1
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Wan PKT, Fernandes RA, Seymour LW. Oncolytic viruses and antibodies: are they more successful when delivered separately or when engineered as a single agent? J Immunother Cancer 2023; 11:e006518. [PMID: 37541690 PMCID: PMC10407364 DOI: 10.1136/jitc-2022-006518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 08/06/2023] Open
Abstract
Oncolytic viruses (OVs) provide the promise of tumor-selective cytotoxicity coupled with amplification of the therapeutic agent (the virus) in situ within the tumor improving its therapeutic index. Despite this promise, however, single agent-treatments have not been as successful as combination therapies, particularly combining with checkpoint inhibitor antibodies. The antibodies may be delivered by two approaches, either encoded within the OV genome to restrict antibody production to sites of active virus infection or alternatively given alongside OVs as separate treatments. Both approaches have shown promising therapeutic outcomes, and this leads to an interesting question of whether one approach is potentially better than the other. In this review, we provide a brief summary of the combination OV-antibody therapies that target tumor cells, tumor microenvironment and immune cells to help define key parameters influencing which approach is superior, thereby improving insight into the rational design of OV treatment strategies.
Collapse
|
3
|
Abstract
Gene therapy is a powerful biological tool that is reshaping therapeutic landscapes for several diseases. Researchers are using both non-viral and viral-based gene therapy methods with success in the lab and the clinic. In the cancer biology field, gene therapies are expanding treatment options and the possibility of favorable outcomes for patients. While cellular immunotherapies and oncolytic virotherapies have paved the way in cancer treatments based on genetic engineering, recombinant adeno-associated virus (rAAV), a viral-based module, is also emerging as a potential cancer therapeutic through its malleability, specificity, and broad application to common as well as rare tumor types, tumor microenvironments, and metastatic disease. A wide range of AAV serotypes, promoters, and transgenes have been successful at reducing tumor growth and burden in preclinical studies, suggesting more groundbreaking advances using rAAVs in cancer are on the horizon.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers (Basel) 2022; 14:cancers14133238. [PMID: 35805007 PMCID: PMC9265289 DOI: 10.3390/cancers14133238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review discusses all the major advances in gene therapy of gynaecological disorders, highlighting the novel and potentially therapeutic perspectives associated with such an approach. It specifically focuses on the gene therapy strategies against major gynaecological malignant disorders, such as ovarian, cervical, and endometrial cancer, as well as benign disorders, such as uterine leiomyomas, endometriosis, placental, and embryo implantation disorders. The above therapeutic strategies, which employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation approaches, have yielded promising results over the last decade, setting the grounds for successful clinical trials. Abstract Despite the major advances in screening and therapeutic approaches, gynaecological malignancies still present as a leading cause of death among women of reproductive age. Cervical cancer, although largely preventable through vaccination and regular screening, remains the fourth most common and most lethal cancer type in women, while the available treatment schemes still pose a fertility threat. Ovarian cancer is associated with high morbidity rates, primarily due to lack of symptoms and high relapse rates following treatment, whereas endometrial cancer, although usually curable by surgery, it still represents a therapeutic problem. On the other hand, benign abnormalities, such as fibroids, endometriosis, placental, and embryo implantation disorders, although not life-threatening, significantly affect women’s life and fertility and have high socio-economic impacts. In the last decade, targeted gene therapy approaches toward both malignant and benign gynaecological abnormalities have led to promising results, setting the ground for successful clinical trials. The above therapeutic strategies employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation. This review discusses all the major advances in gene therapy of gynaecological disorders and highlights the novel and potentially therapeutic perspectives associated with such an approach.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- Correspondence:
| | - Kalliopi I. Pappa
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
5
|
Stegelmeier AA, Santry LA, Guilleman MM, Matuszewska K, Minott JA, Yates JGE, Stevens BAY, Thomas SP, Vanderkamp S, Hanada K, Pei Y, Rghei AD, van Vloten JP, Pereira M, Thompson B, Major PP, Petrik JJ, Bridle BW, Wootton SK. AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines 2022; 10:biomedicines10020362. [PMID: 35203573 PMCID: PMC8962366 DOI: 10.3390/biomedicines10020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Matthew M. Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Brenna A. Y. Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sierra Vanderkamp
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kiersten Hanada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Amira D. Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | | | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
- Correspondence: ; Tel.: +1-519-824-4210 (ext. 54729)
| |
Collapse
|
6
|
Bower JJ, Song L, Bastola P, Hirsch ML. Harnessing the Natural Biology of Adeno-Associated Virus to Enhance the Efficacy of Cancer Gene Therapy. Viruses 2021; 13:v13071205. [PMID: 34201599 PMCID: PMC8309980 DOI: 10.3390/v13071205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Adeno-associated virus (AAV) was first characterized as small “defective” contaminant particles in a simian adenovirus preparation in 1965. Since then, a recombinant platform of AAV (rAAV) has become one of the leading candidates for gene therapy applications resulting in two FDA-approved treatments for rare monogenic diseases and many more currently in various phases of the pharmaceutical development pipeline. Herein, we summarize rAAV approaches for the treatment of diverse types of cancers and highlight the natural anti-oncogenic effects of wild-type AAV (wtAAV), including interactions with the cellular host machinery, that are of relevance to enhance current treatment strategies for cancer.
Collapse
Affiliation(s)
- Jacquelyn J. Bower
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Correspondence: (J.J.B.); (M.L.H.)
| | - Liujiang Song
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prabhakar Bastola
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew L. Hirsch
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (J.J.B.); (M.L.H.)
| |
Collapse
|
7
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
8
|
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020; 12:E1889. [PMID: 32674264 PMCID: PMC7409174 DOI: 10.3390/cancers12071889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have gained tremendous attention as in vivo delivery systems in gene therapy for inherited monogenetic diseases. First market approvals, excellent safety data, availability of large-scale production protocols, and the possibility to tailor the vector towards optimized and cell-type specific gene transfer offers to move from (ultra) rare to common diseases. Cancer, a major health burden for which novel therapeutic options are urgently needed, represents such a target. We here provide an up-to-date overview of the strategies which are currently developed for the use of AAV vectors in cancer gene therapy and discuss the perspectives for the future translation of these pre-clinical approaches into the clinic.
Collapse
Affiliation(s)
- Ulrich T. Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Dorota Kaniowska
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Page A, Fusil F, Cosset FL. Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers (Basel) 2020; 12:E962. [PMID: 32295072 PMCID: PMC7226531 DOI: 10.3390/cancers12040962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancers represent highly significant health issues and the options for their treatment are often not efficient to cure the disease. Immunotherapy strategies have been developed to modulate the patient's immune system in order to eradicate cancerous cells. For instance, passive immunization consists in the administration at high doses of exogenously produced monoclonal antibodies directed either against tumor antigen or against immune checkpoint inhibitors. Its main advantage is that it provides immediate immunity, though during a relatively short period, which consequently requires frequent injections. To circumvent this limitation, several approaches, reviewed here, have emerged to induce in vivo antibody secretion at physiological doses. Gene delivery vectors, such as adenoviral vectors or adeno-associated vectors, have been designed to induce antibody secretion in vivo after in situ cell modification, and have driven significant improvements in several cancer models. However, anti-idiotypic antibodies and escape mutants have been detected, probably because of both the continuous expression of antibodies and their expression by unspecialized cell types. To overcome these hurdles, adoptive transfer of genetically modified B cells that secrete antibodies either constitutively or in a regulated manner have been developed by ex vivo transgene insertion with viral vectors. Recently, with the emergence of gene editing technologies, the endogenous B cell receptor loci of B cells have been modified with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas-9) system to change their specificity in order to target a given antigen. The expression of the modified BCR gene hence follows the endogenous regulation mechanisms, which may prevent or at least reduce side effects. Although these approaches seem promising for cancer treatments, major questions, such as the persistence and the re-activation potential of these engineered cells, remain to be addressed in clinically relevant animal models before translation to humans.
Collapse
Affiliation(s)
| | | | - François-Loïc Cosset
- CIRICentre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (A.P.); (F.F.)
| |
Collapse
|
10
|
Crystal RG. My Pathway to Gene Therapy. Hum Gene Ther 2020; 31:273-282. [DOI: 10.1089/hum.2020.29112.rgc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Antiangiogenic Vascular Endothelial Growth Factor-Blocking Peptides Displayed on the Capsid of an Infectious Oncolytic Parvovirus: Assembly and Immune Interactions. J Virol 2019; 93:JVI.00798-19. [PMID: 31315994 DOI: 10.1128/jvi.00798-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022] Open
Abstract
As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.
Collapse
|
12
|
Cao J, Liu X, Yuan Y, Wang F, Kong W, Shi G, Li W, Zhang C. A rAAV2/6 Mutant with Enhanced Targeting for Mouse Retinal Müller Cells. Curr Eye Res 2019; 45:64-71. [PMID: 31294618 DOI: 10.1080/02713683.2019.1639768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: Adeno-associated virus vector (AAV) is the most accepted gene delivery vector for retinal gene therapy. Müller cells play an important role in maintaining homeostasis and neuronal structural integrity, stability and it has been found to be involved in many retinopathies. The aim of this study is to identify a rAAV2/6 mutant which has increased tropism for Müller cell of the mouse retina.Materials and Methods: Using amino acid mutagenesis, we created a rAAV2/6 capsid mutant, rAAV2/6-S663L. In vivo imaging and retinal flat mount were employed to analyze the gene expression of rAAV2/6-S663L and wt rAAV2/6 in mouse retinal tissue. Retinal tissue cryosection, immunohistochemistry (IHC), Müller cell-specific promoter-controlled gene expression, and double AAV fluorescent protein co-expression were performed to determine the targeting of rAAV2/6-S663L for mouse retinal Müller cells.Results: In vivo imaging, retinal flat mount and retinal tissue cryosection results showed that rAAV2/6-S663L and wt rAAV2/6 have different specific tropisms in mouse retina and rAAV2/6-S663L is more preferentially targeting Müller cells. Müller cell-specific promoter-controlled gene expression experiments and IHC test confirmed that rAAV2/6-S663L has a higher tendency to infect Müller cells than wt rAAV2/6. Co-infection of the mouse retina with one rAAV2/6-S663L expressing EGFP under the control of GFAP promoter and the other one expressing mCherry under the control of CMV promoter revealed co-expression of the two fluorescent proteins in Müller cells.Conclusions: The results confirmed that rAAV2/6-S663L has a higher tropism for Müller cells than wt rAAV2/6. Our findings could add a new useful tool for retinal disease gene therapy.
Collapse
Affiliation(s)
- Jinjing Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Yun Yuan
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Feifei Wang
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Wen Kong
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Shanghai, China
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, China.,Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Chun Zhang
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
13
|
Yu DL, Stegelmeier AA, Chow N, Rghei AD, Matuszewska K, Lawler J, Bridle BW, Petrik JJ, Wootton SK. AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Ther 2019; 27:356-367. [PMID: 31160686 DOI: 10.1038/s41417-019-0108-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
An integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus. Previously, we showed that treatment with recombinant 3TSR induces tumor regression, normalizes tumor vasculature, and improves uptake of chemotherapy drugs in an orthotopic, syngeneic mouse model of advanced stage epithelial ovarian cancer (EOC). While effective, this intervention required daily intraperitoneal injections. To circumvent this, here we employ adeno-associated virus (AAV) gene therapy vectors to express 3TSR alone or in combination with the CD47-binding peptide of TSP-1 and evaluate the impact on tumor development and survival in a mouse model of EOC. A single intraperitoneal injection of 1 × 1011 vg of AAV expressing 3TSR, CD47-binding peptide, or 3TSR + CD47 effectively suppressed primary tumor growth; however, only AAV-3TSR was able to inhibit development of secondary lesions at 90-days post-tumor implantation and significantly improve survival. Taken together, AAV-mediated expression of 3TSR appears safe and effective at inhibiting tumor development and represents a novel, less invasive approach for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Darrick L Yu
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Natalie Chow
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY, Hua KQ. Exosomal Metastasis‑Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci 2018; 14:1960-1973. [PMID: 30585260 PMCID: PMC6299373 DOI: 10.7150/ijbs.28048] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022] Open
Abstract
Exosomes mediate cell-cell crosstalk in cancer progression by transferring their molecular cargos, including long noncoding RNAs (lncRNAs). Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) is a well-known lncRNA associated with cancer angiogenesis and metastasis. However, the presence of MALAT1 in exosomes and the roles and clinical values of exosomal MALAT1 in epithelial ovarian cancer (EOC) remain unknown. The present study focused on the crosstalk between EOC cells and endothelial cells mediated by exosomal MALAT1 and aimed to explore the roles of exosomes and exosomal MALAT1 in EOC angiogenesis and to reveal the clinical relevance and prognostic predictive value of serum exosomal MALAT1 in EOC. We observed that MALAT1 was increased in both metastatic EOC cells and their secreted exosomes. Exosomal MALAT1 derived from EOC cells was transferred to recipient human umbilical vein endothelial cells (HUVECs) via exosomes. In vitro and in vivo experiments demonstrated that MALAT1 knockdown impaired the exosome-mediated proangiogenic activity of HUVECs through certain key angiogenesis-related genes. Clinically, elevated serum exosomal MALAT1 was highly correlated with an advanced and metastatic phenotype of EOC and was an independent predictive factor for EOC overall survival (OS). Moreover, a prognostic nomogram model we constructed showed a good prediction of the probability of 3-year OS of EOC patients according to the c-index (0.751, 95% confidence interval [CI]=0.691-0.811) and calibration curve. Collectively, our data provide a novel mechanism by which EOC cells transfer MALAT1 via exosomes to recipient HUVECs and influence HUVECs by stimulating angiogenesis-related gene expression, eventually promoting angiogenesis. Additionally, circulating exosomal MALAT1 can serve as a promising serum-based, noninvasive predictive biomarker for EOC prognosis.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Xiao-Jing Lin
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Xiao-Yan Tang
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Ting-Ting Zheng
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Ying-Ying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Ke-Qin Hua
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| |
Collapse
|
15
|
Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent Progress in Gene Therapy for Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19071930. [PMID: 29966369 PMCID: PMC6073662 DOI: 10.3390/ijms19071930] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
16
|
CRYSTAL RONALDG, PAGOVICH ODELYAE. THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2018; 129:250-265. [PMID: 30166721 PMCID: PMC6116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.
Collapse
|
17
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Büning H, Hacker UT. Inhibitors of Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:261-85. [DOI: 10.1007/978-3-319-32805-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Toro Bejarano M, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother 2015; 4:169-81. [PMID: 27512680 PMCID: PMC4918394 DOI: 10.2147/ov.s66045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.
Collapse
Affiliation(s)
- Marcela Toro Bejarano
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jaime R Merchan
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
21
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
22
|
AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer. Proc Natl Acad Sci U S A 2015. [PMID: 26216943 DOI: 10.1073/pnas.1510604112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer.
Collapse
|
23
|
Zhao X, Zou Y, Gu Q, Zhao G, Gray H, Pfeffer LM, Yue J. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells. Viruses 2015; 7:2965-79. [PMID: 26067567 PMCID: PMC4488722 DOI: 10.3390/v7062755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/31/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1) is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7) cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA) construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT) by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA) and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.
Collapse
Affiliation(s)
- Xianqi Zhao
- Department of Medicine, Harbin Medical University, Harbin 150086, China.
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Yanan Zou
- Department of Medicine, Harbin Medical University, Harbin 150086, China.
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Qingqing Gu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Horace Gray
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| |
Collapse
|