1
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
McNamara B, Greenman M, Pebley N, Mutlu L, Santin AD. Antibody-Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors. Molecules 2023; 28:7389. [PMID: 37959808 PMCID: PMC10650896 DOI: 10.3390/molecules28217389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of targeted anti-cancer therapies that combine a monoclonal tumor-surface-receptor-targeting antibody with a highly cytotoxic molecule payload bonded through specifically designed cleavable or non-cleavable chemical linkers. One such tumor surface receptor is human epidermal growth factor 2 (HER2), which is of interest for the treatment of many gynecologic tumors. ADCs enable the targeted delivery of a variety of cytotoxic therapies to tumor cells while minimizing delivery to healthy tissues. This review summarizes the existing literature about HER2-targeting ADC therapies approved for use in gynecologic malignancies, relevant preclinical studies, strategies to address ADC resistance, and ongoing clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro D. Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Xia X, Gong C, Zhang Y, Xiong H. The History and Development of HER2 Inhibitors. Pharmaceuticals (Basel) 2023; 16:1450. [PMID: 37895921 PMCID: PMC10610116 DOI: 10.3390/ph16101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
HER2 is highly expressed in a variety of malignant tumors and affects the prognosis of patients, making it a highly sensitive target for cancer therapy. Since the approval of the first HER2 inhibitor, trastuzumab, in 1998, HER2-targeted drugs have rapidly evolved. Currently, targeting HER2 drugs mainly include monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs). This article reviews the development of HER2 inhibitors for various tumors over the past 20 years.
Collapse
Affiliation(s)
- Xiaohui Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Ogundipe OD, Olajubutu O, Adesina SK. Targeted drug conjugate systems for ovarian cancer chemotherapy. Biomed Pharmacother 2023; 165:115151. [PMID: 37473683 DOI: 10.1016/j.biopha.2023.115151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
5
|
McNamara B, Chang Y, Goreshnik A, Santin AD. Value of Antibody Drug Conjugates for Gynecological Cancers: A Modern Appraisal Following Recent FDA Approvals. Int J Womens Health 2023; 15:1353-1365. [PMID: 37663226 PMCID: PMC10474218 DOI: 10.2147/ijwh.s400537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody drug conjugates (ADCs) are a new class of targeted anti-cancer therapies that combine a monoclonal tumor surface receptor-targeting antibody with a highly cytotoxic molecule payload. They enable delivery of cytotoxic therapy more directly to tumor cells and minimize delivery to healthy tissues. This review summarizes the existing literature about ADC therapies approved for use in gynecologic malignancies, relevant preclinical studies, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yifan Chang
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ashley Goreshnik
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
McNamara B, Mutlu L, Greenman M, Harold J, Santin A. HER2 Oncogene as Molecular Target in Uterine Serous Carcinoma and Uterine Carcinosarcoma. Cancers (Basel) 2023; 15:4085. [PMID: 37627113 PMCID: PMC10452357 DOI: 10.3390/cancers15164085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) are two rare histologic variants of uterine carcinoma, with distinct molecular profiles and aggressive metastatic potential. As the effectivity of traditional platinum-based chemotherapy for USC and UCS is low, and there are high rates of resistance and recurrence, the development of novel targeted therapeutics is needed. Human epidermal growth factor receptor 2 (HER2) has proven to be an oncogene of increasing interest in these cancers, as HER2 protein overexpression and/or c-ERBB2 gene amplification ranges from ~30 to 35% in USC, and between ~15 and 20% in UCS. This review summarizes the existing clinical and preclinical evidence, as well as ongoing clinical trials of HER2-targeting therapeutics, and identifies potential areas of further development and inquiry.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, LSOG 305, P.O. Box 208063, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Bengtsson C, Gravenfors Y. Rapid Construction of a Chloromethyl-Substituted Duocarmycin-like Prodrug. Molecules 2023; 28:4818. [PMID: 37375372 DOI: 10.3390/molecules28124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of duocarmycin-like compounds is often associated with lengthy synthetic routes. Presented herein is the development of a short and convenient synthesis of a type of duocarmycin prodrug. The 1,2,3,6-tetrahydropyrrolo[3,2-e]indole-containing core is here constructed from commercially available Boc-5-bromoindole in four steps and 23% overall yield, utilizing a Buchwald-Hartwig amination followed by a sodium hydride-induced regioselective bromination. In addition, protocols for selective mono- and di-halogenations of positions 3 and 4 were also developed, which could be useful for further exploration of this scaffold.
Collapse
Affiliation(s)
- Christoffer Bengtsson
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| | - Ylva Gravenfors
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| |
Collapse
|
8
|
Han C, McNamara B, Bellone S, Harold J, Manara P, Hartwich TMP, Mutlu L, Yang-Hartwich Y, Zipponi M, Demirkiran C, Verzosa SM, Altwerger G, Ratner E, Huang GS, Clark M, Andikyan V, Azodi M, Dottino PR, Schwartz PE, Santin AD. The Poly (ADP-ribose) polymerase inhibitor olaparib and pan-ErbB inhibitor neratinib are highly synergistic in HER2 overexpressing epithelial ovarian carcinoma in vitro and in vivo. Gynecol Oncol 2023; 170:172-178. [PMID: 36706643 PMCID: PMC10023457 DOI: 10.1016/j.ygyno.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical efficacy of the Poly (ADP-ribose) polymerase (PARP) inhibitor (olaparib) and the pan-ErbB inhibitor (neratinib) as single agents and in combination in ovarian cancer cell lines and xenografts with variable HER2 expression. METHODS In vitro cell viability with olaparib, neratinib, and their combination was assessed using flow-cytometry based assays against a panel of OC primary cell lines with variable HER2 expression. Immunoblotting experiments were performed to elucidate the mechanism of activity and synergism. The in vivo antitumor activity of the olaparib/neratinib combination versus single agents was tested in HER2 positive xenograft OC models. RESULTS HER2 + OC cell lines demonstrated higher sensitivity to olaparib and neratinib when compared to HER2 negative tumors (i.e., IC50: 2.06 ± 0.33 μM vs. 39.28 ± 30.51 μM, p = 0.0035 for olaparib and 19.42 ± 2.63 nM vs. 235.0 ± 165.0 nM, p = 0.0035 for neratinib). The combination of olaparib with neratinib was more potent when compared to single-agent olaparib or neratinib both in vitro and in vivo, and demonstrated synergy in all primary HER2 + OC models. Western blot experiments showed neratinib decreased pHER2/neu while increased Poly(ADP-ribose) (PAR) enzymatic activity; olaparib increased pHER2/Neu expression and blocked PAR activatio. Olaparib/neratinib in combination decreased both pHER2/Neu as well as PAR activation. CONCLUSION The combination of olaparib and neratinib is synergistic and endowed with remarkable preclinical activity against HER2+ ovarian cancers. This combination may represent a novel therapeutic option for ovarian cancer patients with HER2+, homologous recombination-proficient tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Skylar Miguel Verzosa
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gloria S. Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Mitchell Clark
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter R. Dottino
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| |
Collapse
|
9
|
von Arx C, De Placido P, Caltavituro A, Di Rienzo R, Buonaiuto R, De Laurentiis M, Arpino G, Puglisi F, Giuliano M, Del Mastro L. The evolving therapeutic landscape of trastuzumab-drug conjugates: Future perspectives beyond HER2-positive breast cancer. Cancer Treat Rev 2023; 113:102500. [PMID: 36587473 DOI: 10.1016/j.ctrv.2022.102500] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
A novel class of drugs, antibody-drug conjugates (ADCs), are now rapidly emerging as highly effective treatments for solid tumours. ADCs conjugate conventional chemotherapeutics with highly selective targeted monoclonal antibodies. Anti-HER2 therapies selectively target cancer cells expressing human epidermal growth factor receptor 2 (HER2), among them trastuzumab has been the first HER2-targeting monoclonal antibody to achieve successful results that made it the backbone of anti-HER2 therapies. Trastuzumab drug conjugates (T-DCs), use trastuzumab as a selective antibody to lead cytotoxic drugs inside cancer cells. Trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-Dxd) are the two approved T-DCs. T-Dxd along with other five T-DCs represents "second generation ADCs" that has been firstly tested in HER2 positive breast cancer (BC) and then in HER2-low BC and other cancers showing promising results thanks to extraordinary and innovative pharmacokinetic and pharmacodynamic characteristics. The evidence generated so far are establishing them as a completely new class of agents effective in solid cancer treatments but also warrants physicians against unconventional toxicity profiles. The role of T-DCs in HER2-positive BC has been largely reviewed, while in this review, we provided for the first time in literature an overview of trastuzumab drug conjugates (T-DCs) approved and/or in clinical development with a specific focus on their efficacy and safety profile in HER2-low BC and other solid tumours different from BC. We started by analysing T-DCs biological characteristics that underly the differences in T-DCs pharmacodynamics and safety profile, then presented the main evidence on the activity and efficacy of these emerging T-DCs in HER2-low BC and other HER2 overexpressing and/or mutated solid tumours and lastly, we provided an overview of the complex and still evolving scenario in which these compounds should be allocated. A specific focus on possible combination strategies with other drugs such as immunotherapy, chemotherapy and target therapy, to increase T-DCs activity and eventually overcome future upcoming resistance mechanisms, are here also critically reviewed.
Collapse
Affiliation(s)
- Claudia von Arx
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy.
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rossana Di Rienzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy; Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Summarizing the current preclinical and clinical evidence about bystander effect of antibody-drug conjugates (ADCs) in solid tumors. RECENT FINDINGS One of the main challenges of treating solid tumors with ADCs is the heterogeneous expression of the target antigen (Ag), which however may be overcome by the so-called bystander killing effect. This unique, but still debated, feature of certain ADCs is represented by the unintentional payload diffusion from Ag-positive tumor cells to adjacent Ag-negative tumor cells. Some pharmacological characteristics, such as a hydrophobic payload or a cleavable linker, seem to play a major role in this effect. Abundant preclinical evidence of the bystander effect has emerged, and the clinical activity of ADCs in tumors with a heterogeneous Ag expression suggests the relevance of this feature. Additional studies are required to investigate if the bystander effect is necessary for achieving a solid activity with ADCs.
Collapse
|
12
|
Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci 2022; 9:847835. [PMID: 35295841 PMCID: PMC8919033 DOI: 10.3389/fmolb.2022.847835] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Members of the human epidermal growth factor receptor (HER) family, which includes HER1 (also known as EGFR), HER2, HER3 and HER4, have played a central role in regulating cell proliferation, survival, differentiation and migration. The overexpression of the HER family has been recognized as one of the most common cellular dysregulation associated with a wide variety of tumor types. Antibody-drug conjugates (ADCs) represent a new and promising class of anticancer therapeutics that combine the cancer specificity of antibodies with cytotoxicity of chemotherapeutic drugs. Two HER2-directed ADCs, trastuzumane-emtansine (T-DM1) and trastuzumab-deruxtecan (DS-8201a), have been approved for HER2-positive metastatic breast cancer by the U.S. Food and Drug Administration (FDA) in 2013 and 2019, respectively. A third HER2-directed ADC, disitamab vedotin (RC48), has been approved for locally advanced or metastatic gastric or gastroesophageal junction cancer by the NMPA (National Medical Products Administration) of China in 2021. A total of 11 ADCs that target HER family receptors (EGFR, HER2 or HER3) are currently under clinical trials. In this review article, we summarize the three approved ADCs (T-DM1, DS-8201a and RC48), together with the investigational EGFR-directed ADCs (ABT-414, MRG003 and M1231), HER2-directed ADCs (SYD985, ARX-788, A166, MRG002, ALT-P7, GQ1001 and SBT6050) and HER3-directed ADC (U3-1402). Lastly, we discuss the major challenges associated with the development of ADCs, and highlight the possible future directions to tackle these challenges.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Zhang X, Huang AC, Chen F, Chen H, Li L, Kong N, Luo W, Fang J. Novel development strategies and challenges for anti-Her2 antibody-drug conjugates. Antib Ther 2022; 5:18-29. [PMID: 35146330 PMCID: PMC8826051 DOI: 10.1093/abt/tbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibody-drug conjugates (ADCs) combining potent cytotoxicity of small-molecule drugs with the selectivity and excellent pharmacokinetic profile of monoclonal antibody (mAb) are promising therapeutic modalities for a diverse range of cancers. Owing to overexpression in a wide range of tumors, human epidermal growth factor receptor 2 (Her2) is one of the most utilized targeting antigens for ADCs to treat Her2-positive cancers. Owing to the high density of Her2 antigens on the tumor cells and high affinity and high internalization capacity of corresponding antibodies, 56 anti-Her2 ADCs which applied >10 different types of novel payloads had entered preclinical or clinical trials. Seven of 12 Food and Drug Administration (FDA)-approved ADCs including Polivy (2019), Padcev (2019), EnHertu (2019), Trodelvy (2020), Blenrep (2020), Zynlonta (2021), and Tivdak) (2021) have been approved by FDA in the past three years alone, indicating that the maturing of ADC technology brings more productive clinical outcomes. This review, focusing on the anti-Her2 ADCs in clinical trials or on the market, discusses the strategies to select antibody formats, the linkages between linker and mAb, and effective payloads with particular release and action mechanisms for a good clinical outcome.
Collapse
Affiliation(s)
- Xinling Zhang
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Andrew C Huang
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Fahai Chen
- CEO Office, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Hu Chen
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Lele Li
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Nana Kong
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Wenting Luo
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Martín-Sabroso C, Lozza I, Torres-Suárez AI, Fraguas-Sánchez AI. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics 2021; 13:1705. [PMID: 34683998 PMCID: PMC8541375 DOI: 10.3390/pharmaceutics13101705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decade, antibody-drug conjugates (ADCs), normally formed by a humanized antibody and a small drug via a chemical cleavable or non-cleavable linker, have emerged as a potential treatment strategy in cancer disease. They allow to get a selective delivery of the chemotherapeutic agents at the tumor level, and, consequently, to improve the antitumor efficacy and, especially to decrease chemotherapy-related toxicity. Currently, nine antibody-drug conjugate-based formulations have been already approved and more than 80 are under clinical trials for the treatment of several tumors, especially breast cancer, lymphomas, and multiple myeloma. To date, no ADCs have been approved for the treatment of gynecological formulations, but many formulations have been developed and have reached the clinical stage, especially for the treatment of ovarian cancer, an aggressive disease with a low five-year survival rate. This manuscript analyzes the ADCs formulations that are under clinical research in the treatment of gynecological carcinomas, specifically ovarian, endometrial, and cervical tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irene Lozza
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today 2021; 26:1857-1874. [PMID: 34224904 DOI: 10.1016/j.drudis.2021.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hui Zhao
- Office of Scientific Research, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
16
|
Xu Y, Zhang L, Xia L, Zhu X. MicroRNA-133a-3p suppresses malignant behavior of non-small cell lung cancer cells by negatively regulating ERBB2. Oncol Lett 2021; 21:457. [PMID: 33907567 DOI: 10.3892/ol.2021.12718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has high morbidity and mortality rates worldwide, and tumor metastasis is generally associated with poor prognosis. Chemotherapy resistance aggravates the challenges associated with treating NSCLC. Therefore, identifying effective targets and developing therapies based on these findings could bring novel perspectives for patients with metastatic NSCLC. The expression levels of receptor tyrosine-protein kinase erbB-2 (ERBB2) are associated with NSCLC progression. Differential microRNA (miR) expression profiles have been identified in tumors and can be used to identify multiple malignant phenotypes. miR-133a-3p expression is dysregulated in a variety of tumors. However, to the best of our knowledge, the association between miR-133a-3p and the NSCLC pathogenesis process has not been demonstrated yet. The present study revealed a decrease in miR-133a-3p expression in both tissues and cell lines, which was detected using reverse transcription-quantitative (RT-q)PCR, and western blotting and RT-qPCR demonstrated ERBB2 levels were increased at both protein and mRNA levels. Bioinformatics analysis and dual-luciferase reporter assays demonstrated that ERBB2 was a direct target of miR-133a-3p. Furthermore, MTT, wound healing and Transwell assays revealed that overexpression of miR-133a-3p suppressed proliferation, invasion and migration of NSCLC cells, respectively, effects that were inhibited following ERBB2 overexpression. In addition, immunofluorescence assays demonstrated that overexpression of ERBB2 upregulated N-cadherin expression, while E-cadherin expression was downregulated. In conclusion, the present data demonstrated that miR-133a-3p acted as a tumor suppressor by negatively regulating ERBB2 expression. The miR-133a-3p/ERBB2 axis may be a potential target for the diagnosis and treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Lei Zhang
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
17
|
Miller JT, Vitro CN, Fang S, Benjamin SR, Tumey LN. Enzyme-Agnostic Lysosomal Screen Identifies New Legumain-Cleavable ADC Linkers. Bioconjug Chem 2021; 32:842-858. [PMID: 33788548 DOI: 10.1021/acs.bioconjchem.1c00124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the past two decades, antibody drug conjugates (ADCs) and small molecule drug conjugates (SMDCs) have widely employed valine-citruline and related cathepsin-cleavable linkers due to their stability in plasma and their rapid cleavage by lysosomal cathepsins. However, a number of recent studies have illustrated that these linkers are subject to cleavage by exogenous enzymes such as Ces1C and neutrophil elastase, thus resulting in off-target release of drug. As such, there is a need to diversify the portfolio of ADC linkers in order to overcome nonspecific drug release. Rather than targeting cathepsins, we began with an "enzyme agnostic" screen in which a panel of 75 peptide FRET pairs were screened for cleavage in lysosomal extracts and in plasma. Unexpectedly, a series of Asn-containing peptides emerged from this screen as being cleaved far more quickly than traditional ValCit-type linkers while retaining excellent stability in plasma. Catabolism studies demonstrated that these linkers were cleaved by legumain, an asparaginyl endopeptidase that is overexpressed in a variety of cancers and is known to be present in the lysosome. MMAE-containing ADCs that incorporated these new linkers were shown to exhibit highly potent and selective cytotoxicity, comparable to analogous ValCit ADCs. Importantly, the Asn-containing linkers were shown to be completely stable to human neutrophil elastase, an enzyme thought to be responsible for the neutropenia and thrombocytopenia associated with ValCitPABC-MMAE ADCs. The legumain-cleavable ADCs were shown to have excellent stability in both mouse and human serum, retaining >85% of the drug after 1 week of incubation. Moreover, the corresponding small molecule FRET pairs exhibited <10% cleavage after 18 h in mouse and human serum. On the basis of these results, we believe that these new linkers (AsnAsn in particular) have significant potential in both ADC and SMDC drug delivery applications.
Collapse
Affiliation(s)
- Jared T Miller
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Caitlin N Vitro
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Samantha R Benjamin
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| |
Collapse
|
18
|
Tymon-Rosario J, Zeybek B, Santin AD. Novel antibody-drug conjugates: current and future roles in gynecologic oncology. Curr Opin Obstet Gynecol 2021; 33:26-33. [PMID: 32618744 PMCID: PMC8253558 DOI: 10.1097/gco.0000000000000642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) represent a new class of drugs that combine a surface receptor-targeting antibody linked to a cytotoxic molecule. This review summarizes the current literature demonstrating their tremendous promise as therapeutic agents in the treatment of aggressive gynecologic malignancies. RECENT FINDINGS Several antigens have proven to be differentially overexpressed in a variety of gynecologic tumors when compared with normal surrounding tissue and serve as novel targets for ADC therapy. In the last few years HER2/neu, folic acid-alpha (FRα) and Trop-2 overexpression have been exploited as excellent targets by novel ADCs such as Trastuzumab emtansine (T-DM1), SYD985, IMGN853 (Mirvetuximab soravtansine) and Sacituzumab govitecan (SG, IMMU-132) in multiple tumors including ovarian, endometrial and cervical cancers. Although the selectivity of ADCs with noncleavable linkers (i.e. T-DM1) has shown negligible effect on surrounding antigen negative cells, those ADCs with cleavable linkers (i.e. SYD985, IMGN853 and SG) may kill both antigen-positive target cells and surrounding antigen-negative cells via the bystander effect. SUMMARY Preclinical data strongly supports these ADCs and ongoing clinical trials will shed further light into the potential of making these drugs part of current standard practice and providing our patients with a higher level of personalized cancer care.
Collapse
Affiliation(s)
- Joan Tymon-Rosario
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
19
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
20
|
Cartwright OC, Beekman AM, Cominetti MMD, Russell DA, Searcey M. A Peptide–Duocarmycin Conjugate Targeting the Thomsen-Friedenreich Antigen Has Potent and Selective Antitumor Activity. Bioconjug Chem 2020; 31:1745-1749. [DOI: 10.1021/acs.bioconjchem.0c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Charles Cartwright
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
| | - Andrew Michael Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
| | - Marco M. D. Cominetti
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
| | - David A. Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, United Kingdom
| |
Collapse
|
21
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
22
|
Gonda K, Negishi H, Takano-Kasuya M, Kitamura N, Furusawa N, Nakano Y, Hamada Y, Tokunaga M, Higuchi H, Tada H, Ishida T. Heterogeneous Drug Efficacy of an Antibody-Drug Conjugate Visualized Using Simultaneous Imaging of Its Delivery and Intracellular Damage in Living Tumor Tissues. Transl Oncol 2020; 13:100764. [PMID: 32403030 PMCID: PMC7218300 DOI: 10.1016/j.tranon.2020.100764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | - Hiroshi Negishi
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Naoko Furusawa
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yasushi Nakano
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yoh Hamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Masayuki Tokunaga
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
23
|
Derakhshani A, Rezaei Z, Safarpour H, Sabri M, Mir A, Sanati MA, Vahidian F, Gholamiyan Moghadam A, Aghadoukht A, Hajiasgharzadeh K, Baradaran B. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol 2020; 235:3142-3156. [PMID: 31566722 DOI: 10.1002/jcp.29216] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20-30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Sabri
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Atefeh Mir
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Mohammad Amin Sanati
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghadoukht
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Perrone E, Lopez S, Zeybek B, Bellone S, Bonazzoli E, Pelligra S, Zammataro L, Manzano A, Manara P, Bianchi A, Buza N, Tymon-Rosario J, Altwerger G, Han C, Menderes G, Ratner E, Silasi DA, Azodi M, Hui P, Schwartz PE, Scambia G, Santin AD. Preclinical Activity of Sacituzumab Govitecan, an Antibody-Drug Conjugate Targeting Trophoblast Cell-Surface Antigen 2 (Trop-2) Linked to the Active Metabolite of Irinotecan (SN-38), in Ovarian Cancer. Front Oncol 2020; 10:118. [PMID: 32117765 PMCID: PMC7028697 DOI: 10.3389/fonc.2020.00118] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Sacituzumab govitecan (SG) is a novel antibody-drug-conjugate (ADC) targeting trophoblast-antigen-2 (Trop-2), a cell surface glycoprotein highly expressed in many epithelial tumors, to deliver SN-38, the active metabolite of irinotecan. This study aimed to evaluate Trop-2 expression in EOC tissues and the preclinical activity of SG against primary EOC cell lines and xenografts. Methods: Trop-2 expression was assessed in 90 formalin-fixed-paraffin-embedded tumors and nine primary tumor cell lines by immunohistochemistry (IHC) and flow cytometry, respectively. Trop-2 expression and cell viability after exposure to SG in primary tumor cell lines, non-targeting control ADC, and SG-parental antibody hRS7 were evaluated using flow-cytometry-based-assays. Antibody-dependent-cell-cytotoxicity (ADCC) against Trop-2+ and Trop-2- EOC cell lines was tested in vitro using 4 h Chromium-release-assays. In vivo activity of SG was evaluated against Trop-2+ EOC xenografts. Results: Moderate-to-strong staining was seen in 47% (42/90) of ovarian tumors by IHC while 89% (8/9) of the primary EOC cell lines overexpressed Trop-2 by flow cytometry. EOC Trop-2+ were significantly more sensitive to SG compared to control ADC (p < 0.05). Both SG and hRS7 mediated high ADCC activity against Trop-2+ cell lines. SG also induced significant bystander killing of Trop-2- tumor cells admixed with Trop-2+ EOC cells. In in vivo experiments SG treatment demonstrated impressive anti-tumor activity against chemotherapy-resistant EOC xenografts. Conclusion: SG demonstrates remarkable preclinical activity against biologically aggressive and chemotherapy-resistant EOC cell lines and a significant bystander effect against EOC cell lines with heterogenous Trop-2 expression. Clinical trials are warranted.
Collapse
Affiliation(s)
- Emanuele Perrone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
- Department of Woman and Child Health Sciences, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Lopez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Burak Zeybek
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Elena Bonazzoli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Silvia Pelligra
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Aranzazu Manzano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Anna Bianchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Joan Tymon-Rosario
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Gulden Menderes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Giovanni Scambia
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
26
|
Ma Y, Zhang M, Wang J, Huang X, Kuai X, Zhu X, Chen Y, Jia L, Feng Z, Tang Q, Liu Z. High-Affinity Human Anti-c-Met IgG Conjugated to Oxaliplatin as Targeted Chemotherapy for Hepatocellular Carcinoma. Front Oncol 2019; 9:717. [PMID: 31428584 PMCID: PMC6688309 DOI: 10.3389/fonc.2019.00717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most mortality-causing solid cancers globally and the second largest cause of death among malignancies. Oxaliplatin, a platinum-based drug, has been widely utilized in the treatment of malignancies such as colorectal cancer and hepatocellular carcinoma, yet its usage is limited because of severe side effects of cytotoxicity to normal tissues. c-Met, a receptor tyrosine kinase, is expressed aberrantly on the surface of HCC. The purpose of this study was to synthesise a humanized antibody against c-Met (anti-c-Met IgG) and conjugate it to oxaliplatin to develop a novel antibody-drug conjugate (ADC). Anti-c-Met IgG was detected to be loaded with ~4.35 moles oxaliplatin per mole of antibody. ELISA and FCM confirmed that ADC retained a high and selective binding affinity for c-Met protein and c-Met-positive HepG2 cells. In vitro, the cytotoxicity tests and biological function assay indicated that ADC showed much higher cytotoxicity and functioning in c-Met-positive HepG2 cells, compared with shMet-HepG2 cells expressing lower levels of c-Met. Furthermore, compared with free oxaliplatin, ADC significantly improved cytotoxicity to c-Met-positive tumours and avoided off-target cell toxicity in vivo. In conclusion, by targeting c-Met-expressing hepatoma cells, ADC can provide a platform to reduce drug toxicity and improve drug efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yilan Ma
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayan Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xingwang Kuai
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiaojuan Zhu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- Otorhinolaryngological Department, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, Macpherson IR, Boni V, Rolfo C, de Vries EGE, Rottey S, Geenen J, Eskens F, Gil-Martin M, Mommers EC, Koper NP, Aftimos P. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol 2019; 20:1124-1135. [PMID: 31257177 DOI: 10.1016/s1470-2045(19)30328-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trastuzumab duocarmazine is a novel HER2-targeting antibody-drug conjugate comprised of trastuzumab covalently bound to a linker drug containing duocarmycin. Preclinical studies showed promising antitumour activity in various models. In this first-in-human study, we assessed the safety and activity of trastuzumab duocarmazine in patients with advanced solid tumours. METHODS We did a phase 1 dose-escalation and dose-expansion study. The dose-escalation cohort comprised patients aged 18 years or older enrolled from three academic hospitals in Belgium, the Netherlands, and the UK with locally advanced or metastatic solid tumours with variable HER2 status who were refractory to standard cancer treatment. A separate cohort of patients were enrolled to the dose-expansion phase from 15 hospitals in Belgium, the Netherlands, Spain, and the UK. Dose-expansion cohorts included patients aged 18 years or older with breast, gastric, urothelial, or endometrial cancer with at least HER2 immunohistochemistry 1+ expression and measurable disease according to Response Evaluation Criteria in Solid Tumors (RECIST). Trastuzumab duocarmazine was administered intravenously on day 1 of each 3-week cycle. In the dose-escalation phase, trastuzumab duocarmazine was given at doses of 0·3 mg/kg to 2·4 mg/kg (3 + 3 design) until disease progression or unacceptable toxicity. The primary endpoint of the dose-escalation phase was to assess safety and ascertain the recommended phase 2 dose, which would be the dose used in the dose-expansion phase. The primary endpoint of the dose-expansion phase was the proportion of patients achieving an objective response (complete response or partial response), as assessed by the investigator using RECIST version 1.1. This ongoing study is registered with ClinicalTrials.gov, number NCT02277717, and is fully recruited. FINDINGS Between Oct 30, 2014, and April 2, 2018, 39 patients were enrolled and treated in the dose-escalation phase and 146 patients were enrolled and treated in the dose-expansion phase. One dose-limiting toxic effect (death from pneumonitis) occurred at the highest administered dose (2·4 mg/kg) in the dose-escalation phase. One further death occurred in the dose-escalation phase (1·5 mg/kg cohort) due to disease progression, which was attributed to general physical health decline. Grade 3-4 treatment-related adverse events reported more than once in the dose-escalation phase were keratitis (n=3) and fatigue (n=2). Based on all available data, the recommended phase 2 dose was set at 1·2 mg/kg. In the dose-expansion phase, treatment-related serious adverse events were reported in 16 (11%) of 146 patients, most commonly infusion-related reactions (two [1%]) and dyspnoea (two [1%]). The most common treatment-related adverse events (grades 1-4) were fatigue (48 [33%] of 146 patients), conjunctivitis (45 [31%]), and dry eye (45 [31%]). Most patients (104 [71%] of 146) had at least one ocular adverse event, with grade 3 events reported in ten (7%) of 146 patients. No patients died from treatment-related adverse events and four patients died due to disease progression, which were attributed to hepatic failure (n=1), upper gastrointestinal haemorrhage (n=1), neurological decompensation (n=1), and renal failure (n=1). In the breast cancer dose-expansion cohorts, 16 (33%, 95% CI 20·4-48·4) of 48 assessable patients with HER2-positive breast cancer achieved an objective response (all partial responses) according to RECIST. Nine (28%, 95% CI 13·8-46·8) of 32 patients with HER2-low, hormone receptor-positive breast cancer and six (40%, 16·3-67·6) of 15 patients with HER2-low, hormone receptor-negative breast cancer achieved an objective response (all partial responses). Partial responses were also observed in one (6%, 95% CI 0·2-30·2) of 16 patients with gastric cancer, four (25%, 7·3-52·4) of 16 patients with urothelial cancer, and five (39%, 13·9-68·4) of 13 patients with endometrial cancer. INTERPRETATION Trastuzumab duocarmazine shows notable clinical activity in heavily pretreated patients with HER2-expressing metastatic cancer, including HER2-positive trastuzumab emtansine-resistant and HER2-low breast cancer, with a manageable safety profile. Further investigation of trastuzumab duocarmazine for HER2-positive breast cancer is ongoing and trials for HER2-low breast cancer and other HER2-expressing cancers are in preparation. FUNDING Synthon Biopharmaceuticals.
Collapse
Affiliation(s)
- Udai Banerji
- Institute of Cancer Research and The Royal Marsden, London, UK.
| | | | - Cristina Saura
- Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Fiona Thistlethwaite
- The Christie NHS Foundation Trust and The University of Manchester, Manchester, UK
| | | | | | | | | | - Christian Rolfo
- University Hospital Antwerp, Edegem, Belgium; Greenebaum Comprehensive Cancer Center, Maryland University, Baltimore, MD, USA
| | | | | | - Jill Geenen
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | | | - Philippe Aftimos
- Institut Jules Bordet-Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J Med Biotechnol 2019; 11:3-23. [PMID: 30800238 PMCID: PMC6359697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022] Open
Abstract
The design of Antibody Drug Conjugates (ADCs) as efficient targeting agents for tumor cell is still in its infancy for clinical applications. This approach incorporates the antibody specificity and cell killing activity of chemically conjugated cytotoxic agents. Antibody in ADC structure acts as a targeting agent and a nanoscale carrier to deliver a therapeutic dose of cytotoxic cargo into desired tumor cells. Early ADCs encountered major obstacles including, low blood residency time, low penetration capacity to tumor microenvironment, low payload potency, immunogenicity, unusual off-target toxicity, drug resistance, and the lack of stable linkage in blood circulation. Although extensive studies have been conducted to overcome these issues, the ADCs based therapies are still far from having high-efficient clinical outcomes. This review outlines the key characteristics of ADCs including tumor marker, antibody, cytotoxic payload, and linkage strategy with a focus on technical improvement and some future trends in the pipeline.
Collapse
Affiliation(s)
- Mohammad-Reza Nejadmoghaddam
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| |
Collapse
|
29
|
Synthesis of an adenine N-3 substituted CBI adduct by alkylation of adenine with a 1-iodomethylindoline seco-CBI precursor. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Hong Z, Mao X, You J, Liu Z, Shi Y. An Evaluation of HER2-Positive Ovarian Carcinoma Xenografts: From a Novel Therapy to a Noninvasive Monitoring Method. Cancer Biother Radiopharm 2018; 33:411-419. [PMID: 30052070 DOI: 10.1089/cbr.2018.2516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Xinping Mao
- Division of Medical Imageology, GanSu University of Chinese Medicine, Lanzhou City, People's Republic of China
| | - Jiaxi You
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Zengli Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Yizhen Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| |
Collapse
|
31
|
Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y. The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS JOURNAL 2018; 20:103. [DOI: 10.1208/s12248-018-0263-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
|
32
|
Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018; 19:E731. [PMID: 29510526 PMCID: PMC5877592 DOI: 10.3390/ijms19030731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.
Collapse
Affiliation(s)
- Yasar Hoosen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
33
|
Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol 2017; 6:31. [PMID: 29209558 PMCID: PMC5704598 DOI: 10.1186/s40164-017-0091-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
HER2-targeted immunotherapy consists of monoclonal antibodies (e.g. trastuzumab, pertuzumab), bispecific antibodies (e.g. MM-111, ertumaxomab) and activated T cells armed with anti-HER2 bispecific antibody (HER2Bi-aATC). Trastuzumab is a classic drug for the treatment of HER2 positive metastatic breast cancer. The combined application of pertuzumab, trastuzumab and paclitaxel has been suggested as a standard therapy for HER2 positive advanced breast cancer. The resistance to anti-HER2 antibody has resulted in disease progression. HER2-directed bispecific antibody may be a promising therapeutic approach for these patients. Ertumaxomab enhanced the interaction of immune effector cells and tumor cells. MM-111 simultaneously binds to HER2 and HER3 and blocks downstream signaling. Besides, HER2Bi-aATC is also an alternative therapeutic approach for HER2 positive cancers. In this review, we summarized the recent advancement of HER2-targeted monoclonal antibodies (trastuzumab, pertuzumab and T-DM1) and bispecific antibodies (MM-111, ertumaxomab and HER2Bi-aATC), especially focus on clinical trial results.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
34
|
Gregson SJ, Masterson LA, Wei B, Pillow TH, Spencer SD, Kang GD, Yu SF, Raab H, Lau J, Li G, Lewis Phillips GD, Gunzner-Toste J, Safina BS, Ohri R, Darwish M, Kozak KR, Dela Cruz-Chuh J, Polson A, Flygare JA, Howard PW. Pyrrolobenzodiazepine Dimer Antibody-Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. J Med Chem 2017; 60:9490-9507. [PMID: 29112410 DOI: 10.1021/acs.jmedchem.7b00736] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 μg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.
Collapse
Affiliation(s)
- Stephen J Gregson
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Luke A Masterson
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Binqing Wei
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Susan D Spencer
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Gyoung-Dong Kang
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Shang-Fan Yu
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Helga Raab
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Lau
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Janet Gunzner-Toste
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian S Safina
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Martine Darwish
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Andrew Polson
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - John A Flygare
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip W Howard
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| |
Collapse
|
35
|
Itai S, Fujii Y, Kaneko MK, Yamada S, Nakamura T, Yanaka M, Saidoh N, Chang YW, Handa S, Takahashi M, Suzuki H, Harada H, Kato Y. H 2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer. Monoclon Antib Immunodiagn Immunother 2017; 36:143-148. [PMID: 28700270 PMCID: PMC6985780 DOI: 10.1089/mab.2017.0026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H2Mab-77 (IgG1, kappa) was selected. Finally, immunohistochemical analyses with H2Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H2Mab-77 to detect HER2 in pathological analyses of breast cancers.
Collapse
Affiliation(s)
- Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yuki Fujii
- 3 Department of Regional Innovation, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Miyuki Yanaka
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Noriko Saidoh
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Yao-Wen Chang
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Saori Handa
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan
| | - Maki Takahashi
- 4 Department of Pathology and Laboratory Medicine, Sendai Medical Center , Miyagino, Miyagino-ku, Sendai, Miyagi, Japan
| | - Hiroyoshi Suzuki
- 4 Department of Pathology and Laboratory Medicine, Sendai Medical Center , Miyagino, Miyagino-ku, Sendai, Miyagi, Japan
| | - Hiroyuki Harada
- 2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,3 Department of Regional Innovation, Tohoku University Graduate School of Medicine , Aoba-ku, Sendai, Miyagi, Japan .,5 New Industry Creation Hatchery Center, Tohoku University , Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|