1
|
Hunt AL, Randall J, Mansukhani MM, Nyberg K, Nutcharoen A, Davis J, Corgiat B, Mueller C, Melvin S, Sharma M, Johnston L, Swain W, Abulez T, Bateman NW, Maxwell GL, Deeken J, Benyounes A, Petricoin EF, Cannon TL, Conrads TP. Real-time functional proteomics enhances therapeutic targeting in precision oncology molecular tumor boards. NPJ Precis Oncol 2025; 9:111. [PMID: 40234655 PMCID: PMC12000509 DOI: 10.1038/s41698-025-00868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Collaborative review of molecular profiling data by multidisciplinary molecular tumor boards (MTB) is increasingly important for improving patient management and outcomes, though currently relies nearly exclusively on nucleic acid next-generation sequencing (NGS) and limited panels of immunohistochemistry-based protein abundance data. We examined the feasibility of incorporating real-time laser microdissection (LMD) enrichment of tumor epithelium and commercial CLIA-based reverse phase protein array (RPPA) protein drug target expression/activation profiling into our cancer center's MTB to complement standard clinical NGS-based profiling. The LMD-RPPA workflow was performed within a therapeutically permissive timeframe with a median dwell time of nine days, during which specimens were processed outside of standard clinical workflows. The RPPA-generated data supported additional and/or alternative therapeutic considerations for 54% of profiled patients following review by the MTB. These findings suggest that integrating proteomic/phosphoproteomic and NGS-based genomic data creates opportunities to further personalize clinical decision-making for precision oncology.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Jamie Randall
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kara Nyberg
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Aratara Nutcharoen
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
- Department of Pathology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Justin Davis
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Brian Corgiat
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Claudius Mueller
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
| | - Savannah Melvin
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Meenakshi Sharma
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Laura Johnston
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Whitney Swain
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - John Deeken
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Amin Benyounes
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA
| | - Emanuel F Petricoin
- Ignite Proteomics Inc., 15000 W 6th Avenue, Golden, CO, 80401, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA, 20110, USA
| | - Timothy L Cannon
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Drive, Fairfax, VA, 22031, USA.
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA, 22003, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
2
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
3
|
Fujimoto H, Yoshihara M, Rodgers R, Iyoshi S, Mogi K, Miyamoto E, Hayakawa S, Hayashi M, Nomura S, Kitami K, Uno K, Sugiyama M, Koya Y, Yamakita Y, Nawa A, Enomoto A, Ricciardelli C, Kajiyama H. Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination. Cancer Metastasis Rev 2024; 43:1037-1053. [PMID: 38546906 PMCID: PMC11300578 DOI: 10.1007/s10555-024-10169-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 08/06/2024]
Abstract
Epithelial ovarian cancer (EOC) is often diagnosed in advanced stage with peritoneal dissemination. Recent studies indicate that aberrant accumulation of collagen fibers in tumor stroma has a variety of effects on tumor progression. We refer to remodeled fibrous stroma with altered expression of collagen molecules, increased stiffness, and highly oriented collagen fibers as tumor-associated fibrosis (TAF). TAF contributes to EOC cell invasion and metastasis in the intraperitoneal cavity. However, an understanding of molecular events involved is only just beginning to emerge. Further development in this field will lead to new strategies to treat EOC. In this review, we focus on the recent findings on how the TAF contributes to EOC malignancy. Furthermore, we will review the recent initiatives and future therapeutic strategies for targeting TAF in EOC.
Collapse
Affiliation(s)
- Hiroki Fujimoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Masato Yoshihara
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Raymond Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Shohei Iyoshi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Kazumasa Mogi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Hayakawa
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maia Hayashi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynaecology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kaname Uno
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University Graduate School of Medicine, Lund, Sweden
| | - Mai Sugiyama
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Koya
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiko Yamakita
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Nawa
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Randall J, Hunt AL, Nutcharoen A, Johnston L, Chouraichi S, Wang H, Winer A, Wadlow R, Huynh J, Davis J, Corgiat B, Bateman NW, Deeken JF, Petricoin EF, Conrads TP, Cannon TL. Quantitative proteomic analysis of HER2 protein expression in PDAC tumors. Clin Proteomics 2024; 21:24. [PMID: 38509475 PMCID: PMC10953162 DOI: 10.1186/s12014-024-09476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Metastatic pancreatic adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, with a 5-year survival rate of only 11%, necessitating identification of novel treatment paradigms. Tumor tissue specimens from patients with PDAC, breast cancer, and other solid tumor malignancies were collected and tumor cells were enriched using laser microdissection (LMD). Reverse phase protein array (RPPA) analysis was performed on enriched tumor cell lysates to quantify a 32-protein/phosphoprotein biomarker panel comprising known anticancer drug targets and/or cancer-related total and phosphorylated proteins, including HER2Total, HER2Y1248, and HER3Y1289. RPPA analysis revealed significant levels of HER2Total in PDAC patients at abundances comparable to HER2-positive (IHC 3+) and HER2-low (IHC 1+ /2+ , FISH-) breast cancer tissues, for which HER2 screening is routinely performed. These data support a critical unmet need for routine clinical evaluation of HER2 expression in PDAC patients and examination of the utility of HER2-directed antibody-drug conjugates in these patients.
Collapse
Affiliation(s)
- Jamie Randall
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Allison L Hunt
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Aratara Nutcharoen
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
- Department of Pathology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Laura Johnston
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Safae Chouraichi
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Hongkun Wang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Arthur Winer
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Raymond Wadlow
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Jasmine Huynh
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Justin Davis
- Theralink Technologies, Inc., 15000 W 6th Ave, Golden, CO, 80401, USA
| | - Brian Corgiat
- Theralink Technologies, Inc., 15000 W 6th Ave, Golden, CO, 80401, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - John F Deeken
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Timothy L Cannon
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA.
| |
Collapse
|
5
|
Teng PN, Schaaf JP, Abulez T, Hood BL, Wilson KN, Litzi TJ, Mitchell D, Conrads KA, Hunt AL, Olowu V, Oliver J, Park FS, Edwards M, Chiang A, Wilkerson MD, Raj-Kumar PK, Tarney CM, Darcy KM, Phippen NT, Maxwell GL, Conrads TP, Bateman NW. ProteoMixture: A cell type deconvolution tool for bulk tissue proteomic data. iScience 2024; 27:109198. [PMID: 38439970 PMCID: PMC10910246 DOI: 10.1016/j.isci.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/04/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Numerous multi-omic investigations of cancer tissue have documented varying and poor pairwise transcript:protein quantitative correlations, and most deconvolution tools aiming to predict cell type proportions (cell admixture) have been developed and credentialed using transcript-level data alone. To estimate cell admixture using protein abundance data, we analyzed proteome and transcriptome data generated from contrived admixtures of tumor, stroma, and immune cell models or those selectively harvested from the tissue microenvironment by laser microdissection from high grade serous ovarian cancer (HGSOC) tumors. Co-quantified transcripts and proteins performed similarly to estimate stroma and immune cell admixture (r ≥ 0.63) in two commonly used deconvolution algorithms, ESTIMATE or ConsensusTME. We further developed and optimized protein-based signatures estimating cell admixture proportions and benchmarked these using bulk tumor proteomic data from over 150 patients with HGSOC. The optimized protein signatures supporting cell type proportion estimates from bulk tissue proteomic data are available at https://lmdomics.org/ProteoMixture/.
Collapse
Affiliation(s)
- Pang-ning Teng
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Joshua P. Schaaf
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Katlin N. Wilson
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - David Mitchell
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Allison L. Hunt
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
| | - Victoria Olowu
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Fred S. Park
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Marshé Edwards
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - AiChun Chiang
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Matthew D. Wilkerson
- Center for Military Precision Health, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Christopher M. Tarney
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Neil T. Phippen
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - G. Larry Maxwell
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| |
Collapse
|
6
|
Bateman NW, Abulez T, Soltis AR, McPherson A, Choi S, Garsed DW, Pandey A, Tian C, Hood BL, Conrads KA, Teng PN, Oliver J, Gist G, Mitchell D, Litzi TJ, Tarney CM, Crothers BA, Mhawech-Fauceglia P, Dalgard CL, Wilkerson MD, Pierobon M, Petricoin EF, Yan C, Meerzaman D, Bodelon C, Wentzensen N, Lee JSH, Huntsman DG, Shah S, Shriver CD, Phippen NT, Darcy KM, Bowtell DDL, Conrads TP, Maxwell GL. Proteogenomic analysis of enriched HGSOC tumor epithelium identifies prognostic signatures and therapeutic vulnerabilities. NPJ Precis Oncol 2024; 8:68. [PMID: 38480868 PMCID: PMC10937683 DOI: 10.1038/s41698-024-00519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Anthony R Soltis
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew McPherson
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Seongmin Choi
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
| | - Chunqiao Tian
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Barbara A Crothers
- The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, MD, USA
| | - Paulette Mhawech-Fauceglia
- Department of Anatomic Pathology, Division of Gynecologic Pathology, University of Southern California, Los Angeles, CA, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA
| | - Clara Bodelon
- Division of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA
| | - Jerry S H Lee
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab Shah
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Craig D Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| |
Collapse
|
7
|
Licaj M, Mhaidly R, Kieffer Y, Croizer H, Bonneau C, Meng A, Djerroudi L, Mujangi-Ebeka K, Hocine HR, Bourachot B, Magagna I, Leclere R, Guyonnet L, Bohec M, Guérin C, Baulande S, Kamal M, Le Tourneau C, Lecuru F, Becette V, Rouzier R, Vincent-Salomon A, Gentric G, Mechta-Grigoriou F. Residual ANTXR1+ myofibroblasts after chemotherapy inhibit anti-tumor immunity via YAP1 signaling pathway. Nat Commun 2024; 15:1312. [PMID: 38346978 PMCID: PMC10861537 DOI: 10.1038/s41467-024-45595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.
Collapse
Affiliation(s)
- Monika Licaj
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Rana Mhaidly
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hugo Croizer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Arnaud Meng
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Lounes Djerroudi
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Kevin Mujangi-Ebeka
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hocine R Hocine
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Ilaria Magagna
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Renaud Leclere
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Lea Guyonnet
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Mylene Bohec
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Coralie Guérin
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris-Saclay University, Institut Curie, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Fabrice Lecuru
- Breast, gynecology and reconstructive surgery Department, Institut Curie Hospital Group, Paris Cité University, 26, rue d'Ulm, F-75248, Paris, France
| | - Véronique Becette
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Geraldine Gentric
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| |
Collapse
|
8
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore SC, Abulez T, Driscoll JA, Schaaf JP, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Wilson KN, Litzi TJ, Teng PN, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Darcy KM, Rao UNM, Petricoin EF, Phippen NT, Maxwell GL, Conrads TP. Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. Clin Proteomics 2024; 21:4. [PMID: 38254014 PMCID: PMC10804562 DOI: 10.1186/s12014-024-09451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.
Collapse
Grants
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jordan A Driscoll
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Joshua P Schaaf
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Uma N M Rao
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
9
|
Yi M, Feng Z, He H, Dinulescu D, Xu B. Evaluating Alkaline Phosphatase-Instructed Self-Assembly of d-Peptides for Selectively Inhibiting Ovarian Cancer Cells. J Med Chem 2023; 66:10027-10035. [PMID: 37459116 PMCID: PMC10614160 DOI: 10.1021/acs.jmedchem.3c00949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cancer is a major public health concern requiring novel treatment approaches. Enzyme-instructed self-assembly (EISA) provides a unique approach for selectively inhibiting cancer cells. However, the structure and activity correlation of EISA remains to be explored. This study investigates new EISA substrates of alkaline phosphatase (ALP) to hinder ovarian cancer cells. Analogues 2-8 were synthesized by modifying the amino acid residues of a potent EISA substrate 1 that effectively inhibits the growth of OVSAHO, a high-grade serous ovarian cancer (HGSOC) cell line. The efficacy of 2-8 against OVSAHO was assessed, along with the combination of substrate 1 with clinically used drugs. The results reveal that substrate 1 displays the highest cytotoxicity against OVSAHO cells, with an IC50 of around 8 μM. However, there was limited synergism observed between substrate 1 and the tested clinically used drugs. These findings indicate that EISA likely operates through a distinct mechanism that necessitates further elucidation.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Daniela Dinulescu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
10
|
Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1193622. [PMID: 37383389 PMCID: PMC10295154 DOI: 10.3389/fendo.2023.1193622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ovarian cancer (OC) is a highly lethal and aggressive gynecologic cancer, with an overall survival rate that has shown little improvement over the decades. Robust models are urgently needed to distinguish high-risk cases and predict reliable treatment options for OC. Although anoikis-related genes (ARGs) have been reported to contribute to tumor growth and metastasis, their prognostic value in OC remains unknown. The purpose of this study was to construct an ARG pair (ARGP)-based prognostic signature for patients with OC and elucidate the potential mechanism underlying the involvement of ARGs in OC progression. Methods The RNA-sequencing and clinical information data of OC patients were obtained from The Center Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection Operator Cox analysis to construct a prognostic signature. The predictive ability of the model was validated using an external dataset, a receiver operating characteristic curve, and stratification analysis. The immune microenvironment and the proportion of immune cells were analyzed in high- and low-risk OC cases using seven algorithms. Gene set enrichment analysis and weighted gene co-expression network analysis were performed to investigate the potential mechanisms of ARGs in OC occurrence and prognosis. Results The 19-ARGP signature was identified as an important prognostic predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene function enrichment analysis showed that the high-risk group was characterized by the infiltration of immunosuppressive cells and the enrichment of adherence-related signaling pathway, suggesting that ARGs were involved in OC progression by mediating immune escape and tumor metastasis. Conclusion We constructed a reliable ARGP prognostic signature of OC, and our findings suggested that ARGs exerted a vital interplay in OC immune microenvironment and therapeutic response. These insights provided valuable information regarding the molecular mechanisms underlying this disease and potential targeted therapies.
Collapse
Affiliation(s)
- Yiqi Duan
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ray U, Jung DB, Jin L, Xiao Y, Dasari S, Bhattacharya SS, Thirusangu P, Staub JK, Roy D, Roy B, Weroha SJ, Hou X, Purcell JW, Bakkum-Gamez JN, Kaufmann SH, Kannan N, Mitra AK, Shridhar V. Targeting LRRC15 Inhibits Metastatic Dissemination of Ovarian Cancer. Cancer Res 2022; 82:1038-1054. [PMID: 34654724 PMCID: PMC8930558 DOI: 10.1158/0008-5472.can-21-0622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Dissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with β1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases. Significance: This study identifies that LRRC15 activates β1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deok-Beom Jung
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,ASAN Biomedical Research Center, Seoul, S. Korea
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Subramanyam Dasari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie K. Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Alcorn State University, Lorman, MS, USA
| | - Bhaskar Roy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - James W. Purcell
- Department of Oncology Drug Discovery, AbbVie, South San Francisco, CA, USA
| | | | - Scott H. Kaufmann
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anirban K. Mitra
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| |
Collapse
|
12
|
Wessolly M, Mairinger E, Borchert S, Bankfalvi A, Mach P, Schmid KW, Kimmig R, Buderath P, Mairinger FD. CAF-Associated Paracrine Signaling Worsens Outcome and Potentially Contributes to Chemoresistance in Epithelial Ovarian Cancer. Front Oncol 2022; 12:798680. [PMID: 35311102 PMCID: PMC8927667 DOI: 10.3389/fonc.2022.798680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background High-grade serous ovarian cancer (HGSOC) is the predominant and deadliest form of ovarian cancer. Some of its histological subtypes can be distinguished by frequent occurrence of cancer-associated myofibroblasts (CAFs) and desmoplastic stroma reaction (DSR). In this study, we want to explore the relationship between therapy outcome and the activity of CAF-associated signaling pathways in a homogeneous HGSOC patient collective. Furthermore, we want to validate these findings in a general Epithelial ovarian cancer (EOC) cohort. Methods The investigation cohort consists of 24 HGSOC patients. All of them were treated with platinum-based components and clinical follow-up was available. The validation cohort was comprised of 303 patients. Sequencing data (whole transcriptome) and clinical data were extracted from The Cancer Genome Atlas (TCGA). RNA of HGSOC patients was isolated using a Maxwell RSC instrument and the appropriate RNA isolation kit. For digital expression analysis a custom-designed gene panel was employed. All genes were linked to various DSR- and CAF- associated pathways. Expression analysis was performed on the NanoString nCounter platform. Finally, data were explored using the R programming environment (v. 4.0.3). Result In total, 15 CAF-associated genes were associated with patients’ survival. More specifically, 6 genes (MMP13, CGA, EPHA3, PSMD9, PITX2, PHLPP1) were linked to poor therapy outcome. Though a variety of different pathways appeared to be associated with therapy failure, many were related to CAF paracrine signaling, including MAPK, Ras and TGF-β pathways. Similar results were obtained from the validation cohort. Discussion In this study, we could successfully link CAF-associated pathways, as shown by increased Ras, MAPK and PI3K-Akt signaling to therapy failure (chemotherapy) in HGSOC and EOCs in general. As platinum-based chemotherapy has been the state-of-the-art therapy to treat HGSOC for decades, it is necessary to unveil the reasons behind resistance developments and poor outcome. In this work, CAF-associated signaling is shown to compromise therapy response. In the validation cohort, CAF-associated signaling is also associated with therapy failure in general EOC, possibly hinting towards a conserved mechanism. Therefore, it may be helpful to stratify HGSOC patients for CAF activity and consider alternative treatment options.
Collapse
Affiliation(s)
- Michael Wessolly
- Institute of Pathology, University Hospital Essen, Essen, Germany
- *Correspondence: Michael Wessolly,
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
13
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore S, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Litzi TJ, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Robinson EL, Odunsi K, Sood AK, Casablanca Y, Darcy KM, Shriver CD, Petricoin EF, Rao UN, Maxwell GL, Conrads TP. Extensive three-dimensional intratumor proteomic heterogeneity revealed by multiregion sampling in high-grade serous ovarian tumor specimens. iScience 2021; 24:102757. [PMID: 34278265 PMCID: PMC8264160 DOI: 10.1016/j.isci.2021.102757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Enriched tumor epithelium, tumor-associated stroma, and whole tissue were collected by laser microdissection from thin sections across spatially separated levels of ten high-grade serous ovarian carcinomas (HGSOCs) and analyzed by mass spectrometry, reverse phase protein arrays, and RNA sequencing. Unsupervised analyses of protein abundance data revealed independent clustering of an enriched stroma and enriched tumor epithelium, with whole tumor tissue clustering driven by overall tumor "purity." Comparing these data to previously defined prognostic HGSOC molecular subtypes revealed protein and transcript expression from tumor epithelium correlated with the differentiated subtype, whereas stromal proteins (and transcripts) correlated with the mesenchymal subtype. Protein and transcript abundance in the tumor epithelium and stroma exhibited decreased correlation in samples collected just hundreds of microns apart. These data reveal substantial tumor microenvironment protein heterogeneity that directly bears on prognostic signatures, biomarker discovery, and cancer pathophysiology and underscore the need to enrich cellular subpopulations for expression profiling.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Sasha Makohon-Moore
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emma L. Robinson
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Uma N.M. Rao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| |
Collapse
|
14
|
Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp T, Van Nieuwenhuysen E, Han S, Van den Broeck A, Coosemans A, Van Rompuy AS, Lambrechts D, Vergote I. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Genome Med 2021; 13:111. [PMID: 34238352 PMCID: PMC8268616 DOI: 10.1186/s13073-021-00922-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High-grade serous tubo-ovarian cancer (HGSTOC) is characterised by extensive inter- and intratumour heterogeneity, resulting in persistent therapeutic resistance and poor disease outcome. Molecular subtype classification based on bulk RNA sequencing facilitates a more accurate characterisation of this heterogeneity, but the lack of strong prognostic or predictive correlations with these subtypes currently hinders their clinical implementation. Stromal admixture profoundly affects the prognostic impact of the molecular subtypes, but the contribution of stromal cells to each subtype has poorly been characterised. Increasing the transcriptomic resolution of the molecular subtypes based on single-cell RNA sequencing (scRNA-seq) may provide insights in the prognostic and predictive relevance of these subtypes. METHODS We performed scRNA-seq of 18,403 cells unbiasedly collected from 7 treatment-naive HGSTOC tumours. For each phenotypic cluster of tumour or stromal cells, we identified specific transcriptomic markers. We explored which phenotypic clusters correlated with overall survival based on expression of these transcriptomic markers in microarray data of 1467 tumours. By evaluating molecular subtype signatures in single cells, we assessed to what extent a phenotypic cluster of tumour or stromal cells contributes to each molecular subtype. RESULTS We identified 11 cancer and 32 stromal cell phenotypes in HGSTOC tumours. Of these, the relative frequency of myofibroblasts, TGF-β-driven cancer-associated fibroblasts, mesothelial cells and lymphatic endothelial cells predicted poor outcome, while plasma cells correlated with more favourable outcome. Moreover, we identified a clear cell-like transcriptomic signature in cancer cells, which correlated with worse overall survival in HGSTOC patients. Stromal cell phenotypes differed substantially between molecular subtypes. For instance, the mesenchymal, immunoreactive and differentiated signatures were characterised by specific fibroblast, immune cell and myofibroblast/mesothelial cell phenotypes, respectively. Cell phenotypes correlating with poor outcome were enriched in molecular subtypes associated with poor outcome. CONCLUSIONS We used scRNA-seq to identify stromal cell phenotypes predicting overall survival in HGSTOC patients. These stromal features explain the association of the molecular subtypes with outcome but also the latter's weakness of clinical implementation. Stratifying patients based on marker genes specific for these phenotypes represents a promising approach to predict prognosis or response to therapy.
Collapse
Affiliation(s)
- Siel Olbrecht
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium.
- VIB Centre for Cancer Biology, Leuven, Belgium.
| | - Pieter Busschaert
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- VIB Centre for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Toon Van Gorp
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Sileny Han
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Annick Van den Broeck
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumour Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Anne-Sophie Van Rompuy
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
- Department of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Centre for Cancer Biology, Leuven, Belgium.
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Lakis S, Kotoula V, Koliou GA, Efstratiou I, Chrisafi S, Papanikolaou A, Zebekakis P, Fountzilas G. Multisite Tumor Sampling Reveals Extensive Heterogeneity of Tumor and Host Immune Response in Ovarian Cancer. Cancer Genomics Proteomics 2021; 17:529-541. [PMID: 32859631 DOI: 10.21873/cgp.20209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIM Ovarian cancer (OVCA) is characterized by genomic/molecular intra-patient heterogeneity (IPH). Tissue histology and morphological features are surrogates of the underlying genomic/molecular contexture. We assessed the morphological IPH of OVCA tumor compartments and of lymphocytic infiltrates in multiple matched samples per patient. MATERIALS AND METHODS We examined 294 hematoxylin & eosin (H&E) OVCA tumor whole sections from 70 treatment-naïve patients who had undergone cytoreductive surgery. We assessed morphological subtypes as immunoreactive (IR), solid - proliferative (SD), papilloglandular (PG), and mesenchymal transition (MT); subtype load per patient; stromal tumor-infiltrating lymphocyte (sTIL) density as average per sample; and, as maximal sTIL values (max-TILs) among all samples per patient, ovaries and implants. RESULTS Among all 294 tumor sections, the most frequent primary morphological subtype was PG (n=150, 51.0%), followed by MT (71, 24.1%), SD (48, 16.3%) and IR (15, 5.1%). Subtype combinations were observed in 67/294 sections (22.8%) and IPH in 48/70 patients (68.6%). PG prevailed in ovaries (p<0.001), SD and MT in implants (p=0.023 and p<0.001, respectively). sTILs were higher in SD compared to non-SD (p=0.019) and lower in PG, respectively (p<0.001). sTIL density was higher in implants than in ovaries (p<0.001). Higher max-TILs were associated with stage IV disease (p=0.043), upper abdominal dissemination (p=0.024), endometrioid histology (p=0.013), and grade 3 tumors (p=0.021). Favorable prognosticators were higher max-TILs per patient (PFS, OS) and higher SD-load (PFS). CONCLUSION Clinically relevant morphological and host immune-response IPH appear to be the norm in OVCA. This may complicate efforts to decipher sensitivity of the tumor to certain treatment modalities from a single pre-operative biopsy.
Collapse
Affiliation(s)
- Sotirios Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Pathology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexios Papanikolaou
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Pantelis Zebekakis
- First Department of Internal Medicine, AHEPA Hospital, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece.,German Oncology Center, Limassol, Cyprus
| |
Collapse
|
16
|
Zhang J, Xi J, Huang P, Zeng S. Comprehensive Analysis Identifies Potential Ferroptosis-Associated mRNA Therapeutic Targets in Ovarian Cancer. Front Med (Lausanne) 2021; 8:644053. [PMID: 33748162 PMCID: PMC7973024 DOI: 10.3389/fmed.2021.644053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to explore ferroptosis-related mRNAs as potential therapeutic targets for ovarian cancer treatment. Methods: Molecular subtypes were classified based on ferroptosis-related mRNAs via ConsensusClusterPlus package. The differences in prognosis, stromal score, immune score, immune function, and immune checkpoints were assessed between subtypes. Small molecular drugs were predicted via the CMap database. The sensitivity to chemotherapy drugs was estimated through the GDSC. A LASSO Cox regression model was conducted via the glmnet package, followed by a nomogram model. Results: Based on ferroptosis mRNA expression profile, two molecular subtypes (C1 and C2) were classified, with distinct clinical outcomes. C1 subtype exhibited higher stromal score, immune cell score (T helper, Treg, neutrophil) and immune function (APC co-inhibition, parainflammation and Type II IFN response). Higher mRNA expression levels of immune checkpoints (like PDCD1) were found in C1 than C2. Potential small molecular drugs (PI3K and mTOR inhibitors) were found for treatment of ovarian cancer. C1 was more sensitive to eight chemotherapy drugs (A.443654, AZD.0530, AZD6482, AZD7762, AZD8055, BAY.61.3606, Bicalutamide, and CGP.60474). A 15-ferroptosis-related mRNA signature was developed, which could robustly and independently predict the outcomes. Moreover, a nomogram was established combining the signature and age, which could intuitively and accurately predict the 5-year overall survival probability. Conclusion: Our study characterized two ferroptosis-related subtypes with distinct prognosis and tumor immune features, which could assist clinicians make decisions and individual therapy. Moreover, 15 ferroptosis-related mRNAs were identified, which could become potential therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Jiyan Zhang
- Department of Gynecologic Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Jie Xi
- Department I of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Ping Huang
- Department I of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Saitian Zeng
- Department I of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
17
|
Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci Rep 2021; 11:4219. [PMID: 33603134 PMCID: PMC7892556 DOI: 10.1038/s41598-021-83685-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Women diagnosed with high-grade serous ovarian cancers (HGSOC) are still likely to exhibit a bad prognosis, particularly when suffering from HGSOC of the Mesenchymal molecular subtype (50% cases). These tumors show a desmoplastic reaction with accumulation of extracellular matrix proteins and high content of cancer-associated fibroblasts. Using patient-derived xenograft mouse models of Mesenchymal and Non-Mesenchymal HGSOC, we show here that HGSOC exhibit distinct stiffness depending on their molecular subtype. Indeed, tumor stiffness strongly correlates with tumor growth in Mesenchymal HGSOC, while Non-Mesenchymal tumors remain soft. Moreover, we observe that tumor stiffening is associated with high stromal content, collagen network remodeling, and MAPK/MEK pathway activation. Furthermore, tumor stiffness accompanies a glycolytic metabolic switch in the epithelial compartment, as expected based on Warburg's effect, but also in stromal cells. This effect is restricted to the central part of stiff Mesenchymal tumors. Indeed, stiff Mesenchymal tumors remain softer at the periphery than at the core, with stromal cells secreting high levels of collagens and showing an OXPHOS metabolism. Thus, our study suggests that tumor stiffness could be at the crossroad of three major processes, i.e. matrix remodeling, MEK activation and stromal metabolic switch that might explain at least in part Mesenchymal HGSOC aggressiveness.
Collapse
|
18
|
Yue H, Li W, Chen R, Wang J, Lu X, Li J. Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol Oncol 2020; 160:530-538. [PMID: 33317907 DOI: 10.1016/j.ygyno.2020.11.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Periostin (POSTN) overexpression observed in various cancer types is correlated with metastasis and tumor progression. However, its effect on the crosstalk between ovarian cancer cells and cancer-associated fibroblasts (CAFs) remains elusive. This study aims to ascertain the role of CAF-derived POSTN in the ovarian cancer microenvironment. METHODS POSTN expression in high-grade serous ovarian cancer (HGSC) was detected through immunochemistry. Transwell assay was conducted to determine cell migration and invasion. POSTN was knocked down or overexpressed using lentiviral vectors. The potential downstream effects of POSTN were explored and verified by RNA sequencing and western blotting, respectively. In vitro metastatic capability of ovarian cancer cells regulated by POSTN was determined by indirect co-culture. RESULTS POSTN was highly enriched in HGSC stromal components, particularly in fibroblasts, while its overexpression was correlated with reduced overall survival (OS). CAF-derived POSTN functioned as a ligand for integrin αvβ3, fueling the migration and invasion of ovarian cancer cells by activating the PI3K/Akt pathway and inducing the epithelial-mesenchymal transition (EMT). Additionally, the pro-metastatic properties and the activation of fibroblasts induced by TGF-β1 partly relied on POSTN. CONCLUSIONS Stromal-derived POSTN drives the remodeling of the pro-metastatic microenvironment, which might be as a potential therapeutic target in patients with ovarian cancer.
Collapse
Affiliation(s)
- Huiran Yue
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wenzhi Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ruifang Chen
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jieyu Wang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| |
Collapse
|
19
|
Tu H, Li J, Lin L, Wang L. COL11A1 Was Involved in Cell Proliferation, Apoptosis and Migration in Non-Small Cell Lung Cancer Cells. J INVEST SURG 2020; 34:664-669. [PMID: 33148075 DOI: 10.1080/08941939.2019.1672839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Type XI collagen (COL11A1) was reported to associate with malignancy in several cancer types, whereas its role in lung cancer is not fully understood. Therefore, the present study aimed to explore the expression level and biological role of COL11A1 in lung cancer cells. METHODS Gene Expression Omnibus (GEO) database containing 6 lung cancer tissues and normal lung tissues was used to identify potential aberrantly expressed genes. The expression of COL11A1, apoptosis related genes, cell cycle related genes and migration associated genes at the protein level were evaluated by western blot and at the mRNA level was determined by real-time PCR in lung cancer cell lines. Furthermore, the expression of COL11A1 was silenced by siRNA, and cell viability was detected by Cell counting kit-8 (CCK-8) assay. Moreover, cell apoptosis and cell cycle were determined by flow cytometry. In addition, transwell and wound-healing assay were applied to determine cell migration ability. RESULTS GEO analysis suggests that COL11A1 was highly expressed in patients with lung cancer, which was consistent with the results in lung cancer cell lines. COL11A1 knockdown in lung cancer cells significantly lowered the colony formation ability, augmented cell apoptosis rate and elevated the expression of cleaved caspase-3, cleaved caspase-9, Bax, P21 and the expression of Bcl-2, CyclinD1, CDK2 and CDK-4 was significantly downregulated (all p < 0.05). Moreover, post-COL11A1 knockdown, the cell wound-healing and migration ability was significantly impaired, which also supported by the upregulation of E-Cadherin and downregulation of N-Cadherin, Vimentin and Snail (all p < 0.05). Furthermore, we also found that COL11A1 knockdown decreased the expression of p-AKT, p-PI3K and p-ERK. CONCLUSION The present study revealed that COL11A1 may contribute to the malignancy and involve in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Hongbin Tu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Geistlinger L, Oh S, Ramos M, Schiffer L, LaRue RS, Henzler CM, Munro SA, Daughters C, Nelson AC, Winterhoff BJ, Chang Z, Talukdar S, Shetty M, Mullany SA, Morgan M, Parmigiani G, Birrer MJ, Qin LX, Riester M, Starr TK, Waldron L. Multiomic Analysis of Subtype Evolution and Heterogeneity in High-Grade Serous Ovarian Carcinoma. Cancer Res 2020; 80:4335-4345. [PMID: 32747365 DOI: 10.1158/0008-5472.can-20-0521] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/13/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Multiple studies have identified transcriptome subtypes of high-grade serous ovarian carcinoma (HGSOC), but their interpretation and translation are complicated by tumor evolution and polyclonality accompanied by extensive accumulation of somatic aberrations, varying cell type admixtures, and different tissues of origin. In this study, we examined the chronology of HGSOC subtype evolution in the context of these factors using a novel integrative analysis of absolute copy-number analysis and gene expression in The Cancer Genome Atlas complemented by single-cell analysis of six independent tumors. Tumor purity, ploidy, and subclonality were reliably inferred from different genomic platforms, and these characteristics displayed marked differences between subtypes. Genomic lesions associated with HGSOC subtypes tended to be subclonal, implying subtype divergence at later stages of tumor evolution. Subclonality of recurrent HGSOC alterations was evident for proliferative tumors, characterized by extreme genomic instability, absence of immune infiltration, and greater patient age. In contrast, differentiated tumors were characterized by largely intact genome integrity, high immune infiltration, and younger patient age. Single-cell sequencing of 42,000 tumor cells revealed widespread heterogeneity in tumor cell type composition that drove bulk subtypes but demonstrated a lack of intrinsic subtypes among tumor epithelial cells. Our findings prompt the dismissal of discrete transcriptome subtypes for HGSOC and replacement by a more realistic model of continuous tumor development that includes mixtures of subclones, accumulation of somatic aberrations, infiltration of immune and stromal cells in proportions correlated with tumor stage and tissue of origin, and evolution between properties previously associated with discrete subtypes. SIGNIFICANCE: This study infers whether transcriptome-based groupings of tumors differentiate early in carcinogenesis and are, therefore, appropriate targets for therapy and demonstrates that this is not the case for HGSOC.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Graduate School of Public Health and Health Policy, City University of New York, New York, New York
- Institute for Implementation Science and Population Health, City University of New York, New York, New York
| | - Sehyun Oh
- Graduate School of Public Health and Health Policy, City University of New York, New York, New York
- Institute for Implementation Science and Population Health, City University of New York, New York, New York
| | - Marcel Ramos
- Graduate School of Public Health and Health Policy, City University of New York, New York, New York
- Institute for Implementation Science and Population Health, City University of New York, New York, New York
- Roswell Park Comprehensive Cancer Institute, Buffalo, New York
| | - Lucas Schiffer
- Graduate School of Public Health and Health Policy, City University of New York, New York, New York
- Institute for Implementation Science and Population Health, City University of New York, New York, New York
| | - Rebecca S LaRue
- Minnesota Supercomputing Institute, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Christine M Henzler
- Minnesota Supercomputing Institute, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Munro
- Minnesota Supercomputing Institute, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Claire Daughters
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Boris J Winterhoff
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Zenas Chang
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Shobhana Talukdar
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Mihir Shetty
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Sally A Mullany
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Martin Morgan
- Roswell Park Comprehensive Cancer Institute, Buffalo, New York
| | - Giovanni Parmigiani
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Michael J Birrer
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas Medical Sciences, Little Rock, Arkansas
| | - Li-Xuan Qin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Markus Riester
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Timothy K Starr
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Levi Waldron
- Graduate School of Public Health and Health Policy, City University of New York, New York, New York.
- Institute for Implementation Science and Population Health, City University of New York, New York, New York
| |
Collapse
|
21
|
Hu Y, Taylor-Harding B, Raz Y, Haro M, Recouvreux MS, Taylan E, Lester J, Millstein J, Walts AE, Karlan BY, Orsulic S. Are Epithelial Ovarian Cancers of the Mesenchymal Subtype Actually Intraperitoneal Metastases to the Ovary? Front Cell Dev Biol 2020; 8:647. [PMID: 32766252 PMCID: PMC7380132 DOI: 10.3389/fcell.2020.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Primary ovarian high-grade serous carcinoma (HGSC) has been classified into 4 molecular subtypes: Immunoreactive, Proliferative, Differentiated, and Mesenchymal (Mes), of which the Mes subtype (Mes-HGSC) is associated with the worst clinical outcomes. We propose that Mes-HGSC comprise clusters of cancer and associated stromal cells that detached from tumors in the upper abdomen/omentum and disseminated in the peritoneal cavity, including to the ovary. Using comparative analyses of multiple transcriptomic data sets, we provide the following evidence that the phenotype of Mes-HGSC matches the phenotype of tumors in the upper abdomen/omentum: (1) irrespective of the primary ovarian HGSC molecular subtype, matched upper abdominal/omental metastases were typically of the Mes subtype, (2) the Mes subtype was present at the ovarian site only in patients with concurrent upper abdominal/omental metastases and not in those with HGSC confined to the ovary, and (3) ovarian Mes-HGSC had an expression profile characteristic of stromal cells in the upper abdominal/omental metastases. We suggest that ovarian Mes-HGSC signifies advanced intraperitoneal tumor dissemination to the ovary rather than a subtype of primary ovarian HGSC. This is consistent with the presence of upper abdominal/omental disease, suboptimal debulking, and worst survival previously reported in patients with ovarian Mes-HGSC compared to other molecular subtypes.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yael Raz
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Marcela Haro
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Thomas SN, Friedrich B, Schnaubelt M, Chan DW, Zhang H, Aebersold R. Orthogonal Proteomic Platforms and Their Implications for the Stable Classification of High-Grade Serous Ovarian Cancer Subtypes. iScience 2020; 23:101079. [PMID: 32534439 PMCID: PMC7298555 DOI: 10.1016/j.isci.2020.101079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/19/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) established a harmonized method for large-scale clinical proteomic studies. SWATH-MS, an instance of data-independent acquisition (DIA) proteomic methods, is an alternate proteomic approach. In this study, we used SWATH-MS to analyze remnant peptides from the original retrospective TCGA samples generated for the CPTAC ovarian cancer proteogenomic study. The SWATH-MS results recapitulated the confident identification of differentially expressed proteins in enriched pathways associated with the robust Mesenchymal high-grade serous ovarian cancer subtype and the homologous recombination deficient tumors. Hence, SWATH/DIA-MS presents a promising complementary or orthogonal alternative to the CPTAC proteomic workflow, with the advantages of simpler and faster workflows and lower sample consumption, albeit with shallower proteome coverage. In summary, both analytical methods are suitable to characterize clinical samples, providing proteomic workflow alternatives for cancer researchers depending on the context-specific goals of the studies. SWATH-MS and iTRAQ-DDA are used to classify 103 high-grade serous ovarian cancer SWATH-MS re-capitulates differentially expressed proteins in ovarian cancer subtypes SWATH-MS is a robust proteomic approach for large-scale clinical proteomic studies
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Michael Schnaubelt
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel W Chan
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
23
|
Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, Zhong Z, Santana Gonzalez L, El-Sahhar S, Carrami EM, Mallett G, Feng Y, Masuda K, Zheng Y, Chong K, Damato S, Dhar S, Campo L, Garruto Campanile R, Soleymani Majd H, Rai V, Maldonado-Perez D, Jones S, Cerundolo V, Sauka-Spengler T, Yau C, Ahmed AA. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell 2020; 37:226-242.e7. [PMID: 32049047 DOI: 10.1016/j.ccell.2020.01.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The inter-differentiation between cell states promotes cancer cell survival under stress and fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience but its quantification is confounded by genetic heterogeneity. Here we show that NGH in serous ovarian cancer (SOC) can be accurately measured when informed by the molecular signatures of the normal fallopian tube epithelium (FTE) cells, the cells of origin of SOC. Surveying the transcriptomes of ∼6,000 FTE cells, predominantly from non-ovarian cancer patients, identified 6 FTE subtypes. We used subtype signatures to deconvolute SOC expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification of ∼1,700 tumors robustly correlated with survival. Our findings lay the foundation for accurate prognostic and therapeutic stratification of SOC.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Tingyan Shi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Zhe Zhong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Eli M Carrami
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yun Feng
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Riccardo Garruto Campanile
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Vikram Rai
- Department of Gynaecology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - David Maldonado-Perez
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Second Floor, Unipart House Business Centre, Oxford OX4 2PG, UK
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vincenzo Cerundolo
- Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christopher Yau
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Alan Turing Institute, London NW1 2DB, UK.
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
24
|
Schwede M, Waldron L, Mok SC, Wei W, Basunia A, Merritt MA, Mitsiades CS, Parmigiani G, Harrington DP, Quackenbush J, Birrer MJ, Culhane AC. The Impact of Stroma Admixture on Molecular Subtypes and Prognostic Gene Signatures in Serous Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2019; 29:509-519. [PMID: 31871106 DOI: 10.1158/1055-9965.epi-18-1359] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/26/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent efforts to improve outcomes for high-grade serous ovarian cancer, a leading cause of cancer death in women, have focused on identifying molecular subtypes and prognostic gene signatures, but existing subtypes have poor cross-study robustness. We tested the contribution of cell admixture in published ovarian cancer molecular subtypes and prognostic gene signatures. METHODS Gene signatures of tumor and stroma were developed using paired microdissected tissue from two independent studies. Stromal genes were investigated in two molecular subtype classifications and 61 published gene signatures. Prognostic performance of gene signatures of stromal admixture was evaluated in 2,527 ovarian tumors (16 studies). Computational simulations of increasing stromal cell proportion were performed by mixing gene-expression profiles of paired microdissected ovarian tumor and stroma. RESULTS Recently described ovarian cancer molecular subtypes are strongly associated with the cell admixture. Tumors were classified as different molecular subtypes in simulations where the percentage of stromal cells increased. Stromal gene expression in bulk tumors was associated with overall survival (hazard ratio, 1.17; 95% confidence interval, 1.11-1.23), and in one data set, increased stroma was associated with anatomic sampling location. Five published prognostic gene signatures were no longer prognostic in a multivariate model that adjusted for stromal content. CONCLUSIONS Cell admixture affects the interpretation and reproduction of ovarian cancer molecular subtypes and gene signatures derived from bulk tissue. Elucidating the role of stroma in the tumor microenvironment and in prognosis is important. IMPACT Single-cell analyses may be required to refine the molecular subtypes of high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Levi Waldron
- Biostatistics, CUNY Graduate School of Public Health and Health Policy, New York, New York
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Wei
- Pfizer, Andover, Massachusetts
| | - Azfar Basunia
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Giovanni Parmigiani
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - David P Harrington
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Michael J Birrer
- Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Aedín C Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
25
|
Tsoulfas G. Bioinformatics Data Mining: Is the Pipette Mightier than the Scalpel? J INVEST SURG 2019; 34:670-671. [PMID: 34037517 DOI: 10.1080/08941939.2019.1685026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Georgios Tsoulfas
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Mariani A, Wang C, Oberg AL, Riska SM, Torres M, Kumka J, Multinu F, Sagar G, Roy D, Jung DB, Zhang Q, Grassi T, Visscher DW, Patel VP, Jin L, Staub JK, Cliby WA, Weroha SJ, Kalli KR, Hartmann LC, Kaufmann SH, Goode EL, Shridhar V. Genes associated with bowel metastases in ovarian cancer. Gynecol Oncol 2019; 154:495-504. [PMID: 31204077 DOI: 10.1016/j.ygyno.2019.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study is designed to identify genes and pathways that could promote metastasis to the bowel in high-grade serous ovarian cancer (OC) and evaluate their associations with clinical outcomes. METHODS We performed RNA sequencing of OC primary tumors (PTs) and their corresponding bowel metastases (n = 21 discovery set; n = 18 replication set). Differentially expressed genes (DEGs) were those expressed at least 2-fold higher in bowel metastases (BMets) than PTs in at least 30% of patients (P < .05) with no increased expression in paired benign bowel tissue and were validated with quantitative reverse transcription PCR. Using an independent OC cohort (n = 333), associations between DEGs in PTs and surgical and clinical outcomes were performed. Immunohistochemistry and mouse xenograft studies were performed to confirm the role of LRRC15 in promoting metastasis. RESULTS Among 27 DEGs in the discovery set, 21 were confirmed in the replication set: SFRP2, Col11A1, LRRC15, ADAM12, ADAMTS12, MFAP5, LUM, PLPP4, FAP, POSTN, GRP, MMP11, MMP13, C1QTNF3, EPYC, DIO2, KCNA1, NETO1, NTM, MYH13, and PVALB. Higher expression of more than half of the genes in the PT was associated with an increased requirement for bowel resection at primary surgery and an inability to achieve complete cytoreduction. Increased expression of LRRC15 in BMets was confirmed by immunohistochemistry and knockdown of LRRC15 significantly inhibited tumor progression in mice. CONCLUSIONS We identified 21 genes that are overexpressed in bowel metastases among patients with OC. Our findings will help select potential molecular targets for the prevention and treatment of malignant bowel obstruction in OC.
Collapse
Affiliation(s)
- Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shaun M Riska
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michelle Torres
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joseph Kumka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gunisha Sagar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tommaso Grassi
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Vatsal P Patel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Julie K Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly R Kalli
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lynn C Hartmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Viji Shridhar
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Orsulic S, Karlan BY. Can molecular subtyping be used to triage women with advanced ovarian cancer to Primary Debulking Surgery or Neoadjuvant Chemotherapy? Gynecol Oncol 2019; 152:221-222. [PMID: 30704616 DOI: 10.1016/j.ygyno.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sandra Orsulic
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|