1
|
Chalif J, Goldstein N, Mehra Y, Spakowicz D, Chambers LM. The Role of the Microbiome in Cancer Therapies: Current Evidence and Future Directions. Hematol Oncol Clin North Am 2025; 39:269-294. [PMID: 39856008 DOI: 10.1016/j.hoc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The microbiome is essential for maintaining human health and is also a key factor in the development and progression of various diseases, including cancer. Growing evidence has highlighted the microbiome's significant impact on cancer development, progression, and treatment outcomes. As research continues to unfold, the microbiome and its modulation stand out as a promising frontier in cancer research and therapy. This review highlights current literature on the interplay between various cancer treatment modalities and human microbiotas, focusing on how the microbiome may affect treatment efficacy and toxicity and its potential as a therapeutic target to enhance future outcomes.
Collapse
Affiliation(s)
- Julia Chalif
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Naomi Goldstein
- Division of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA
| | - Yogita Mehra
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dan Spakowicz
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Laura M Chambers
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
2
|
Wen Q, Wang S, Min Y, Liu X, Fang J, Lang J, Chen M. Associations of the gut, cervical, and vaginal microbiota with cervical cancer: a systematic review and meta-analysis. BMC Womens Health 2025; 25:65. [PMID: 39955550 PMCID: PMC11829412 DOI: 10.1186/s12905-025-03599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND An increasing number of studies indicate that the gut, cervical, and vaginal microbiota may play crucial roles in the development of cervical cancer (CC). However, the interactions between the microbiota and the host are yet unknown. To address this gap, a systematic review and meta-analysis were conducted to assess the microbiota alterations in a variety of body locations, including the gut and genital tract. METHODS Electronic searches of PubMed, Embase, Web of Science, and the Cochrane Library were conducted to retrieve eligible papers published from January 1, 2014, to January 1, 2024 (PROSPERO: CRD42024554433). This study was restricted to English-language studies reporting on alpha diversity, beta diversity, and relative abundance, as well as on patients with CC whose microbiota had been analyzed via next-generation sequencing technologies. To assess the risk of bias (RoB), we utilized the Newcastle‒Ottawa Quality Assessment Scale (NOS) and the ROBINS-I tool. For the meta-analysis, we employed Review Manager 5.4. RESULTS Thirty-six eligible studies were included in this review. The Chao1 index (SMD = 0.96, [95% CI: 0.71, 1.21], I2 = 0%) and the Shannon index (SMD = 1.02, [95% CI: 0.53, 1.50], I2 = 85%) values from vaginal samples were significantly greater in patients than in the controls. In the cervical samples, the Shannon index value (SMD = 1.29, [95% CI: 0.61, 1.97], I2 = 93%) significantly increased, whereas the Chao1 index value did not significantly differ (SMD = 0.50, [95% CI: -0.46, 1.46], I2 = 89%). The Shannon index value (SMD = 0.25, [95% CI: -0.22, 0.72], I2 = 38%) did not significantly differ across the gut samples. The majority of studies (19/25) indicated that the patients and noncancer controls differed significantly in terms of beta diversity. Cancer-associated changes were observed, with a dramatic decrease in the Lactobacillus genus and significant increases in pathogenic bacteria, including the Anaerococcus, Peptostreptococcus, Porphyromonas, Prevotella, and Sneathia genera. Additionally, the impact of antineoplastic therapies on microbial diversity was inconsistently reported across several studies. CONCLUSION This systematic review elucidates the microbiota alterations associated with the prevalence of CC and its response to anti-tumor therapies, aiming to provide insights for future research directions and precision medicine strategies to enhance women's quality of life. PROSPERO REGISTRATION CRD42024554433.
Collapse
Affiliation(s)
- Qin Wen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Shubin Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Yalan Min
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Xinyi Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Jian Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
- Southwest Medical University, Luzhou, 646000, China
| | - Jinyi Lang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Liu F, Lu X, Tang M, Chen Y, Zheng X. Gut Microbiome and Metabolite Characteristics Associated With Different Clinical Stages in Non-Small Cell Lung Cancer Patients. Cancer Manag Res 2025; 17:45-56. [PMID: 39816490 PMCID: PMC11734503 DOI: 10.2147/cmar.s499003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
Objective Our research has pinpointed the gut microbiome's role in the progression of various pathological types of non-small cell lung cancer (NSCLC). Nonetheless, the characteristics of the gut microbiome and its metabolites across different clinical stages of NSCLC are yet to be fully understood. The current study seeks to explore the distinctive gut flora and metabolite profiles of NSCLC patients across varying TNM stages. Methods The research team gathered stool samples from 52 patients diagnosed with non-small cell lung cancer (NSCLC) and 29 healthy individuals. Subsequently, they performed 16S rRNA gene amplification sequencing and untargeted gas/liquid chromatography-mass spectrometry metabolomics analysis. Results The study revealed that the alpha-diversity of the gut microbiome in NSCLC patients at different stages did not exhibit statistically significant differences. Notably, Lachnospira and Blautia were more abundant in healthy controls. The distribution of gut microbial species in patients with varying stages of NSCLC was uneven, with Bacteroides and Bacteroidaceae being most prevalent in stage T2, and Prevotella dominating in stage T4. Levels of Ruminococcus gnavus were notably elevated in stages N3 and M. The genus levels of Klebsiella, Parabacteroides, and Tannerellaceae were higher in stage II patients. Rodentibacter was the bacterium with increased levels in stage III NSCLC patients. Further metabolomics studies revealed significantly elevated levels of quinic acid and 3-hydroxybenzoic acid in the healthy control group. In contrast, Stage I+II non-small cell lung cancer (NSCLC) patients exhibited reduced levels of L-cystathionine. Notably, quinic acid, phthalic acid, and L-lactic acid were observed to be increased in Stage III+IV NSCLC patients. Conclusion Compared to the analysis of a single microbial dataset, this study provides deeper functional insights by incorporating comprehensive metabolomic profiling. This approach demonstrates that both the gut microbiome and associated metabolites are altered in NSCLC patients across different clinical stages. Our findings may offer novel perspectives on the pathogenesis of NSCLC at various TNM stages. Further research is warranted to validate and clinically apply these potential biomarkers.
Collapse
Affiliation(s)
- Fan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Mengli Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Xu M, Guo Y, Wang F, Lin C, Cao D, Yan Y, Chai S, Zhao Y, Deng S, Wei J, Kang X, Liu Y, Zhang Y, Luo L, Liu SL, Liu H. Enterolactone combined with m6A Reader IGF2BP3 inhibits malignant angiogenesis and disease progression in ovarian cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156343. [PMID: 39765033 DOI: 10.1016/j.phymed.2024.156343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Among all gynecological cancers, ovarian cancer is the leading cause of death. Epithelial ovarian cancer (EOC) accounts for over 85 % of ovarian cancer cases and is characterized by insidious onset, early metastasis, and a high recurrence rate. Alterations in gut microbiota, often as a consequence of chemotherapy, can promote cancer development and exacerbate the disease. The m6A reader IGF2BP3 is a regulator in the occurrence and progression of various tumors and is associated with angiogenesis. Enterolactone (ENL) has demonstrated significant anti-tumor activity against various human cancers, including EOC. However, whether ENL could interact with IGF2BP3 to suppress EOC remains unclear. PURPOSE This study aims to investigate suppressive effects of ENL upon combining with IGF2BP3 on EOC and elucidates the underlying mechanism. METHODS The Cell Counting Kit-8 and crystal violet assays were used to assess tumor cell proliferation. Scratch and Transwell assays were employed to evaluate tumor cell migration, while tube formation assays were utilized to examine angiogenesis. Western blotting was used to measure the expression levels of IGF2BP3, VEGF, PI3K, AKT1, p-PI3K, and p-AKT1. An in vivo xenograft nude mouse model was established, fecal samples were collected, and 16S rDNA sequencing was performed to analyze gut microbiota in association with the suppressive effects of ENL and its interactions with IGF2BP3. RESULTS IGF2BP3 is highly expressed in EOC and is positively correlated with poor survival in EOC patients. ENL reduces IGF2BP3 expression in EOC, thereby inhibiting the IGF2BP3-mediated VEGF/PI3K/AKT signaling pathway and suppressing the proliferation, migration, invasion, and angiogenesis of EOC. Additionally, ENL ameliorates gut microbiome, especially in conjunction with shIGF2BP3. CONCLUSION ENL interacts with IGF2BP3 and suppresses its expression in EOC, leading to the deactivation of the IGF2BP3-mediated VEGF/PI3K/AKT signaling pathway and the subsequent inhibition of angiogenesis. The combination of ENL and shIGF2BP3 demonstrates a synergistic effect on EOC. ENL also ameliorates the gut microbiome, especially in conjunction with shIGF2BP3, to suppress EOC.
Collapse
Affiliation(s)
- Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yi Guo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yu Yan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuhui Chai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shimenghui Deng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jiayu Wei
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yinuo Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lingjie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
5
|
Lv J, Qin X, Wang J, Li J, Bai J, Lan Y. The causal relationship between gut microbiota and 2 neoplasms, malignant and benign neoplasms of bone and articular cartilage: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40519. [PMID: 39560555 PMCID: PMC11576038 DOI: 10.1097/md.0000000000040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Previous research has demonstrated a close connection between the development of bone neoplasms and variations in the abundance of specific gut microbiota. It remains unclear, however, how the gut microbiota and bone neoplasms are causally related. Hence, in our study, we aim to clarify this relationship between gut microbiota and 2 neoplasms, malignant neoplasm of bone and articular cartilage (MNBAC) and benign neoplasm of bone and articular cartilage (BNBAC), by employing a two-sample Mendelian randomization (MR) approach. In this study, single nucleotide polymorphisms (SNPs) from genome-wide association studies-pooled data related to bone neoplasms and gut microbiota abundance were evaluated. The inverse variance weighted was employed as the major method for assessing the aforementioned causal relationship. Furthermore, the horizontal multiplicity was evaluated utilizing the Mendelian randomization pleiotropy residual sum and outlier and the MR-Egger intercept test. Finally, inverse MR analysis was performed to assess reverse causality. Inverse variance weighted results indicate a potential genetic relationship between 4 gut microbiota and MNBAC, and 3 gut microbiota and BNBAC. On the one hand, Eubacterium eligens group (OR = 0.16, 95% CI = 0.04-0.67, P = .01), Odoribacter (OR = 0.23, 95% CI = 0.06-0.84, P = .03), Slackia (OR = 0.35, 95% CI = 0.13-0.93, P = .04), and Tyzzerella3 (OR = 0.44, 95% CI = 0.24-0.82, P = .01) exhibited a protective effect against MNBAC. On the other hand, of the 3 gut microbes identified as potentially causally related to BNBAC, Oscillibacter (OR = 0.79, 95% CI = 0.63-0.98, P = .03) and Ruminococcus torques group (OR = 0.62, 95% CI = 0.39-0.98, P = .04) were regarded as protective strains of B, while Eubacterium ruminantium group (OR = 1.24, 95% CI = 1.04-1.47, P = .02) was considered to be a risk factor for increasing the incidence of BNBAC. Additionally, the bone neoplasms were not found to have a reverse causal relationship with the above 7 gut microbiota taxa. Four gut microbiota showed causal effects on MNBAC, and 3 gut microbiota demonstrated causality in BNBAC, providing insights into the design of future interventions to reduce the burden of neoplasms.
Collapse
Affiliation(s)
- Jia Lv
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiuyu Qin
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiani Wang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Junjun Bai
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanping Lan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Peng L, Ai C, Dou Z, Li K, Jiang M, Wu X, Zhao C, Li Z, Zhang L. Altered microbial diversity and composition of multiple mucosal organs in cervical cancer patients. BMC Cancer 2024; 24:1154. [PMID: 39289617 PMCID: PMC11409810 DOI: 10.1186/s12885-024-12915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES The aim of this study was to characterize the microbiome of multiple mucosal organs in cervical cancer (CC) patients. METHODS We collected oral, gut, urinary tract, and vaginal samples from enrolled study participants, as well as tumor tissue from CC patients. The microbiota of different mucosal organs was identified by 16S rDNA sequencing and correlated with clinical-pathological characteristics of cervical cancer cases. RESULTS Compared with controls, CC patients had reduced α-diversity of oral and gut microbiota (pOral_Sob < 0.001, pOral_Shannon = 0.049, pOral_Simpson = 0.013 pFecal_Sob = 0.030), although there was an opposite trend in the vaginal microbiota (pVaginal_Pielou = 0.028, pVaginal_Simpson = 0.006). There were also significant differences in the β-diversity of the microbiota at each site between cases and controls (pOral = 0.002, pFecal = 0.037, pUrine = 0.001, pVaginal = 0.001). The uniformity of urine microbiota was lower in patients with cervical squamous cell carcinoma (pUrine = 0.036) and lymph node metastasis (pUrine_Sob = 0.027, pUrine_Pielou = 0.028, pUrine_Simpson = 0.021, pUrine_Shannon = 0.047). The composition of bacteria in urine also varied among patients with different ages (p = 0.002), tumor stages (p = 0.001) and lymph node metastasis (p = 0.002). In CC cases, Pseudomonas were significantly enriched in the oral, gut, and urinary tract samples. In addition, Gardnerella, Anaerococcus, and Prevotella were biomarkers of urinary tract microbiota; Abiotrophia and Lautropia were obviously enriched in the oral microbiota. The microbiota of tumor tissue correlated with other mucosal organs (except the gut), with a shift in the microflora between mucosal organs and tumors. CONCLUSIONS Our study not only revealed differences in the composition and diversity of the vaginal and gut microflora between CC cases and controls, but also showed dysbiosis of the oral cavity and urethra in cervical cancer cases.
Collapse
Affiliation(s)
- Lan Peng
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Conghui Ai
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Zhongyan Dou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Kangming Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Meiping Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Xingrao Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Chunfang Zhao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China.
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China.
| |
Collapse
|
7
|
Xiong Y, Zhang X, Niu X, Zhang L, Sheng Y, Xu A. Causal relationship between gut microbiota and gynecological tumor: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1417904. [PMID: 39176273 PMCID: PMC11339882 DOI: 10.3389/fmicb.2024.1417904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Previous research has established associations between alterations in gut microbiota composition and various gynecologic tumors. However, establishing a causal relationship between gut microbiota and these tumors remains necessary. This study employs a two-sample Mendelian randomization (MR) approach to investigate causality, aiming to identify pathogenic bacterial communities potentially involved in gynecologic tumor development. Methods Data from the MiBioGen consortium's Genome-Wide Association Study (GWAS) on gut microbiota were used as the exposure variable. Four common gynecologic neoplasms, including uterine fibroids (UF), endometrial cancer (EC), ovarian cancer (OC), and cervical cancer (CC), were selected as outcome variables. Single-nucleotide polymorphisms (SNPs) significantly associated with gut microbiota were chosen as instrumental variables (IVs). The inverse variance-weighted (IVW) method was used as the primary MR analysis to assess the causal relationship. External validation An was conducted using an independent. Sensitivity analyses were performed to ensure robustness. Reverse MR analysis was also conducted to assess potential reverse causation. Results Combining discovery and validation cohorts, we found that higher relative abundance of Lachnospiraceae is associated with lower UF risk (OR: 0.882, 95% CI: 0.793-0.982, P = 0.022). Conversely, higher OC incidence is associated with increased relative abundance of Lachnospiraceae (OR: 1.329, 95% CI: 1.019-1.732, P = 0.036). Sensitivity analyses confirmed these findings' reliability. Reverse MR analysis showed no evidence of reverse causation between UF, OC, and Lachnospiraceae. Discussion This study establishes a causal relationship between Lachnospiraceae relative abundance and both UF and OC. These findings provide new insights into the potential role of gut microbiota in mechanisms underlying gynecological tumors development.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhang W, Ling J, Xu B, Wang J, Chen Z, Li G. Gut microbiome-mediated monocytes promote liver metastasis. Int Immunopharmacol 2024; 133:111877. [PMID: 38608440 DOI: 10.1016/j.intimp.2024.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.
Collapse
Affiliation(s)
- Wenzhong Zhang
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Jie Ling
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Baiying Xu
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Jie Wang
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Zexu Chen
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Gang Li
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China.
| |
Collapse
|
10
|
Lin X, Zheng W, Zhao X, Zeng M, Li S, Peng S, Song T, Sun Y. Microbiome in gynecologic malignancies: a bibliometric analysis from 2012 to 2022. Transl Cancer Res 2024; 13:1980-1996. [PMID: 38737701 PMCID: PMC11082697 DOI: 10.21037/tcr-23-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/29/2024] [Indexed: 05/14/2024]
Abstract
Microbiome and microbial dysbiosis have been proven to be involved in the carcinogenesis and treatment of gynecologic malignancies. However, there is a noticeable gap in the literature, as no comprehensive papers have covered general information, research status, and research frontiers in this field. This study addressed this gap by exploring the relationship between the gut and female reproductive tract (FRT) microbiome and gynecological cancers from a bibliometric perspective. Using VOSviewer 1.6.18, CiteSpace 6.1.R6, and HistCite Pro 2.1 software, we analyzed data retrieved from the Web of Science (WOS) Core Collection (WoSCC) database. Our dataset, consisting of 204 articles published from 2012 to 2022, revealed a consistent and upward publication trend. The United States and the United Kingdom were the primary driving forces, attributed to their prolificacy, high-quality output, and extensive cooperation. The University of Arizona Cancer Center, which is affiliated with the United States, ranked first among the top ten most prolific institutions. Frontiers in Cellular and Infection Microbiology emerged as the leading publisher. Herbst-Kralovetz MM led as the most productive author. Mitra A was the most influential author. Cervical cancer is notably associated with the microbiome, while endometrial and ovarian cancers are receiving increased attention in the last year. Intersections between the gut microbiome and estrogen are of growing importance. Current research focuses on identifying specific microbial species for etiological diagnosis, while frontiers mainly focus on the anticancer potential of microorganisms, such as regulating the effects of immune checkpoint inhibitors. In conclusion, this study sheds light on a novel and burgeoning direction of research, providing a one-stop overview of the microbiome in gynecologic malignancies. Its findings aim to help young researchers to identify research directions and future trends for ongoing investigations.
Collapse
Affiliation(s)
- Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyao Zeng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sizheng Peng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
12
|
Kong Y, Liu S, Wang X, Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37628. [PMID: 38552081 PMCID: PMC10977594 DOI: 10.1097/md.0000000000037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Growing evidence has suggested that gut microbiota is associated with gynecologic cancers. However, whether there is a causal relationship between these associations remains to be determined. A two-sample Mendelian randomization (MR) evaluation was carried out to investigate the mechanism associating gut microbiota and 3 prevalent gynecological cancers, ovarian cancer (OC), endometrial cancer, and cervical cancer as well as their subtypes in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental single nucleotide polymorphisms that were significantly related to the gut microbiota were selected. Multiple MR analysis approaches were carried out, including inverse variance weighted, MR-Egger, Weighted Median methods, and a range of sensitivity analyses. Lastly, we undertook a reverse MR analysis to evaluate the potential of reverse causality. We sifted through 196 bacterial taxa and identified 33 suggestive causal relationships between genetic liability in the gut microbiota and gynecological cancers. We found that 11 of these genera could be pathogenic risk factors for gynecological cancers, while 19 could lessen the risk of cancer. In the other direction, gynecological cancers altered gut microbiota composition. Our MR analysis revealed that the gut microbiota was causally associated with OC, endometrial cancer, and cervical cancer. This may assist in providing new insights for further mechanistic and clinical studies of microbiota-mediated gynecological cancer.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Wang MY, Sang LX, Sun SY. Gut microbiota and female health. World J Gastroenterol 2024; 30:1655-1662. [PMID: 38617735 PMCID: PMC11008377 DOI: 10.3748/wjg.v30.i12.1655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The gut microbiota is recognized as an endocrine organ with the capacity to influence distant organs and associated biological pathways. Recent advancements underscore the critical role of gut microbial homeostasis in female health; with dysbiosis potentially leading to diseases among women such as polycystic ovarian syndrome, endometriosis, breast cancer, cervical cancer, and ovarian cancer etc. Despite this, there has been limited discussion on the underlying mechanisms. This editorial explores the three potential mechanisms through which gut microbiota dysbiosis may impact the development of diseases among women, namely, the immune system, the gut microbiota-estrogen axis, and the metabolite pathway. We focused on approaches for treating diseases in women by addressing gut microbiota imbalances through probiotics, prebiotics supplementation, and fecal microbiota transplantation (FMT). Future studies should focus on determining the molecular mechanisms underlying associations between dysbiosis of gut microbiota and female diseases to realize precision medicine, with FMT emerging as a promising intervention.
Collapse
Affiliation(s)
- Meng-Yao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
14
|
Kim MG, Kim S, Jeon JY, Moon SJ, Kwak YG, Na JY, Lee S, Park KM, Kim HJ, Lee SM, Choi SY, Shin KH. Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 ( Lactococcus lactis) administration. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:153-164. [PMID: 38414398 PMCID: PMC10902589 DOI: 10.4196/kjpp.2024.28.2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024]
Abstract
This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.
Collapse
Affiliation(s)
- Min-Gul Kim
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pharmacology, School of Medicine, Jeonbuk National University, Jeonju 54907, Korea
| | - Suin Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Ji-Young Jeon
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Seol Ju Moon
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yong-Geun Kwak
- Center for Clinical Pharmacology, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pharmacology, School of Medicine, Jeonbuk National University, Jeonju 54907, Korea
| | - Joo Young Na
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | | | | | - Sang-Min Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Seo-Yeon Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Kwang-Hee Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
15
|
Yang H. The causal correlation between gut microbiota abundance and pathogenesis of cervical cancer: a bidirectional mendelian randomization study. Front Microbiol 2024; 15:1336101. [PMID: 38419642 PMCID: PMC10901247 DOI: 10.3389/fmicb.2024.1336101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Background Observational studies and animal experiments suggested potential relevance between gut microbiota (GM) and cervical cancer (CC), but the relevance of this association remains to be clarified. Methods We performed a two-sample bidirectional Mendelian randomization (MR) analysis to explore whether there was a causal correlation between GM and CC, and the direction of causality. Results In primary outcomes, we found that a higher abundance of class Clostridia, family Family XI, genus Alloprevotella, genus Ruminiclostridium 9, and order Clostridiales predicted higher risk of CC, and a higher abundance of class Lentisphaeria, family Acidaminococcaceae, genus Christensenellaceae R7 group, genus Marvinbryantia, order Victivallales, phylum Actinobacteria, and phylum Lentisphaerae predicted lower risk of CC. During verifiable outcomes, we found that a higher abundance of class Methanobacteria, family Actinomycetaceae, family Methanobacteriaceae, genus Lachnospiraceae UCG 010, genus Methanobrevibacter, order Actinomycetales, and order Methanobacteriales predicted a higher risk of CC, and a higher abundance of family Streptococcaceae, genus Dialister, and phylum Bacteroidetes predicted a lower risk of CC, and vice versa. Conclusion Our study implied a mutual causality between GM and CC, which provided a novel concept for the occurrence and development of CC, and might promote future functional or clinical analysis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
16
|
Fong Amaris WM, de Assumpção PP, Valadares LJ, Moreira FC. Microbiota changes: the unseen players in cervical cancer progression. Front Microbiol 2024; 15:1352778. [PMID: 38389527 PMCID: PMC10881787 DOI: 10.3389/fmicb.2024.1352778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Cervical cancer ranks among the most prevalent cancers globally with high-risk human papillomaviruses implicated in nearly 99% of cases. However, hidden players such as changes in the microbiota are now being examined as potential markers in the progression of this disease. Researchers suggest that changes in the vaginal microbiota might correlate with cervical cancer. This review provides a comprehensive look at the microbiota changes linked with the advancement of cervical cancer. It also scrutinizes the databases from past studies on the microbiota during healthy and cancerous stages, drawing connections between prior findings concerning the role of the microbiota in the progression of cervical cancer. Preliminary findings identify Fusobacterium spp., Peptostreptococcus spp., Campylobacter spp., and Haemophilus spp., as potential biomarkers for cervical cancer progression. Alloscardovia spp., Eubacterium spp., and Mycoplasma spp. were identified as potential biomarkers for HPVs (+), while Methylobacterium spp. may be indicative of HPV (-). However, the study's limitations, including potential biases and methodological constraints, underscore the need for further research to validate these findings and delve deeper into the microbiota's role in HPV development. Despite these limitations, the review provides valuable insights into microbiota trends during cervical cancer progression, offering direction for future research. The review summarizes key findings from previous studies on microbiota during healthy and cancerous stages, as well as other conditions such as CIN, SIL, HPV (+), and HPV (-), indicating a promising area for further investigation. The consistent presence of HPV across all reported cervical abnormalities, along with the identification of distinct bacterial genera between cancerous and control samples, suggests a potential link that merits further exploration. In conclusion, a more profound understanding of the microbial landscape could elucidate the pathogenesis of cervical diseases and inform future strategies for diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- W M Fong Amaris
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Leonardo Jacomo Valadares
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
17
|
Chalif J, Wang H, Spakowicz D, Quick A, Arthur EK, O'Malley D, Chambers LM. The microbiome and gynecologic cancer: cellular mechanisms and clinical applications. Int J Gynecol Cancer 2024; 34:317-327. [PMID: 38088183 DOI: 10.1136/ijgc-2023-004894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 08/22/2024] Open
Abstract
The microbiome plays a vital function in maintaining human health and homeostasis. Each microbiota has unique characteristics, including those of the gastrointestinal and female reproductive tract. Dysbiosis, or alterations to the composition of the microbial communities, impacts the microbiota-host relationship and is linked to diseases, including cancer. In addition, studies have demonstrated that the microbiota can contribute to a pro-carcinogenic state through altered host immunologic response, modulation of cell proliferation, signaling, gene expression, and dysregulated metabolism of nutrients and hormones.In recent years, the microbiota of the gut and female reproductive tracts have been linked to many diseases, including gynecologic cancers. Numerous pre-clinical and clinical studies have demonstrated that specific bacteria or microbial communities may contribute to the development of gynecologic cancers. Further, the microbiota may also impact the toxicity and efficacy of cancer therapies, including chemotherapy, immunotherapy, and radiation therapy in women with gynecologic malignancies. The microbiota is highly dynamic and may be altered through various mechanisms, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature detailing the relationship between gynecologic cancers and the microbiota of the female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and strategies for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiota and gynecologic cancer will provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
Affiliation(s)
- Julia Chalif
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Heather Wang
- Ohio University College of Osteopathic Medicine, Athens, Ohio, USA
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Centre, Columbus, Ohio, USA
| | - Allison Quick
- Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Elizabeth K Arthur
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - David O'Malley
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Laura M Chambers
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| |
Collapse
|
18
|
Zhou Z, Feng Y, Xie L, Ma S, Cai Z, Ma Y. Alterations in gut and genital microbiota associated with gynecological diseases: a systematic review and meta-analysis. Reprod Biol Endocrinol 2024; 22:13. [PMID: 38238814 PMCID: PMC10795389 DOI: 10.1186/s12958-024-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Increasing number of studies have demonstrated certain patterns of microbial changes in gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the body (gut and genital tract), we conducted a systematic review and meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for alpha diversity indices. RESULTS Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes was implied between BV, cervical intraepithelial neoplasia, and cervical cancer. CONCLUSIONS These findings demonstrated an association between alterations in gut and genital microbiota and gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Ziwei Zhou
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Feng
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Xie
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoxia Cai
- Guangzhou Liwan Maternal and Child Health Hospital, Guangzhou, China
| | - Ying Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Głowienka-Stodolak M, Bagińska-Drabiuk K, Szubert S, Hennig EE, Horala A, Dąbrowska M, Micek M, Ciebiera M, Zeber-Lubecka N. Human Papillomavirus Infections and the Role Played by Cervical and Cervico-Vaginal Microbiota-Evidence from Next-Generation Sequencing Studies. Cancers (Basel) 2024; 16:399. [PMID: 38254888 PMCID: PMC10814012 DOI: 10.3390/cancers16020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review encompasses studies examining changes in the cervical and cervico-vaginal microbiota (CM and CVM) in relation to human papillomavirus (HPV) using next-generation sequencing (NGS) technology. HPV infection remains a prominent global health concern, with a spectrum of manifestations, from benign lesions to life-threatening cervical cancers. The CM and CVM, a unique collection of microorganisms inhabiting the cervix/vagina, has emerged as a critical player in cervical health. Recent research has indicated that disruptions in the CM and CVM, characterized by a decrease in Lactobacillus and the overgrowth of other bacteria, might increase the risk of HPV persistence and the progression of cervical abnormalities. This alteration in the CM or CVM has been linked to a higher likelihood of HPV infection and cervical dysplasia. NGS technology has revolutionized the study of the cervical microbiome, providing insights into microbial diversity, dynamics, and taxonomic classifications. Bacterial 16S rRNA gene sequencing, has proven invaluable in characterizing the cervical microbiome, shedding light on its role in HPV infections and paving the way for more tailored strategies to combat cervical diseases. NGS-based studies offer personalized insights into an individual's cervical microbiome. This knowledge holds promise for the development of novel diagnostic tools, targeted therapies, and preventive interventions for cervix-related conditions, including cervical cancer.
Collapse
Affiliation(s)
- Maria Głowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Katarzyna Bagińska-Drabiuk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Sebastian Szubert
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Ewa E. Hennig
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Agnieszka Horala
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Martyna Micek
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| |
Collapse
|
20
|
Peng YC, Xu JX, You XM, Huang YY, Ma L, Li LQ, Qi LN. Specific gut microbiome signature predicts hepatitis B virus-related hepatocellular carcinoma patients with microvascular invasion. Ann Med 2023; 55:2283160. [PMID: 38112540 PMCID: PMC10986448 DOI: 10.1080/07853890.2023.2283160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND We aimed to assess differences in intestinal microflora between patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) with microvascular invasion (MVI) and those without MVI. Additionally, we investigated the potential of the microbiome as a non-invasive biomarker for patients with MVI. METHODS We analyzed the preoperative gut microbiomes (GMs) of two groups, the MVI (n = 46) and non-MVI (n = 56) groups, using 16S ribosomal RNA gene sequencing data. At the operational taxonomic unit level, we employed random forest models to predict MVI risk and validated the results in independent validation cohorts [MVI group (n = 17) and non-MVI group (n = 15)]. RESULTS β diversity analysis, utilizing weighted UniFrac distances, revealed a significant difference between the MVI and non-MVI groups, as indicated by non-metric multidimensional scaling and principal coordinate analysis. We also observed a significant correlation between the characteristic intestinal microbial communities at the genus level and their main functions. Nine optimal microbial markers were identified, with an area under the curve of 79.76% between 46 MVI and 56 non-MVI samples and 79.80% in the independent verification group. CONCLUSION This pioneering analysis of the GM in patients with operable HBV-HCC with and without MVI opens new avenues for treating HBV-HCC with MVI. We successfully established a diagnostic model and independently verified microbial markers for patients with MVI. As preoperative targeted biomarkers, GM holds potential as a non-invasive tool for patients with HBV-HCC with MVI.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Yi-Yue Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
21
|
Le D, Chambers MM, Mercado K, Gutowski CJ. Characterization of the gut microbiome in an osteosarcoma mouse model. J Orthop Res 2023; 41:2730-2739. [PMID: 37246455 DOI: 10.1002/jor.25635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Compelling evidence has mounted surrounding the relationship between the gut microbiome and many intestinal and extraintestinal cancers. Few studies exist investigating the relationship between the gut microbiome and sarcoma. We hypothesize that the presence of distant osteosarcoma induces change to the profile of flora within the mouse. Twelve mice were used for this experiment: six were sedated and received an injection of human osteosarcoma cells into the flank, while six served as controls. Baseline stool and weight were collected. Tumor size and mouse weight were recorded weekly, and stool samples were collected and stored. Fecal microbiomes of the mice were profiled by 16S rRNA gene sequencing and analyzed for alpha diversity, relative abundances of microbial taxa, and abundance of specific bacteria at different time points. Alpha diversity was increased in the osteosarcoma group compared with the control group. The family Lachnospiraceae had the second strongest negative net average change in relative abundance over time in the osteosarcoma group whereas it had a positive net average change in the control group. An increased Firmicutes/Bacteroidota (F/B) ratio was observed in the osteosarcoma group relative to the control mice. These differences suggest that there may be an interplay between the gut microbiome and osteosarcoma. Clinical significance: Due to the paucity of literature available, our work can support novel research on this relationship and the development of new, personalized treatments for osteosarcoma.
Collapse
Affiliation(s)
- David Le
- Department of Orthopaedic Surgery, Inspira Medical Center, Vineland, New Jersey, USA
| | | | - Kayla Mercado
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| | - Christina J Gutowski
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| |
Collapse
|
22
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
23
|
姜 海, 李 小, 王 建. [Relationship between chronic radiation enteritis of cervical cancer and gut microbiota]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:619-624. [PMID: 37534641 PMCID: PMC10398777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To explore the relationship between gut microbiota and chronic radiation enteritis of cervical cancer patients. METHODS Fecal samples were collected from 34 patients with cervical cancer who had received radiotherapy for at least 6 months but less than 2 years. The patients were divi-ded into mild toxicity group (mild, M) with no symptoms or mild symptoms and severe toxicity group (severe, S) with severe symptoms by clinical diagnosis of radiation enteritis, modified inflammatory bo-wel disease questionnaire (IBDQ) and Vaizey questionnaire. DNA extracted from fecal samples was sequenced and analyzed by 16S rRNA sequencing method. The analysis indexes included α-diversity, β-diversity, taxonomic composition analysis, taxonomic hierarchy tree and linear discriminant analysis (LDA) effect size (LEfSe). RESULTS From the perspective of species diversity, most indices of α diversity in group M were higher than those in group S. Although there was no significant difference, it also indicated a correlation between low species diversity and severity of intestinal symptoms to some extent. There was also a significant difference in the distribution of β diversity between the two groups, indicating that the microbial characteristics were different between the two groups. From the perspective of species composition, the M group had higher Firmicutes [66.5% (M) vs. 56.0% (S)] and lower Proteobacteria [4.1% (M) vs. 13.9% (S)] than the S group at the level of phyla. At the level of genus, there were also significant differences between the two groups: Shigella [2.7% (M) vs. 8.5% (S)], Faeca-libacterium [7.0% (M) vs. 2.7% (S)], Lachnospiraceae_Clostridium [1.3% (M) vs. 4.7% (S)]. Through LEfSe also found some species with statistically significant differences between the two groups. The abundance of Peptoniphilus, Azospirillum and Actinomyces in group M was significantly higher, while the abundance of Veillonellaceae, Rhodobacteraceae, and Rhodobacterales in group S was significantly higher. The taxonomic hierarchy tree also intuitively showed the difference in species composition between the two groups at each taxonomic level in space. CONCLUSION The severity of chronic radiation enteritis of cervical cancer is closely related to the characteristics and composition of gut microbiota.
Collapse
Affiliation(s)
- 海红 姜
- 北京大学人民医院妇产科, 北京 100044Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - 小凡 李
- 北京大学肿瘤医院放射肿瘤科, 北京 100142Department of Radiation Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - 建六 王
- 北京大学人民医院妇产科, 北京 100044Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
24
|
Teka B, Yoshida-Court K, Firdawoke E, Chanyalew Z, Gizaw M, Addissie A, Mihret A, Colbert LE, Napravnik TC, El Alam MB, Lynn EJ, Mezzari M, Anuja J, Kantelhardt EJ, Kaufmann AM, Klopp AH, Abebe T. Cervicovaginal Microbiota Profiles in Precancerous Lesions and Cervical Cancer among Ethiopian Women. Microorganisms 2023; 11:microorganisms11040833. [PMID: 37110255 PMCID: PMC10144031 DOI: 10.3390/microorganisms11040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant dysplasia or invasive cervical cancer compared with that of healthy women. The study comprised 120 Ethiopian women (60 cervical cancer patients who had not received any treatment, 25 patients with premalignant dysplasia, and 35 healthy women). Cervicovaginal specimens were collected using either an Isohelix DNA buccal swab or an Evalyn brush, and ribosomal RNA sequencing was used to characterize the cervicovaginal microbiota. Shannon and Simpson diversity indices were used to evaluate alpha diversity. Beta diversity was examined using principal coordinate analysis of weighted UniFrac distances. Alpha diversity was significantly higher in patients with cervical cancer than in patients with dysplasia and in healthy women (p < 0.01). Beta diversity was also significantly different in cervical cancer patients compared with the other groups (weighted UniFrac Bray-Curtis, p < 0.01). Microbiota composition differed between the dysplasia and cervical cancer groups. Lactobacillus iners was particularly enriched in patients with cancer, and a high relative abundance of Lactobacillus species was identified in the dysplasia and healthy groups, whereas Porphyromonas, Prevotella, Bacteroides, and Anaerococcus species predominated in the cervical cancer group. In summary, we identified differences in cervicovaginal microbiota diversity, composition, and relative abundance between women with cervical cancer, women with dysplasia, and healthy women. Additional studies need to be carried out in Ethiopia and other regions to control for variation in sample collection.
Collapse
Affiliation(s)
- Brhanu Teka
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- Correspondence: ; Tel.: +251-913500065
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ededia Firdawoke
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
| | - Zewditu Chanyalew
- Department of Pathology, St. Paul Hospital Millennium Medical College, Addis Ababa P.O. Box 1271, Ethiopia
| | - Muluken Gizaw
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
- Institute for Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
- NCD Working Group, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
| | - Adamu Addissie
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Molly B. El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J. Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Mezzari
- Molecular Virology and Microbiology, Baylor College of Medicine Alkek, Center for Molecular Discovery, Houston, TX 77030, USA
| | - Jhingran Anuja
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eva Johanna Kantelhardt
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- Institute for Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
| | - Andreas M. Kaufmann
- Department of Gynecology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
25
|
Abstract
A large subset of patients with Angelman syndrome (AS) suffer from concurrent gastrointestinal (GI) issues, including constipation, poor feeding, and reflux. AS is caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. Clinical features of AS, which include developmental delays, intellectual disability, microcephaly, and seizures, are primarily due to the deficient expression or function of the maternally inherited UBE3A allele. The association between neurodevelopmental delay and GI disorders is part of the increasing evidence suggesting a link between the brain and the gut microbiome via the microbiota-gut-brain axis. To investigate the associations between colonization of the gut microbiota in AS, we characterized the fecal microbiome in three animal models of AS involving maternal deletions of Ube3A, including mouse, rat, and pig, using 16S rRNA amplicon sequencing. Overall, we identified changes in bacterial abundance across all three animal models of AS. Specific bacterial groups were significantly increased across all animal models, including Lachnospiraceae Incertae sedis, Desulfovibrios sp., and Odoribacter, which have been correlated with neuropsychiatric disorders. Taken together, these findings suggest that specific changes to the local environment in the gut are driven by a Ube3a maternal deletion, unaffected by varying housing conditions, and are prominent and detectable across multiple small and large animal model species. These findings begin to uncover the underlying mechanistic causes of GI disorders in AS patients and provide future therapeutic options for AS patients. IMPORTANCE Angelman syndrome (AS)-associated gastrointestinal (GI) symptoms significantly impact quality of life in patients. In AS models in mouse, rat, and pig, AS animals showed impaired colonization of the gut microbiota compared to wild-type (healthy) control animals. Common changes in AS microbiomes across all three animal models may play a causal effect for GI symptoms and may help to identify ways to treat these comorbidities in patients in the future.
Collapse
|
26
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
27
|
Islam MZ, Tran M, Xu T, Tierney BT, Patel C, Kostic AD. Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. MICROBIOME 2022; 10:218. [PMID: 36482486 PMCID: PMC9733034 DOI: 10.1186/s40168-022-01373-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND The gut microbiome promotes specific immune responses, and in turn, the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditions. METHODOLOGY We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold change, and the standard error was calculated from the p-values, sample size, and fold change. RESULTS We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 studies) and decreased in six cancer studies (-0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species. CONCLUSIONS The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Melissa Tran
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Chirag Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aleksandar David Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
28
|
Markovina S, Rendle KA, Cohen AC, Kuroki LM, Grover S, Schwarz JK. Improving cervical cancer survival-A multifaceted strategy to sustain progress for this global problem. Cancer 2022; 128:4074-4084. [PMID: 36239006 PMCID: PMC10042221 DOI: 10.1002/cncr.34485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Cervical cancer is associated with profound socioeconomic and racial disparities in incidence, mortality, morbidity, and years of life lost. The last standard-of-care treatment innovation for locally advanced cervical cancer occurred in 1999, when cisplatin chemotherapy was added to pelvic radiation therapy (chemoradiation therapy). Chemoradiation therapy is associated with a 30%-50% failure rate, and there is currently no cure for recurrent or metastatic disease. The enormity of the worldwide clinical problem of cervical cancer morbidity and mortality as well as the egregiously unchanged mortality rate over the last several decades are recognized by the National Institutes of Health as urgent priorities. This is reflected within the Office of Research on Women's Health effort to advance National Institutes of Health research on the health of women, as highlighted in a recent symposium. In the current review, the authors address the state of the science and opportunities to improve cervical cancer survival with an emphasis on improving access, using technology in innovative and widely implementable ways, and improving current understanding of cervical cancer biology. LAY SUMMARY: Cervical cancer is associated with profound socioeconomic and racial disparities in incidence, mortality, morbidity, and years of life lost. In this review, the state of the science and opportunities to improve cervical cancer survival are presented with an emphasis on improving access, using technology in innovative and widely implementable ways, and improving current understanding of cervical cancer biology.
Collapse
Affiliation(s)
- Stephanie Markovina
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis
- Siteman Cancer Center, Washington University School of Medicine in St. Louis
| | - Katharine A. Rendle
- Departments of Family Medicine & Community Health and of Biostatistics, Informatics, and Epidemiology, Perelman School of Medicine, University of Pennsylvania
- Abramson Cancer Center, University of Pennsylvania
| | - Alexander C. Cohen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis
| | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis
| | - Surbhi Grover
- Abramson Cancer Center, University of Pennsylvania
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis
- Siteman Cancer Center, Washington University School of Medicine in St. Louis
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis
| |
Collapse
|
29
|
Siddiqui R, Makhlouf Z, Alharbi AM, Alfahemi H, Khan NA. The Gut Microbiome and Female Health. BIOLOGY 2022; 11:1683. [PMID: 36421397 PMCID: PMC9687867 DOI: 10.3390/biology11111683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023]
Abstract
The possession of two X chromosomes may come with the risk of various illnesses, females are more likely to be affected by osteoarthritis, heart disease, and anxiety. Given the reported correlations between gut microbiome dysbiosis and various illnesses, the female gut microbiome is worthy of exploration. Herein, we discuss the composition of the female gut microbiota and its dysbiosis in pathologies affecting the female population. Using PubMed, we performed a literature search, using key terms, namely: "gut microbiome", "estrogen", "menopause", "polycystic ovarian syndrome", "pregnancy", and "menstruation". In polycystic ovarian syndrome (PCOS), the abundance of Bacteroides vulgatus, Firmicutes, Streptococcus, and the ratio of Escherichia/Shigella was found to be increased while that of Tenericutes ML615J-28, Tenericutes 124-7, Akkermansia, Ruminococcaceae, and Bacteroidetes S24-7 was reduced. In breast cancer, the abundance of Clostridiales was enhanced, while in cervical cancer, Prevotella, Porphyromonas, and Dialister were enhanced but Bacteroides, Alistipes, and members of Lachnospiracea, were decreased. In ovarian cancer, Prevotella abundance was increased. Interestingly, the administration of Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum ameliorated PCOS symptoms while that of a mix of Bifidobacterium lactis W51, Bifidobacterium bifidum W23, Lactobacillus brevis W63, Bifidobacterium lactis W52, Lactobacillus salivarius W24, Lactobacillus acidophilus W37, Lactococcus lactis W19, Lactobacillus casei W56, and Lactococcus lactis W58 alleviated vascular malfunction and arterial stiffness in obese postmenopausal women, and finally, while further research is needed, Prevotella maybe protective against postmenopausal bone mass loss. As several studies report the therapeutic potential of probiotics and since the gut microbiota of certain female pathological states has been relatively characterized, we speculate that the administration of certain bacterial species as probiotics is warranted, as novel independent or adjunct therapies for various female pathologies.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
30
|
Lin C, Zeng Z, Lin Y, Wang P, Cao D, Xie K, Luo Y, Yang H, Yang J, Wang W, Luo L, Lin H, Chen H, Zhao Y, Shi Y, Gao Z, Liu H, Liu SL. Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154401. [PMID: 36029647 DOI: 10.1016/j.phymed.2022.154401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ovarian cancer has the highest mortality among all gynecological malignancies; currently, no effective therapeutics are available for its treatment. Naringenin has been shown to inhibit the progression of various cancers, but its inhibitory effect on ovarian cancer remains unknown. PURPOSE This study aimed to evaluate the inhibitory effects of naringenin on ovarian cancer and elucidate the underlying mechanisms. METHODS Cancer cell proliferation was detected by cell counting kit-8 and crystal violet assays, and the migration capability was determined by wound healing and transwell assays. Western blotting and immunohistochemistry assays were employed to determine the expression levels of the epidermal growth factor receptor, phosphatidylinositol 3-kinase (PI3K) and cyclin D1 in vitro and in vivo, respectively. An ES-2 xenograft nude mouse model was established for the in vivo experiments, and fecal samples were collected for intestinal microbiota analysis by 16S rDNA sequencing. RESULTS Naringenin suppressed the proliferation and migration of A2780 and ES-2 cancer cell lines and downregulated PI3K in vitro. In animal experiments, naringenin treatment significantly decreased the tumor weight and volume, and oral administration exhibited greater effects than intraperitoneal injection. Additionally, naringenin treatment ameliorated the population composition of the microbiota in animals with ovarian cancer and significantly increased the abundances of Alistipes and Lactobacillus. CONCLUSION Naringenin suppresses epithelial ovarian cancer by inhibiting PI3K pathway expression and ameliorating the gut microbiota, and the oral route is more effective than parenteral administration.
Collapse
Affiliation(s)
- Caiji Lin
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Yiru Lin
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Pengfei Wang
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Danli Cao
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Kaihong Xie
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Yao Luo
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Hao Yang
- Department of Pathology, Harbin Chest Hospital, Harbin 150056, China
| | - Jiaming Yang
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Wenxue Wang
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - LingJie Luo
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Huihui Lin
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Hang Chen
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Yufan Zhao
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Yongwei Shi
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Zixiang Gao
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada.
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary T2N 4N1, Canada.
| |
Collapse
|
31
|
Dellino M, Cascardi E, Laganà AS, Di Vagno G, Malvasi A, Zaccaro R, Maggipinto K, Cazzato G, Scacco S, Tinelli R, De Luca A, Vinciguerra M, Loizzi V, Daniele A, Cicinelli E, Carriero C, Genco CA, Cormio G, Pinto V. Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women? Infect Agent Cancer 2022; 17:53. [PMID: 36271433 DOI: 10.1186/s13027-022-00465-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Recent studies have shown the importance of the microbiota in women's health. Indeed, the persistence of Human Papilloma Virus (HPV)-related lesions in patients with dysbiosis can be the antechamber to cervical cancer. The aim of this study was to evaluate whether long term administration of oral Lactobacillus crispatus can restore eubiosis in women with HPV infections and hence achieve viral clearance. METHODS In total, 160 women affected by HPV infections were enrolled at the Department of Gynecological Obstetrics of "San Paolo" Hospital, Italy between February 2021 and February 2022. The women were randomly assigned to two groups, one in treatment with oral Lactobacillus crispatus M247 (group 1, n = 80) versus the control group, that hence only in follow-up (Group 2, n = 80). RESULTS After a median follow-up of 12 months (range 10-30 months), the likelihood of resolving HPV-related cytological anomalies was higher in patients in treatment with the long term oral probiotic (group 1) versus the group that perfom only follow-up (group 2) (60.5% vs. 41.3%, p = 0.05). Total HPV clearance was shown in 9.3% of patients undergoing only follow-up compared to 15.3% of patients in the group taking long term oral Lactobacillus crispatus M247 (p = 0.34). However, the percentage of HPV-negative patients, assessed with the HPV-DNA test, documented at the end of the study period was not significantly different from the control group. CONCLUSIONS Despite the limitations of our analysis, we found a higher percentage of clearance of PAP-smear abnormalities in patients who took long term oral Lactobacillus crispatus M247 than in the control group. Larger studies are warranted, but we believe that future research should be aimed in this direction. Trial registration This study is retrospectively registered.
Collapse
Affiliation(s)
- Miriam Dellino
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy. .,Clinic of Obstetrics and Gynecology, "San Paolo" Hospital, ASL Bari, Bari, Italy.
| | - Eliano Cascardi
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS "Civico-Di Cristina-Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127, Palermo, Italy
| | - Giovanni Di Vagno
- Clinic of Obstetrics and Gynecology, "San Paolo" Hospital, ASL Bari, Bari, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy
| | - Rosanna Zaccaro
- Clinic of Obstetrics and Gynecology, "San Paolo" Hospital, ASL Bari, Bari, Italy
| | - Katia Maggipinto
- Clinic of Obstetrics and Gynecology, "San Paolo" Hospital, ASL Bari, Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences and Neurosciences, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Raffaele Tinelli
- Department of Obstetrics and Gynecology, "Valle d'Itria" Hospital, Martina Franca, Italy
| | - Alessandro De Luca
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy
| | - Marina Vinciguerra
- Clinic of Obstetrics and Gynecology, "San Paolo" Hospital, ASL Bari, Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Antonella Daniele
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Ettore Cicinelli
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy
| | - Carmine Carriero
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy
| | | | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Vincenzo Pinto
- Department of Biomedical Sciences and Human Oncology, Policlinic of Bari, University of Bari, Piazza Aldo Moro, 70100, Bari, Italy
| |
Collapse
|
32
|
Steiner HE, Patterson HK, Giles JB, Karnes JH. Bringing pharmacomicrobiomics to the clinic through well-designed studies. Clin Transl Sci 2022; 15:2303-2315. [PMID: 35899413 PMCID: PMC9579385 DOI: 10.1111/cts.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
Pharmacomicrobiomic studies investigate drug-microbiome interactions, such as the effect of microbial variation on drug response and disposition. Studying and understanding the interactions between the gut microbiome and drugs is becoming increasingly relevant to clinical practice due to its potential for avoiding adverse drug reactions or predicting variability in drug response. The highly variable nature of the human microbiome presents significant challenges to assessing microbes' influence. Studies aiming to explore drug-microbiome interactions should be well-designed to account for variation in the microbiome over time and collect data on confounders such as diet, disease, concomitant drugs, and other environmental factors. Here, we assemble a set of important considerations and recommendations for the methodological features required for performing a pharmacomicrobiomic study in humans with a focus on the gut microbiome. Consideration of these factors enable discovery, reproducibility, and more accurate characterization of the relationships between a given drug and the microbiome. Furthermore, appropriate interpretation and dissemination of results from well-designed studies will push the field closer to clinical relevance and implementation.
Collapse
Affiliation(s)
- Heidi E. Steiner
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
| | - Hayley K. Patterson
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
| | - Jason B. Giles
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
| | - Jason H. Karnes
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA,Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
33
|
Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota. J Mol Endocrinol 2022; 69:R81-R94. [PMID: 35900833 PMCID: PMC10031513 DOI: 10.1530/jme-21-0238] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
The gut microbiome is considered an endocrine organ that can influence distant organs and associated biological pathways. Recent advances suggest that gut microbial homeostasis is essential for reproductive health and that perturbations in the gut microbiota can lead to reproductive pathologies. This review provides an updated overview of the relationship between the gut microbiome and female reproductive diseases. Specifically, we highlight the most recent findings on the gut microbiome in gynecological pathologies including polycystic ovarian syndrome, endometriosis, and endometrial cancer. Most studies revealed associations between altered gut microbial compositions and these reproductive diseases, though few have suggested cause-effect relationships. Future studies should focus on determining the molecular mechanisms underlying associations between gut microbiota and reproductive diseases. Understanding this bidirectional relationship could lead to the development of novel and effective strategies to prevent, diagnose, and treat female reproductive organ-related diseases.
Collapse
Affiliation(s)
- Sangappa B. Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Karpinets TV, Wu X, Solley T, El Alam MB, Sims TT, Yoshida-Court K, Lynn E, Ahmed-Kaddar M, Biegert G, Yue J, Song X, Sun H, Petrosino JF, Mezzari MP, Okhuysen P, Eifel PJ, Jhingran A, Lin LL, Schmeler KM, Ramondetta L, Ajami N, Jenq RR, Futreal A, Zhang J, Klopp AH, Colbert LE. Metagenomes of rectal swabs in larger, advanced stage cervical cancers have enhanced mucus degrading functionalities and distinct taxonomic structure. BMC Cancer 2022; 22:945. [PMID: 36050658 PMCID: PMC9438314 DOI: 10.1186/s12885-022-09997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. Method Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient’s clinical characteristics. Results Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. Conclusions In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09997-0.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis T Sims
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Greyson Biegert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingyan Yue
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Melissa P Mezzari
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Pablo Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lilie L Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lois Ramondetta
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Han M, Wang N, Han W, Ban M, Sun T, Xu J. Gut Microbes in Gynecologic Cancers: Causes or Biomarkers and Therapeutic Potential. Front Oncol 2022; 12:902695. [PMID: 35912194 PMCID: PMC9326394 DOI: 10.3389/fonc.2022.902695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
The human intestine is home to a variety of microorganisms. In healthy populations, the intestinal flora shares a degree of similarity and stability, and they have a role in the metabolism, immunological response, and physiological function of key organs. With the rapid advent of high-throughput sequencing in recent years, several researchers have found that dysbiosis of the human gut microflora potentially cause physical problems and gynecological malignancies among postmenopausal women. Besides, dysbiosis hinders tumor treatment. Nonetheless, the importance of maintaining homeostatic gut microbiota and the effective use of probiotics in the treatment of gynecological malignancies should not be disregarded. Moreover, intestinal flora regulation and the involvement of probiotics as well as associated biologically active substances in gynecological malignancies could be an adjuvant treatment modality related to surgery and chemoradiotherapy in the future. Herein, this article aims to review the potential relationship between gut microorganisms and postmenopausal status as well as gynecologic malignancies; then the relationship between gut microbes and early screening as well as therapeutic aspects. Also, we describe the role of probiotics in the prevention, treatment, and prognosis of gynecologic malignancies.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Meng Ban
- Department of Bioinformatics, Liaoning Microhealth Biotechnology Co., Ltd, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Breast Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- *Correspondence: Junnan Xu,
| |
Collapse
|
36
|
Wang Z, Xiao R, Huang J, Qin X, Hu D, Guo E, Liu C, Lu F, You L, Sun C, Chen G. The Diversity of Vaginal Microbiota Predicts Neoadjuvant Chemotherapy Responsiveness in Locally Advanced Cervical Cancer. MICROBIAL ECOLOGY 2022; 84:302-313. [PMID: 34405250 DOI: 10.1007/s00248-021-01800-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The vaginal microbiota is closely related to HPV infection and cervical cancer (CC), but its relationship with platinum-based chemotherapy responsiveness is unknown. The study aimed to investigate the vaginal microbiota diversity of women with locally advanced cervical cancer (LACC) and compare the differences between responders and nonresponders. We characterized the 16S rRNA gene sequencing of vaginal microbiome of 66 vaginal samples, including 26 LACC patients before neoadjuvant chemotherapy and 40 healthy controls. Compared with the healthy controls, alpha diversity was significantly increased in CC patients (p <0.05) with more unconventionality bacterial colonization. Beta diversity also significantly differed between cervical cancer patients and controls (p <0.01). Within the CC patients, alpha diversity in vaginal samples was significantly higher in the nonresponders versus the responders (p <0.01), and the Ace index and Chao index were negatively correlated with mass reduction (p <0.001). Moreover, the Bacteroides genus enriched in the nonresponders had a ROC-plot AUC value reaching 0.84. The study suggests the vaginal microbiota in LACC patients is associated with platinum-based chemotherapy responsiveness. Alpha diversity and Bacteroides abundance have the potential of identifying platinum-resistant patients at an early time. These findings provide a basis for further research on the relationship between vaginal microbiome and chemotherapy effect in LACC.
Collapse
Affiliation(s)
- Zizhuo Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rourou Xiao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Huang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dianxing Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ensong Guo
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lixin You
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
37
|
Mao X, Peng X, Pan Q, Zhao X, Yu Z, Xu D. Uterine Fibroid Patients Reveal Alterations in the Gut Microbiome. Front Cell Infect Microbiol 2022; 12:863594. [PMID: 35646718 PMCID: PMC9131877 DOI: 10.3389/fcimb.2022.863594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is associated with reproductive disorders in multiple ways. This research investigated possible differences in gut microbiome compositions between patients with uterine fibroids (UFs) and healthy control subjects in order to further provide new insight into its etiology. Stool samples were collected from 85 participants, including 42 UF patients (case group) and 43 control subjects (control group). The gut microbiota was examined with 16S rRNA quantitative arrays and bioinformatics analysis. The α-diversity in patients with UFs was significantly lower than that of healthy controls and negatively correlated with the number of tumorigeneses. The microbial composition of the UF patients deviated from the cluster of healthy controls. Stool samples from patients with UFs exhibited significant alterations in terms of multiple bacterial phyla, such as Firmicutes, Proteobacteria, Actinobacteria, and Verrucomicrobia. In differential abundance analysis, some bacteria species were shown to be downregulated (e.g., Bifidobacteria scardovii, Ligilactobacillus saerimneri, and Lactococcus raffinolactis) and upregulated (e.g., Pseudomonas stutzeri and Prevotella amnii). Furthermore, the microbial interactions and networks in UFs exhibited lower connectivity and complexity as well as higher clustering property compared to the controls. Taken together, it is possible that gut microbiota dysbiosis has the potential as a risk factor. This study found that UFs are associated with alterations of the gut microbiome diversity and community network connectivity. It provides a new direction to further explore the host–gut microbiota interplay and to develop management and prevention in UF pathogenesis.
Collapse
Affiliation(s)
- Xuetao Mao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Peng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiong Pan
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingping Zhao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zheng Yu, ; Dabao Xu, ; Xingping Zhao,
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Zheng Yu, ; Dabao Xu, ; Xingping Zhao,
| | - Dabao Xu
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zheng Yu, ; Dabao Xu, ; Xingping Zhao,
| |
Collapse
|
38
|
Vita AA, McClure R, Farris Y, Danczak R, Gundersen A, Zwickey H, Bradley R. Associations between Frequency of Culinary Herb Use and Gut Microbiota. Nutrients 2022; 14:nu14091981. [PMID: 35565947 PMCID: PMC9099813 DOI: 10.3390/nu14091981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
While evidence suggests that culinary herbs have the potential to modulate gut microbiota, much of the current research investigating the interactions between diet and the human gut microbiome either largely excludes culinary herbs or does not assess use in standard culinary settings. As such, the primary objective of this study was to evaluate how the frequency of culinary herb use is related to microbiome diversity and the abundance of certain taxa, measured at the phylum level. In this secondary data analysis of the INCLD Health cohort, we examined survey responses assessing frequency of culinary herb use and microbiome analysis of collected stool samples. We did not observe any associations between frequency of culinary herb use and Shannon Index, a measure of alpha diversity. Regarding the abundance of certain taxa, the frequency of use of polyphenol-rich herbs and herbs with certain quantities of antibacterial compounds was positively associated with Firmicutes abundance, and negatively associated with Proteobacteria abundance. Additionally, the total number of herbs used with high frequency, defined as over three times per week, was also positively associated with Firmicutes abundance, independent of adjustments, and negatively associated with Proteobacteria abundance, after adjusting for dietary factors. Frequency of culinary herb use was not associated with Bacteroidota or Actinobacteria abundance.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
- Correspondence:
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| |
Collapse
|
39
|
Li Z, Dong J, Wang M, Yan J, Hu Y, Liu Y, Pan Y, Li H. Resveratrol ameliorates liver fibrosis induced by nonpathogenic Staphylococcus in BALB/c mice through inhibiting its growth. Mol Med 2022; 28:52. [PMID: 35508992 PMCID: PMC9066969 DOI: 10.1186/s10020-022-00463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The altered gut microbiota is implicated in the pathogenesis of liver fibrosis. Resveratrol is a candidate for the treatment of liver fibrosis, which could ameliorate the dysregulation of gut microbiota in mice. This study aimed to clarify the role and mechanism of resveratrol in gut microbiota during liver fibrosis. METHODS A mouse model of liver fibrosis induced by CCl4 was conducted to assess the effect of resveratrol on liver fibrosis. The changes of gut microbiota in liver fibrotic mice after resveratrol intervention were assessed using 16S ribosomal RNA sequencing. The mechanism of the gut microbiota dysregulation in liver fibrosis was investigated by Sirius red staining, immunohistochemical assay, bacterial translocation (BT), EUB338 fluorescence in situ hybridization, immunofluorescence, trans-epithelial electrical resistance analysis and paracellular permeability analysis. RESULTS Resveratrol relieved CCl4-induced liver fibrosis. Besides, resveratrol restrained the gut microbiota Staphylococcus_lentus and Staphylococcus_xylosus in the liver fibrotic mice, and the Staphylococcus_xylosus and Staphylococcus_lentus facilitated the occurrence of BT and the cultures of them enhanced the permeability of intestine. The in vivo assay corroborated that the excessive Staphylococcus_xylosus and Staphylococcus_lentus canceled the protecting effect of resveratrol on liver fibrosis, and Staphylococcus_xylosus or Staphylococcus_lentus alone had a limited impact on the liver injury of normal mice. CONCLUSION Resveratrol ameliorated liver fibrosis by restraining the growth of Staphylococcus_xylosus and Staphylococcus_lentus.
Collapse
Affiliation(s)
- Zhiqin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jianxia Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Meng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jingya Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Yushu Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yang Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yajie Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
40
|
Fang Y, Zhang W. Distribution Characteristics and Species Diversity of Bacteria in Hepatocellular Carcinoma Tissues. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was to explore the differences in the distribution and species diversity of bacteria between hepatocellular carcinoma (HCC) tissues and normal liver tissues. 28 HCC patients treated with surgery were selected as the research objects (HCC group), and 19 healthy volunteers
with normal physical examinations were included in the control group (Normal group). The tumor specimens were obtained by intraoperative and biopsy puncture, and a 16S ribosomal ribonucleic acid (rRNA) library was constructed. Based on the sequencing data obtained by the IlluminaHi Seq sequencing
platform, the differences of bacteria in the liver tissues of the HCC group and the Normal group were analyzed at the level of phyla, family, and genus. The Ace, Chao1, and Shannon of the two groups were compared. The results showed that IlluminaHi Seq sequencing obtained a total of 11,714,659
valid sequences, with an average of 131,625 sequences per sample. The proportions of Bacteroidetes, Firmicutes, and Proteobacteria in HCC group and Normal group were 48.75% versus 34.16%, 37.44% versus 18.02%, and 10.85% versus 39.26%, respectively. The Bacteroidaceae, Prevotellaceae, Lachnospiraceae,
and Ruminococcaceae accounted for 22.49%, 20.62%, 16.54%, and 19.93% in Normal group; while those in the HCC tissues accounted for 26.83%, 14.22%, 11.14%, and 13.18%, respectively. The dominant bacteria at the genus level in HCC group and Normal group were Bacteroides and Prevotella-9, with
the proportions of 24.19% versus 26.04% and 14.19% versus 8.44%, respectively. The difference in operational taxonomic unit (OTU) numbers of HCC and Normal group were compared and analyzed, which were 1,266 and 1,082, respectively, and the number of common OTU in the two tissues was 875. The
Ace in HCC tissue and normal liver tissue were 1063.8±66.79 and 1003.6±52.19, respectively. The Ace in HCC tissue was greater than that in normal liver tissue (P < 0.05). The Chao1 and Shannon in HCC tissue were 1022.9±67.74 and 5.4269±0.3608, respectively;
while those in normal liver tissue were 1003.6±66.79 and 5.2842±0.9714, respectively. The Chao1 and Shannon in HCC tissues were much higher than those in Normal group (P < 0.05). It showed that there was no difference in the types of bacterial species in HCC tissues,
but the proportions of their flora at the level of phyla, family, and genus changed greatly, which may be related to the occurrence of HCC. This study could provide a reference for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yeqing Fang
- Clinical Laboratory, Tonglu First People’s Hospital, Tonglu, Hangzhou, 311500, China
| | - Weili Zhang
- Clinical Laboratory, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
41
|
Hang Z, Lei T, Zeng Z, Cai S, Bi W, Du H. Composition of intestinal flora affects the risk relationship between Alzheimer's disease/Parkinson's disease and cancer. Biomed Pharmacother 2021; 145:112343. [PMID: 34864312 DOI: 10.1016/j.biopha.2021.112343] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
An increasing number of epidemiological studies have shown that there is a significant inverse relationship between the onset of Alzheimer's disease/Parkinson's disease (AD/PD) and cancer, but the mechanism is still unclear. Considering that intestinal flora can connect them, we tried to explain this phenomenon from the intestinal flora. This review briefly introduced the relationship among AD/PD, cancer, and intestinal flora, studied metabolites or components of the intestinal flora and the role of intestinal barriers and intestinal hormones in AD/PD and cancer. After screening, a part of the flora capable of participating in the occurrence processes of the three diseases at the same time was obtained, the abundance changes of the special flora in AD/PD and various types of cancers were summarized, and they were classified according to the flora function and abundance, which in turn innovatively and reasonably explained the fact that AD/PD and cancer showed certain antagonism in epidemiological statistics from the perspective of intestinal flora. This review also proposed that viewing the risk relationship between diseases from the perspective of intestinal flora may provide new research ideas for the treatment of fecal microbiota transplantation (FMT) and related diseases.
Collapse
Affiliation(s)
- Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China
| | - Zehua Zeng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China
| | - Shanglin Cai
- Daxing Research Institute, University of Science and Technology Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
42
|
Liu X, Pan X, Liu H, Ma X. Gut Microbial Diversity in Female Patients With Invasive Mole and Choriocarcinoma and Its Differences Versus Healthy Controls. Front Cell Infect Microbiol 2021; 11:704100. [PMID: 34513727 PMCID: PMC8428518 DOI: 10.3389/fcimb.2021.704100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate variation in gut microbiome in female patients with invasive mole (IM) and choriocarcinoma (CC) and compare it with healthy controls. Methods Fecal microbiome of 12 female patients with IM, 9 female patients with CC, and 24 healthy females were analyzed based on 16s rDNA sequencing. Alpha (α) diversity was evaluated using Shannon diversity index and Pielou evenness index, while beta (β) diversity was assessed using principle coordinate analysis (PCoA) of unweighted Unifrac distances. The potential functional changes of microbiomes were predicted using Tax4Fun. The relative abundance of microbial taxa was compared using Welch’s t test. The role of varied gut microbiota was analyzed via receiver operating characteristic (ROC) curve. Results The α diversity and β diversity were significantly different between IM patients and controls, but not between CC patients and controls. In addition, the abundance of cancer-related genes was significantly increased in IM and CC patients. Notably, a total of 19 families and 39 genera were found to have significant differences in bacterial abundance. ROC analysis indicated that Prevotella_7 may be a potential biomarker among IM, CC, and controls. Conclusion Our study demonstrated that the diversity and composition of gut microbiota among IM patients, CC patients, and healthy females were significantly different, which provides rationale for using gut microbiota as diagnostic markers and treatment targets, as well as for further study of gut microbiota in gestational trophoblastic neoplasia (GTN).
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
You L, Cui H, Zhao F, Sun H, Zhong H, Zhou G, Chen X. Inhibition of HMGB1/RAGE axis suppressed the lipopolysaccharide (LPS)-induced vicious transformation of cervical epithelial cells. Bioengineered 2021; 12:4995-5003. [PMID: 34369271 PMCID: PMC8806497 DOI: 10.1080/21655979.2021.1957750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chronic inflammation operates as one of the critical causes of cervical cancer. Activation of HMGB1/RAGE axis could induce the inflammation and lead to multiple types of cancer. However, whether the HMGB1/RAGE axis could affect the development of cervical cancer by regulating the inflammation is unclear. Here, we stimulated normal cervical epithelial cells with lipopolysaccharide (LPS). Next, the expression of RAGE in these cells was suppressed by the RAGE inhibitor. CCK-8 and wound healing assays were performed to detect the proliferation and invasion. To determine how inflammatory factors (IL-1β, IL-6 and TNF-α) expressed in supernatant of these cells, ELISA was conducted. Western blotting was used for the detection of the expression of pyroptosis-related proteins (NLRP3 and caspase4). It was found that stimulation of LPS enhanced the proliferation and invasion of normal cervical epithelial cells. The expression of inflammatory factors (IL-1β, IL-6 and TNF-α) in these cells was promoted as well. Application of RAGE inhibitor abolished the efficacy of LPS on these cells. Furthermore, LPS promoted the expression of NLRP3 and caspase4 in these cells while RAGE inhibitor exerted suppressive effects on the expression of these proteins. In summary, LPS-induced inflammation of normal cervical epithelial cells resulted in the malignant transformation of these cells by activating HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Lifang You
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Hongyin Cui
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Fen Zhao
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Huier Sun
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Huanxin Zhong
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| | - Guoli Zhou
- Laboratory Department, First People's Hospital of Yuhang District, Hangzhou, China
| | - Xuejun Chen
- Department of Gynecology, First People's Hospital of Yuhang District, Hangzhou, China
| |
Collapse
|
44
|
Matsushita M, Fujita K, Motooka D, Hatano K, Fukae S, Kawamura N, Tomiyama E, Hayashi Y, Banno E, Takao T, Takada S, Yachida S, Uemura H, Nakamura S, Nonomura N. The gut microbiota associated with high-Gleason prostate cancer. Cancer Sci 2021; 112:3125-3135. [PMID: 34051009 PMCID: PMC8353908 DOI: 10.1111/cas.14998] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
We have found that intestinal bacteria and their metabolites, short-chain fatty acids (SCFAs), promote cancer growth in prostate cancer (PCa) mouse models. To clarify the association between gut microbiota and PCa in humans, we analyzed the gut microbiota profiles of men with suspected PCa. One hundred and fifty-two Japanese men undergoing prostate biopsies (96 with cancer and 56 without cancer) were included in the study and randomly divided into two cohorts: a discovery cohort (114 samples) and a test cohort (38 samples). The gut microbiota was compared between two groups, a high-risk group (men with Grade group 2 or higher PCa) and a negative + low-risk group (men with negative biopsy or Grade group 1 PCa), using 16S rRNA gene sequencing. The relative abundances of Rikenellaceae, Alistipes, and Lachnospira, all SCFA-producing bacteria, were significantly increased in high-risk group. In receiver operating characteristic curve analysis, the index calculated from the abundance of 18 bacterial genera which were selected by least absolute shrinkage and selection operator regression detected high-risk PCa in the discovery cohort with higher accuracy than the prostate specific antigen test (area under the curve [AUC] = 0.85 vs 0.74). Validation of the index in the test cohort showed similar results (AUC = 0.81 vs 0.67). The specific bacterial taxa were associated with high-risk PCa. The gut microbiota profile could be a novel useful marker for the detection of high-risk PCa and could contribute to the carcinogenesis of PCa.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of UrologyFaculty of MedicineKindai UniversityOsakasayamaJapan
| | - Daisuke Motooka
- Department of Infection MetagenomicsResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Koji Hatano
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Shota Fukae
- Department of UrologyOsaka Police HospitalOsakaJapan
| | | | - Eisuke Tomiyama
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yujiro Hayashi
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Eri Banno
- Department of UrologyFaculty of MedicineKindai UniversityOsakasayamaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Shingo Takada
- Department of UrologyOsaka Police HospitalOsakaJapan
| | - Shinichi Yachida
- Department of Cancer Genome InformaticsGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hirotsugu Uemura
- Department of UrologyFaculty of MedicineKindai UniversityOsakasayamaJapan
| | - Shota Nakamura
- Department of Infection MetagenomicsResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Norio Nonomura
- Department of UrologyGraduate School of MedicineOsaka UniversitySuitaJapan
| |
Collapse
|
45
|
Xie Y, Song L, Yang J, Tao T, Yu J, Shi J, Jin X. Small intestinal flora graft alters fecal flora, stool, cytokines and mood status in healthy mice. Life Sci Alliance 2021; 4:4/9/e202101039. [PMID: 34301806 PMCID: PMC8321674 DOI: 10.26508/lsa.202101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Transplantation of microbiota from small intestine, not large intestine, of healthy mice exerts obvious effects on healthy recipients, bringing a new perspective on gut flora transplantation. Fecal microbiota transplantation is widely used. Large intestinal microbiota (LIM) is more similar to fecal microbiota than small intestinal microbiota (SIM). The SIM communities are very different from those of LIM. Therefore, SIM transplantation (SIMT) and LIM transplantation (LIMT) might exert different influences. Here, healthy adult male C57Bl/6 mice received intragastric SIMT, LIMT, or sterile PBS administration. Microbiota graft samples were collected from small/large intestine of healthy mice of the same age, sex, and strain background. Compared with PBS treatment, SIMT increased pellet number, stool wet weight, and stool water percentage; induced a fecal microbiota profile shift toward the microbial composition of the SIM graft; induced a systemic anti-inflammatory cytokines profile; and ameliorated depressive-like behaviors in recipients. LIMT, however, induced merely a slight alteration in fecal microbial composition and no significant influence on the other aspects. In sum, SIMT, rather than LIMT, affected defecation features, fecal microbial composition, cytokines profile, and depressive-like behaviors in healthy mice. This study reveals the different effects of SIMT and LIMT, providing an interesting clue for further researches involving gut microbial composition change.
Collapse
Affiliation(s)
- Yinyin Xie
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Linyang Song
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Junhua Yang
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China .,Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Taoqi Tao
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Jing Yu
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Jingrong Shi
- Department of Data Mining and Analysis, Guangzhou Tianpeng Technology Co., Ltd, Guangzhou, PR China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| |
Collapse
|
46
|
Schreurs MPH, de Vos van Steenwijk PJ, Romano A, Dieleman S, Werner HMJ. How the Gut Microbiome Links to Menopause and Obesity, with Possible Implications for Endometrial Cancer Development. J Clin Med 2021; 10:jcm10132916. [PMID: 34209916 PMCID: PMC8268108 DOI: 10.3390/jcm10132916] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Interest is growing in the dynamic role of gut microbiome disturbances in human health and disease. No direct evidence is yet available to link gut microbiome dysbiosis to endometrial cancer. This review aims to understand any association between microbiome dysbiosis and important risk factors of endometrial cancer, high estrogen levels, postmenopause and obesity. Methods: A systematic search was performed with PubMed as primary database. Three separate searches were performed to identify all relevant studies. Results: Fifteen studies were identified as highly relevant and included in the review. Eight articles focused on the relationship with obesity and eight studies focused on the menopausal change or estrogen levels. Due to the heterogeneity in patient populations and outcome measures, no meta-analysis could be performed. Both the menopausal change and obesity were noted to enhance dysbiosis by reducing microbiome diversity and increasing the Firmicutes to Bacteroidetes ratio. Both also incurred estrobolome changes, leading to increased systemic estrogen levels, especially after menopause. Furthermore, microbiome dysbiosis was reported to be related to systemic inflammation through toll-like receptor signaling deficiencies and overexpression of pro-inflammatory cytokines. Conclusions: This review highlights that the female gut microbiome is intrinsically linked to estrogen levels, menopausal state and systemic inflammation, which indicates gut microbiome dysbiosis as a potential hallmark for risk stratification for endometrial cancer. Studies are needed to further define the role the gut microbiome plays in women at risk for endometrial cancer.
Collapse
Affiliation(s)
- Malou P. H. Schreurs
- Department of Obstetrics, Gynecology and Gynecologic Oncology, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
- Correspondence:
| | - Peggy J. de Vos van Steenwijk
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| | - Andrea Romano
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| | - Sabine Dieleman
- Maastricht University Medical Centre, Department of Surgery, GROW—School for Oncology and Developmental Biology, 6202 AZ Maastricht, The Netherlands;
| | - Henrica M. J. Werner
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| |
Collapse
|
47
|
Chambers LM, Bussies P, Vargas R, Esakov E, Tewari S, Reizes O, Michener C. The Microbiome and Gynecologic Cancer: Current Evidence and Future Opportunities. Curr Oncol Rep 2021; 23:92. [PMID: 34125319 DOI: 10.1007/s11912-021-01079-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer. RECENT FINDINGS The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer. Alterations to the bacterial populations in a microbiota, or dysbiosis, have been shown to favor a pro-carcinogenic state through altered immune responses, dysregulated hormone metabolism, and modulation of the cell cycle. Pre-clinical and clinical studies have emerged, demonstrating that specific bacteria or microbial communities may be associated with increased risk for uterine, ovarian, and cervical cancers. Notably, numerous studies have linked a non-Lactobacillus-dominant vaginal microbiota, composed of anaerobic bacteria, with HPV infection, persistence, and development of invasive cervical cancer. Similarly, next-generation high-throughput sequencing techniques have enabled the characterization of unique microbiotas in patients with malignant and benign gynecologic conditions, shedding light on new associations between bacterial species and gynecologic cancers. Harnessing the power of the microbiome for early diagnosis, therapeutic intervention and modulation creates tremendous potential to optimize gynecologic cancer outcomes in the future.
Collapse
Affiliation(s)
- Laura M Chambers
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Parker Bussies
- Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Roberto Vargas
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Emily Esakov
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Surabhi Tewari
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Ofer Reizes
- Case Comprehensive Cancer Center, Cleveland, OH, USA.,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chad Michener
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
48
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
49
|
Fernandes DCR, Andreyev HJN. Gastrointestinal Toxicity of Pelvic Radiotherapy: Are We Letting Women Down? Clin Oncol (R Coll Radiol) 2021; 33:591-601. [PMID: 33985867 DOI: 10.1016/j.clon.2021.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
For all cancers there are four areas of importance: prevention, early diagnosis, optimising therapy and living with and beyond. For women diagnosed with gynaecological cancers, progress in these first three areas has been immense. However, living with and beyond has largely been ignored as a significant issue. As a group, patients treated for gynaecological cancer are more often young and more often suffer the most difficult long-term issues. Despite the growing number of long-term survivors, little has been done to ensure appropriate assessment and treatment of side-effects of cancer therapies, especially when radiotherapy has been used. For many affected patients their symptoms become part of everyday life, 'normality' is adjusted and these changes are tolerated even when severely limiting activities. Data show that even expert clinicians frequently do not appreciate the true impact of these problems and the focus of treatment and of follow-up remains fixed on 5-year survival and cancer recurrence, respectively. Many clinicians are unaware of what experts can do for toxicity and do not know where to refer their patients. However, rapid identification of patients with significant symptoms can lead to earlier diagnosis of treatable pathologies and improvement in patients' quality of life. In addition, the underlying pathophysiology of radiation-induced damage is potentially amenable to disease-modifying therapies. This review focuses on the factors that contribute to patients developing pelvic radiation disease, what can be done to mitigate the toxicity of treatment and highlights the challenges that must be addressed to reduce the gastrointestinal toxicity of pelvic radiotherapy.
Collapse
Affiliation(s)
- D C R Fernandes
- Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln, UK
| | - H J N Andreyev
- Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln, UK; The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
50
|
Sims TT, Colbert LE, Klopp AH. The Role of the Cervicovaginal and Gut Microbiome in Cervical Intraepithelial Neoplasia and Cervical Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:72-78. [PMID: 35663536 PMCID: PMC9153260 DOI: 10.36401/jipo-20-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 04/19/2023]
Abstract
The microbiome, which refers to the microbiota within a host and their collective genomes, has recently been demonstrated to play a critical role in cancer progression, metastasis, and therapeutic response. The microbiome is known to affect host immunity, but its influence on human papilloma virus (HPV) gynecologic malignancies remains limited and poorly understood. To date, studies have largely focused on the cervicovaginal microbiome; however, there is growing evidence that the gut microbiome may interact and substantially affect therapeutic response in gynecologic cancers. Importantly, new developments in microbiome sequencing and advanced bioinformatics technologies have enabled rapid advances in our understanding of the gut and local tumor microbiota. In this review, we examine the evidence supporting the role of the microbiome in HPV-associated cervical intraepithelial neoplasia (CIN) and cervical cancer, explore characteristics that influence and shape the host microbiota that impact HPV-driven carcinogenesis, and highlight potential approaches and considerations for future and ongoing research of the microbiome's effect on HPV-associated cancer.
Collapse
Affiliation(s)
- Travis T. Sims
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|