng/ml for angiopoietin-2. The present study indicated that these four proteins were downregulated in RSA samples and may be useful as biomarkers for the prediction and diagnosis of RSA. Subsequent studies in larger-scale cohorts are required to further validate the diagnostic value of these markers.
Collapse
Affiliation(s)
- Ying Wu
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Chunyu Guo
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Xinyun Liang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yanfeng Liu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
17
|
Kim MS, Lee HN, Kim HJ, Myung SC. Single nucleotide polymorphisms in DKK3 gene are associated with prostate cancer risk and progression. Int Braz J Urol 2016; 41:869-97. [PMID: 26689513 PMCID: PMC4756964 DOI: 10.1590/s1677-5538.ibju.2014.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
We had investigated whether sequence variants within DKK3 gene are associated with the development of prostate cancer in a Korean study cohort. We evaluated the association between 53 single nucleotide polymorphisms (SNPs) in the DKK3 gene and prostate cancer risk as well as clinical characteristics (PSA, clinical stage, pathological stage and Gleason score) in Korean men (272 prostate cancer subjects and 173 benign prostate hyperplasia subjects) using unconditional logistic regression analysis. Of the 53 SNPs and 25 common haplotypes, 5 SNPs and 4 haplotypes were associated with prostate cancer risk (P=0.02-0.04); 3 SNPs and 2 haplotypes were significantly associated with susceptibility to prostate cancer, however 2 SNPs and 2 haplotypes exhibited a significant protective effect on prostate cancer. Logistic analyses of the DKK3 gene polymorphisms with several prostate cancer related factors showed that several SNPs were significant; three SNPs and two haplotypes to PSA level, three SNPs and two haplotypes to clinical stage, nine SNPs and two haplotype to pathological stage, one SNP and one haplotypes to Gleason score. To the author's knowledge, this is the first report documenting that DKK3 polymorphisms are not only associated with prostate cancer but also related to prostate cancer-related factors.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Urology, Seoul Medical Center, Seoul, Korea
| | - Ha Na Lee
- Department of Urology, Seoul Seonam Hospital, EwhaWomans University, Seoul, Korea
| | - Hae Jong Kim
- Research Institue for Biomedical and Pharmaceutical Sciences, Chung-Ang University, Seoul, Korea.,Advanced Urogenital Diseas Research Center, Chung-Ang University, College of Medicine, Seoul, Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University, College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. J Transl Med 2016; 96:239-48. [PMID: 26641069 DOI: 10.1038/labinvest.2015.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
To date, the role of Dickkopf 3 (Dkk3) on the pathogenesis of familial dilated cardiomyopathy (FDCM), and whether and how Dkk3 interferes with Wnt signaling in heart tissues remains unknown. Here, we demonstrate that strong Dkk3 expression was markedly downregulated in adult hearts from WT mice, and Dkk3 expression was upregulated suddenly in hearts from DCM mouse models. Using Dkk3 transgenic and knockout mice, as well as cTnT(R141W) transgenic mice, which manifests progressive chamber dilation and contractile dysfunction and has pathologic phenotypes similar to human DCM patients, we determined that transgenic expression of Dkk3 increased survival rate, improved cardiac morphology breakage and dysfunction, and ameliorated cardiac pathological changes in the cTnT(R141W) mice. In contrast, Dkk3 knockout reduced the survival rate and aggravated the pathological phenotypes of the cTnT(R141W) mice. The protective effects of Dkk3 appeared clearly at 3 months of age, peaked at 6 months of age, and decreased at 10 months of age in the cTnT(R141W) mice. Furthermore, we determined that Dkk3 upregulated Dvl1 (Dishevelled 1) and key proteins of the canonical Wnt pathway (cytoplasmic and nuclear β-catenin, c-Myc, and Axin2) and downregulated key proteins of the noncanonical Wnt pathway (c-Jun N-terminal kinase (JNK), Ca(2+)/calmodulin-dependent protein kinase II (CAMKII), and histone deacetylase 4 (HDAC4)). In contrast, Dkk3 knockout reversed these changes in the cTnT(R141W) mice. In summary, Dkk3 could prevent FDCM development in mice, especially in the compensatory stage, and probably through activation of the canonical and inhibition of the noncanonical Wnt pathway, which suggested that Dkk3 could serve as a therapeutic target for the treatment of cardiomyopathy and heart failure.
Collapse
|
19
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
20
|
Utreja A, Dyment NA, Yadav S, Villa MM, Li Y, Jiang X, Nanda R, Rowe DW. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthritis Cartilage 2016; 24:335-44. [PMID: 26362410 PMCID: PMC4757844 DOI: 10.1016/j.joca.2015.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The generation of transgenic mice expressing green fluorescent proteins (GFPs) has greatly aided our understanding of the development of connective tissues such as bone and cartilage. Perturbation of a biological system such as the temporomandibular joint (TMJ) within its adaptive remodeling capacity is particularly useful in analyzing cellular lineage progression. The objectives of this study were to determine: (i) if GFP reporters expressed in the TMJ indicate the different stages of cell maturation in fibrocartilage and (ii) how mechanical loading affects cellular response in different regions of the cartilage. DESIGN/METHODS Four-week-old transgenic mice harboring combinations of fluorescent reporters (Dkk3-eGFP, Col1a1(3.6 kb)-GFPcyan, Col1a1(3.6 kb)-GFPtpz, Col2a1-GFPcyan, and Col10a1-RFPcherry) were used to analyze the expression pattern of transgenes in the mandibular condylar cartilage (MCC). To study the effect of TMJ loading, animals were subjected to forced mouth opening with custom springs exerting 50 g force for 1 h/day for 5 days. Dynamic mineralization and cellular proliferation (EdU-labeling) were assessed in loaded vs control mice. RESULTS Dkk3 expression was seen in the superficial zone of the MCC, followed by Col1 in the cartilage zone, Col2 in the prehypertrophic zone, and Col10 in the hypertrophic zone at and below the tidemark. TMJ loading increased expression of the GFP reporters and EdU-labeling of cells in the cartilage, resulting in a thickness increase of all layers of the cartilage. In addition, mineral apposition increased resulting in Col10 expression by unmineralized cells above the tidemark. CONCLUSION The TMJ responded to static loading by forming thicker cartilage through adaptive remodeling.
Collapse
Affiliation(s)
- A Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - N A Dyment
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - S Yadav
- Department of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - M M Villa
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Y Li
- Biology Department, College of Arts and Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - X Jiang
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - R Nanda
- Department of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - D W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.
| |
Collapse
|
21
|
Eskander RN, Ali S, Dellinger T, Lankes HA, Randall LM, Ramirez NC, Monk BJ, Walker JL, Eisenhauer E, Hoang BH. Expression Patterns of the Wnt Pathway Inhibitors Dickkopf3 and Secreted Frizzled-Related Proteins 1 and 4 in Endometrial Endometrioid Adenocarcinoma: An NRG Oncology/Gynecologic Oncology Group Study. Int J Gynecol Cancer 2016; 26:125-32. [PMID: 26397159 PMCID: PMC5061499 DOI: 10.1097/igc.0000000000000563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The aim of the study was to determine the differential expression patterns of the wingless-type (Wnt) pathway inhibitors Dkk3 (Dickkopf 3), SFRP1 (secreted frizzled-related protein 1), and SFRP4 in normal müllerian tissue and endometrial endometrioid adenocarcinoma specimens. METHODS Messenger RNA (mRNA) and protein levels of the Wnt pathway inhibitors Dkk3, SFRP1, and SFRP4 were evaluated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. A total of 87 human tissue specimens were obtained from 60 women who participated in Gynecologic Oncology Group protocol 210. Twenty-seven normal müllerian tissues, 32 early-stage, and 28 advanced-stage endometrial endometrioid cancer specimens were analyzed. RESULTS Median age for this cohort was 60 years, with median body mass index of 32 kg/m. There was a difference in Dkk3 protein expression between normal müllerian tissues and primary endometrial endometrioid adenocarcinoma samples (P = 0.05). There was down-regulation of Dkk3, SFRP1, and SFRP4 mRNA expression in patients with high-grade disease (P = 0.08, 0.06, and 0.05, respectfully). Furthermore, a decrease in SFRP1 and SFPR4 mRNA expression was noted in patients with a diagnosis of locoregional and distant disease recurrence. Lastly, a trend toward decreased progression-free survival in patients with low Dkk3, SFRP1, and SFRP4 mRNA expression levels was noted. CONCLUSIONS Wnt pathway inhibitor (Dkk3, sFRP1, and/or sFRP4) expression was down-regulated in patients with high-grade disease and was associated with locoregional and distant disease recurrence. Despite sample size (power) limitations, these results support previous preclinical studies and may suggest a therapeutic role for Wnt signaling in endometrial cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Chemokines
- Cohort Studies
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Ramez N. Eskander
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Irvine, Medical Center, Orange, CA
| | - Shamshad Ali
- Gynecologic Oncology Group, Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY
| | - Thanh Dellinger
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Heather A. Lankes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Leslie M. Randall
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Irvine, Medical Center, Orange, CA
| | - Nilsa C. Ramirez
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Bradley J. Monk
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Arizona Cancer Center, Creighton University School of Medicine, St Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Joan L. Walker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Oklahoma, Oklahoma City, OK
| | - Eric Eisenhauer
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bang H. Hoang
- Department of Orthopedic Surgery, University of California, Irvine, Orange, CA
| |
Collapse
|
22
|
Buhtoiarova TN, Brenner CA, Singh M. Endometrial Carcinoma: Role of Current and Emerging Biomarkers in Resolving Persistent Clinical Dilemmas. Am J Clin Pathol 2016; 145:8-21. [PMID: 26712866 DOI: 10.1093/ajcp/aqv014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Type II and other high-grade endometrial carcinomas may challenge conventional treatment due to recurrence and metastatic spread and therefore are a persistent clinical dilemma. Effective targeted therapy for these is a goal for clinicians and researchers alike. METHODS An extensive review of the literature has been performed for obtaining an in-depth understanding of the clinicopathological characteristics, etiologic factors, and molecular profile of these subsets of endometrial carcinoma. Progress made with current and emerging biomarkers for prognosis assessment and therapeutic targeting has been summarized. RESULTS There has been a significant increase in research on potential biomarkers of endometrial cancer, and beneficial targeted therapies have been identified. CONCLUSIONS Clinical trials are leading the charge for substantial gains toward personalized treatment of aggressive endometrial carcinoma subtypes.
Collapse
Affiliation(s)
| | - Carol A Brenner
- Office of the Vice Dean for Faculty Affairs and Faculty Development, Stony Brook University School of Medicine, State University of New York at Stony Brook, Stony Brook
| | - Meenakshi Singh
- From the Department of Pathology Department of Pathology, University of Kansas School of Medicine, Kansas City.
| |
Collapse
|
23
|
Ford CE, Henry C, Llamosas E, Djordjevic A, Hacker N. Wnt signalling in gynaecological cancers: A future target for personalised medicine? Gynecol Oncol 2015; 140:345-51. [PMID: 26432042 DOI: 10.1016/j.ygyno.2015.09.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023]
Abstract
The three major gynaecological cancers, ovarian, uterine and cervical, contribute a significant burden to global cancer mortality, and affect women in both developed and developing countries. However, unlike other cancer types that have seen rapid advances and incorporation of targeted treatments in recent years, personalised medicine is not yet a reality in the treatment of gynaecological cancers. Advances in sequencing technology and international collaborations and initiatives such as The Cancer Genome Atlas are now revealing the molecular basis of these cancers, and highlighting key signalling pathways involved. One pathway which plays a role in all three cancer types, is the Wnt signalling pathway. This complex developmental pathway is altered in most human malignancies, and members of this pathway, particularly the recently linked ROR receptor tyrosine kinases may be attractive future therapeutic targets. This review provides an up-to-date summary of research into Wnt signalling and ovarian, uterine and cervical cancers, and discusses the potential of the Wnt pathway as a future target for personalised medicine in gynaecological cancers.
Collapse
Affiliation(s)
- C E Ford
- Metastasis Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Australia.
| | - C Henry
- Metastasis Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Australia
| | - E Llamosas
- Metastasis Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Australia
| | - A Djordjevic
- Metastasis Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Australia
| | - N Hacker
- Royal Hospital for Women, School of Women and Children's Health, University of New South Wales, Australia
| |
Collapse
|
24
|
Kim BR, Lee EJ, Seo SH, Lee SH, Rho SB. Dickkopf-3 (DKK-3) obstructs VEGFR-2/Akt/mTOR signaling cascade by interacting of β2-microglobulin (β2M) in ovarian tumorigenesis. Cell Signal 2015; 27:2150-9. [PMID: 26278164 DOI: 10.1016/j.cellsig.2015.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
In this study, we investigated a possible mechanism of β2-microglobulin (β2M) function in cancer metastases in vitro, using a human ovarian carcinoma cell line. β2M, a modulator acts as a cell growth-promoting and cellular signaling factors, was identified as a dickkopf-3 (DKK-3) interacting protein. We also observed that DKK-3 suppresses endothelial cell angiogenesis of β2M through vascular endothelial growth factor receptor-2 (VEGFR-2) in tumorigenesis. Luciferase activity was remarkably reduced by the transfection of DKK-3 in a dose-dependent manner. In addition, over-expression of β2M activates cell growth by suppressing DKK-3-induced apoptosis. The effect of β2M on cell cycle and apoptosis-regulatory components was also confirmed through the silencing of β2M expression. Furthermore, induction of β2M-mediated VEGFR-2/Akt/mTOR phosphorylation and tumor angiogenesis was significantly suppressed by over-expression of DKK-3. Taken together, our results suggest an underlying mechanism for an increase of β2M-related activity in ovarian tumor cells.
Collapse
Affiliation(s)
- Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, 224-1, Heuksuk-Dong, Dongjak-Gu, Seoul 156-755, Republic of Korea
| | - Seung Hee Seo
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, 470, Samga-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-714, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea.
| |
Collapse
|
25
|
Takata A, Terauchi M, Hiramitsu S, Uno M, Wakana K, Kubota T. Dkk-3 induces apoptosis through mitochondrial and Fas death receptor pathways in human mucinous ovarian cancer cells. Int J Gynecol Cancer 2015; 25:372-9. [PMID: 25514350 DOI: 10.1097/igc.0000000000000340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Dkk-3 is a Wnt signaling inhibitor that is frequently inactivated in human cancers. Dkk-3 possesses an antiproliferative activity and induces apoptosis in tumor cells, suggesting that it functions as a tumor suppressor. In this study, we investigated the molecular function of Dkk-3 in human ovarian cancer cells. METHODS We assessed the levels of Dkk-3 protein expression in human mucinous and clear cell ovarian cancer cells, and compared cell viabilities between cell lines that expressed Dkk-3 and those that did not, as well as between cells that expressed Dkk-3 and those whose expression of Dkk-3 was reduced by small interfering RNA. We also evaluated the characteristic fragmentation of DNA to detect apoptosis in Dkk-3-deficient cells. To further investigate the molecular mechanisms of apoptosis, we assessed the expression of molecules involved in apoptosis signaling pathways in Dkk-3-deficient cells. RESULTS The expression of the Dkk-3 protein was observed in most of the ovarian cancer cell lines tested. Dkk-3-deficient cells showed faster growth than Dkk-3-replete cells. The characteristic fragmentation of DNA was not observed in Dkk-3-deficient cells, which showed decreased levels of expression in caspase-3, activated caspase-9, Bax, p53, activated caspase-8, and Fas/CD95, as well as an increase in Bcl-2 expression. CONCLUSIONS Although Dkk-3 expression was observed in most of human ovarian cancer cell lines, Dkk-3 has a tumor-suppressive function and a proapoptotic effect, inducing apoptosis through mitochondrial and Fas death receptor pathways in human mucinous ovarian cancer MCAS cells.
Collapse
Affiliation(s)
- Aiko Takata
- Departments of *Comprehensive Reproductive Medicine, and †Women's Health, Tokyo Medical and Dental University; and ‡Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Xiang T, Li L, Yin X, Zhong L, Peng W, Qiu Z, Ren G, Tao Q. Epigenetic silencing of the WNT antagonist Dickkopf 3 disrupts normal Wnt/β-catenin signalling and apoptosis regulation in breast cancer cells. J Cell Mol Med 2013; 17:1236-46. [PMID: 23890219 PMCID: PMC4159020 DOI: 10.1111/jcmm.12099] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour-specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial-mesenchymal transition (EMT) and down-regulating stem cell markers. DKK3 inhibited canonical Wnt/β-catenin signalling through mediating β-catenin translocation from nucleus to cytoplasm and membrane, along with reduced active-β-catenin, further activating non-canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.
Collapse
Affiliation(s)
- Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research InstituteShatin, Hong Kong
| | - Xuedong Yin
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research InstituteShatin, Hong Kong
| | - Weiyan Peng
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhu Qiu
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qian Tao
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research InstituteShatin, Hong Kong
| |
Collapse
|
27
|
Warden CD, Kanaya N, Chen S, Yuan YC. BD-Func: a streamlined algorithm for predicting activation and inhibition of pathways. PeerJ 2013; 1:e159. [PMID: 24058887 PMCID: PMC3775632 DOI: 10.7717/peerj.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/22/2013] [Indexed: 12/28/2022] Open
Abstract
BD-Func (BiDirectional FUNCtional enrichment) is an algorithm that calculates functional enrichment by comparing lists of pre-defined genes that are known to be activated versus inhibited in a pathway or by a regulatory molecule. This paper shows that BD-Func can correctly predict cell line alternations and patient characteristics with accuracy comparable to popular algorithms, with a significantly faster run-time. BD-Func can compare scores for individual samples across multiple groups as well as provide predictive statistics and receiver operating characteristic (ROC) plots to quantify the accuracy of the signature associated with a binary phenotypic variable. BD-Func facilitates collaboration and reproducibility by encouraging users to share novel molecular signatures in the BD-Func discussion group, which is where the novel progesterone receptor and LBH589 signatures from this paper can be found. The novel LBH589 signature presented in this paper also serves as a case study showing how a custom signature using cell line data can accurately predict activity in vivo. This software is available to download at https://sourceforge.net/projects/bdfunc/.
Collapse
Affiliation(s)
- Charles D Warden
- Bioinformatics Core, Department of Molecular Medicine , Duarte, CA , United States
| | | | | | | |
Collapse
|
28
|
SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett 2013; 336:379-89. [PMID: 23545177 DOI: 10.1016/j.canlet.2013.03.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 11/20/2022]
Abstract
SOX2 was reported to promote metastasis in various tumor tissues; however the underlying mechanisms remain elusive. Here, we disclosed that SOX2 improves metastasis of breast and prostate cancer cells by promoting epithelial-to-mesenchymal transition (EMT) through WNT/β-catenin, but not TGF-β or Snail1 signaling. Dual luciferase assay and chromatin immunoprecipitation revealed activation and binding of SOX2 on promoter region of β-catenin. In addition, SOX2 affects the protein expression levels of DKK3, DVL1 and DVL3, which are regulators or downstream molecules of WNT signaling. Taken together, our findings demonstrated β-catenin as one of vital downstream molecules that mediate the EMT induced by SOX2.
Collapse
|
29
|
Chen L, Tweddle DA. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front Oncol 2012; 2:173. [PMID: 23226679 PMCID: PMC3508619 DOI: 10.3389/fonc.2012.00173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/01/2012] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.
Collapse
Affiliation(s)
- Lindi Chen
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University Newcastle, UK
| | | |
Collapse
|
30
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|