1
|
Guillén-Castrillo M, Fierro R, Damián-Matsumura P, Gaona-Domínguez S, Tarragó-Castellanos R. Neonatal co-administration of the phytoestrogens genistein and daidzein disrupts sexual behavior and fertility. Physiol Behav 2025; 293:114812. [PMID: 39884525 DOI: 10.1016/j.physbeh.2025.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Phytoestrogens are non-steroidal compounds that, can act as agonists and/or antagonists by binding to estrogen receptors; consequently they can modify estrogen-dependent processes of neonatal sexual differentiation. Results of the analysis of the sexual behavior of experimental rats that received 6.8 mg of isoflavones/kg/day, showed significantly more mating activity, but fewer ejaculations (p < 0.01), and a lower copulatory efficiency than the control group. Aggressive behavior was prominent in the phytoestrogen-treated males (p < 0.05), but defensive behavior was infrequent. Phytoestrogens may interfere with the development of male and female traits by competing with estradiol in contexts of sexual behavior. Compared to the control group, the phytoestrogen-treated males exhibited delayed olfactory perception and uncertain preference. The ventrolateral area of the medial hypothalamus is influenced by neonatal neuro estrogens that can produce changes in differentiation, such as the aggressiveness manifested by the males. A probable explanation is that this is due to the inhibition of aromatase by isoflavones. Regarding fertility, the females impregnated by the control males had more offspring (12.2 ± 2.10), than those of the experimental males (4.02 ± 1.13, p < 0.01). Spermatozoa analysis showed a low concentration (p < 0.05) due to isoflavone treatment, with increased immaturity (p < 0.01) and more dead spermatozoa (p < 0.05). We conclude that neonatal administration of genistein and daidzein alters olfactory functions, aggressiveness, sexual behaviors, and fertility through changes in spermatozoa quality. The most notable effect was the decreased of fertility in experimental male demonstrated by the lower number of pregnant females and smaller litters.
Collapse
Affiliation(s)
- Marissa Guillén-Castrillo
- Maestría en Biología de la Reproducción. Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1A Sección, Alcaldía Iztapalapa, C.P, 09310, Ciudad de México, México.
| | - Reyna Fierro
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | - Pablo Damián-Matsumura
- Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | | | - Rosario Tarragó-Castellanos
- Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| |
Collapse
|
2
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
3
|
Torgerson C, Bottenhorn K, Ahmadi H, Choupan J, Herting MM. More similarity than difference: comparison of within- and between-sex variance in early adolescent brain structure. RESEARCH SQUARE 2024:rs.3.rs-4947186. [PMID: 39483919 PMCID: PMC11527358 DOI: 10.21203/rs.3.rs-4947186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Adolescent neuroimaging studies of sex differences in the human brain predominantly examine mean differences between males and females. This focus on between-groups differences without probing relative distributions and similarities may contribute to both conflation and overestimation of sex differences and sexual dimorphism in the developing human brain. Methods We aimed to characterize the variance in brain macro- and micro-structure in early adolescence as it pertains to sex at birth using a large sample of 9-11 year-olds from the Adolescent Brain Cognitive Development (ABCD) Study (N=7,723). Specifically, for global and regional estimates of gray and white matter volume, cortical thickness, and white matter microstructure (i.e., fractional anisotropy and mean diffusivity), we examined: within- and between-sex variance, overlap between male and female distributions, inhomogeneity of variance via the Fligner-Killeen test, and an analysis of similarities (ANOSIM). For completeness, we examined these sex differences using both uncorrected (raw) brain estimates and residualized brain estimates after using mixed-effects modeling to account for age, pubertal development, socioeconomic status, race, ethnicity, MRI scanner manufacturer, and total brain volume, where applicable. Results The overlap between male and female distributions was universally greater than the difference (overlap coefficient range: 0.585 - 0.985) and the ratio of within-sex and between-sex differences was similar (ANOSIM R range: -0.001 - 0.117). All cortical and subcortical volumes showed significant inhomogeneity of variance, whereas a minority of brain regions showed significant sex differences in variance for cortical thickness, white matter volume, fractional anisotropy, and mean diffusivity. Inhomogeneity of variance was reduced after accounting for other sources of variance. Overlap coefficients were larger and ANOSIM R values were smaller for residualized outcomes, indicating greater within- and smaller between-sex differences once accounting for other covariates. Conclusions Reported sex differences in early adolescent human brain structure may be driven by disparities in variance, rather than binary, sex-based phenotypes. Contrary to the popular view of the brain as sexually dimorphic, we found more similarity than difference between sexes in all global and regional measurements of brain structure examined. This study builds upon previous findings illustrating the importance of considering variance when examining sex differences in brain structure.
Collapse
|
4
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
5
|
Casto KV, Cohen DJ, Akinola M, Mehta PH. Testosterone, gender identity and gender-stereotyped personality attributes. Horm Behav 2024; 162:105540. [PMID: 38652981 DOI: 10.1016/j.yhbeh.2024.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Sex/gender differences in personality associated with gender stereotyped behavior are widely studied in psychology yet remain a subject of ongoing debate. Exposure to testosterone during developmental periods is considered to be a primary mediator of many sex/gender differences in behavior. Extensions of this research has led to both lay beliefs and initial research about individual differences in basal testosterone in adulthood relating to "masculine" personality. In this study, we explored the relationships between testosterone, gender identity, and gender stereotyped personality attributes in a sample of over 400 university students (65 % female assigned at birth). Participants provided ratings of their self-perceived masculinity and femininity, resulting in a continuous measure of gender identity, and a set of agentic and communal personality attributes. A saliva sample was also provided for assay of basal testosterone. Results showed no compelling evidence that basal testosterone correlates with gender-stereotyped personality attributes or explains the relationship between sex/gender identity and these attributes, across, within, or covarying out sex assigned at birth. Contributing to a more gender diverse approach to assessing sex/gender relationships with personality and testosterone, our continuous measure of self-perceived masculinity and femininity predicted additional variance in personality beyond binary sex and showed some preliminary but weak relationships with testosterone. Results from this study cast doubt on the activational testosterone-masculinity hypothesis for explaining sex differences in gender stereotyped traits and within-sex/gender variation in attributes associated with agency and communality.
Collapse
Affiliation(s)
- Kathleen V Casto
- Kent State University, Department of Psychological Sciences, United States of America.
| | - Dale J Cohen
- University of North Carolina Wilmington, Department of Psychology, United States of America
| | - Modupe Akinola
- Columbia University, Columbia Business School, United States of America
| | - Pranjal H Mehta
- University College London, Department of Experimental Psychology, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
6
|
Barradas-Moctezuma M, Herrera-Covarrubias D, García LI, Carrillo P, Pérez-Estudillo CA, Manzo J, Pfaus JG, Coria-Avila GA. Cohabitation with receptive females under D2-type agonism in adulthood restores partner preference and brain dimorphism in the SDN-POA following neonatal gonadectomy in male rats. Psychoneuroendocrinology 2024; 163:106988. [PMID: 38342055 DOI: 10.1016/j.psyneuen.2024.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats. In the present experiment, three groups of neonatal PD1 males (N = 12/group) were either gonadectomized (GDX), sham-GDX, or left intact and evaluated for social preferences and sexual behaviors as adults. We then examined whether the effects of GDX could be reversed by conditioning the males via cohabitation with receptive females under the effects of the D2 agonist quinpirole (QNP) or saline, along with the size of some brain regions, such as the sexually dimorphic nucleus of the preoptic area (SDN-POA), suprachiasmatic nucleus (SCN), posterior dorsal medial amygdala (MeApd) and ventromedial hypothalamus (VMH). Results indicated that neonatal GDX resulted in the elimination of male-typical sexual behavior, an increase in same-sex social preference, and a reduction of the area of the SDN-POA. However, GDX-QNP males that underwent exposure to receptive females in adulthood increased their social preference for females and recovered the size in the SDN-POA. Although neonatal GDX impairs sexual behavior and disrupts partner preference and brain dimorphism in adult male rats, Pavlovian conditioning under enhanced D2 agonism ameliorates the effects on social preference and restores brain dimorphism in the SDN-POA without testosterone.
Collapse
Affiliation(s)
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico.
| |
Collapse
|
7
|
Hernández A, Hoffman K, Reyes R, Fernández-Guasti A. Multiparity favors same-sex partner preference in male rats. Behav Brain Res 2024; 461:114842. [PMID: 38160811 DOI: 10.1016/j.bbr.2023.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Same-sex partner preference is present in many mammals, including rodents. Several possible causal factors have been proposed for the establishment of this preference. The Fraternal Birth Order effect refers to the observation that older brothers increase the probability of homosexuality in men, but no experiment has analyzed this possibility. In this study, partner preference (tested in a three compartments box) and female and male sexual behavior (studied in a cylindrical arena) were evaluated in young male rats (3 months) born to multiparous mothers that had 4-6 previous gestations and around 12 months of age. Control groups were young male rats born to primiparous young (4 months) or aged (12 months) mothers. In the partner preference test, the males born to multiparous dams spent less time interacting with the receptive female and more time interacting with the sexually active male, and a 39% exhibited same-sex partner preference. This high percentage seems related to multiparity of their mothers and not to maternal age, because the males born to primiparous aged females (12 months) showed a similar low proportion of same-sex partner preference than the males born to young (4 months) primiparous females (4%). In the sexual behavior tests, no male born of a multiparous dam and with same-sex preference ejaculated and 54% displayed proceptivity and lordosis. Present results suggest that the fraternal birth order effect may occur also in rats.
Collapse
Affiliation(s)
- Alejandra Hernández
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Coapa, CDMX, Mexico
| | - Kurt Hoffman
- Centro de Investigación en Reproducción Animal, Cinvestav-UAT, Tlaxcala, Mexico
| | - Rebeca Reyes
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Coapa, CDMX, Mexico
| | - Alonso Fernández-Guasti
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Coapa, CDMX, Mexico.
| |
Collapse
|
8
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
King'uyu DN, Nti-Kyemereh L, Bonin JL, Feustel PJ, Tram M, MacNamara KC, Kopec AM. The effect of morphine on rat microglial phagocytic activity: An in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency. J Neuroimmunol 2023; 384:578204. [PMID: 37774553 DOI: 10.1016/j.jneuroim.2023.578204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Opioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated them in vitro at 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impacts cell survival in vitro. We found that 10-12 M morphine, but not higher concentrations, increases phagocytosis in striatal microglia in vitro independent of sex and plating density, while 10-12 M morphine increased phagocytosis in cortical microglia in vitro independent of sex, but contingent on a plating density. Finally, we demonstrate that the effect of 10-12 M morphine in striatal microglia plated at 10 K density is mediated via TLR4, and not μORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may is useful information for better understanding the possible neural outcomes associated with morphine exposures.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America.
| | - Lily Nti-Kyemereh
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America; Siena College, Loudonville, NY 12211, United States of America
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| | - Michelle Tram
- Siena College, Loudonville, NY 12211, United States of America
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
11
|
Waite KA, Cioffi G, Malkin MG, Barnholtz-Sloan JS. Disease-Based Prognostication: Neuro-Oncology. Semin Neurol 2023; 43:768-775. [PMID: 37751857 DOI: 10.1055/s-0043-1775751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Primary malignant and non-malignant brain and other central nervous system (CNS) tumors, while relatively rare, are a disproportionate source of morbidity and mortality. Here we provide a brief overview of approaches to modeling important clinical outcomes, such as overall survival, that are critical for clinical care. Because there are a large number of histologically distinct types of primary malignant and non-malignant brain and other CNS tumors, this chapter will provide an overview of prognostication considerations on the most common primary non-malignant brain tumor, meningioma, and the most common primary malignant brain tumor, glioblastoma. In addition, information on nomograms and how they can be used as individualized prognostication tools by clinicians to counsel patients and their families regarding treatment, follow-up, and prognosis is described. The current state of nomograms for meningiomas and glioblastomas are also provided.
Collapse
Affiliation(s)
- Kristin A Waite
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
- Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
- Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
| | - Mark G Malkin
- Cleveland Clinic, Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland
- Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, Illinois
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
12
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Hardwired to attack: Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532692. [PMID: 36993508 PMCID: PMC10055059 DOI: 10.1101/2023.03.16.532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Edwards PD, Toor I, Holmes MM. The Curious Case of the Naked Mole-Rat: How Extreme Social and Reproductive Adaptations Might Influence Sex Differences in the Brain. Curr Top Behav Neurosci 2023; 62:47-70. [PMID: 35301704 DOI: 10.1007/7854_2022_310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research in the neurobiology of sex differences is inherently influenced by the study species that are used. Some traditional animal research models, such as rats and mice, show certain sex differences in the brain that have been foundational to neurobiological research. However, subsequent work has demonstrated that these differences are not always generalizable, especially to species with different social structures and sex-associated roles or behaviors. One such example is the naked mole-rat (Heterocephalus glaber), which has an unusual social structure among mammals. Naked mole-rats live in large groups where reproduction is restricted to a dominant female, called the "queen," and often only one breeding male. All other animals in the group, the "subordinates," are socially suppressed from reproduction and remain in a prepubescent state as adults, unless they are removed from the presence of the queen. These subordinates show little to no sex differences in external morphology, neural morphology, or behavior. However, there are a suite of neurobiological differences between subordinate and breeding naked mole-rats. After naked mole-rats attain breeding status, many of the classically sexually differentiated brain regions increase in volume (paraventricular nucleus, medial amygdala, bed nucleus of the stria terminalis). There are additionally social status differences in sex hormone receptor expression in the brain, as well as other changes in gene expression, some of which also show sex differences - though not always in the predicted direction based on other rodent studies. Data from naked mole-rats show that it is critical to consider the evolved social structure of a species when studying sex differences in the brain.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ilapreet Toor
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
14
|
Surana D, Gupta J, Sharma S, Kumar S, Ghosh P. A review on advances in removal of endocrine disrupting compounds from aquatic matrices: Future perspectives on utilization of agri-waste based adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154129. [PMID: 35219657 DOI: 10.1016/j.scitotenv.2022.154129] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the recent past, a class of emerging contaminants particularly endocrine disrupting compounds (EDCs) in the aquatic environment have gained a lot of attention. This is due to their toxic behaviour, affecting endocrine activities in humans as well as among aquatic animals. Presently, there are no regulations and discharge limits for EDCs to preclude their negative impact. Furthermore, the conventional treatment processes fail to remove EDCs efficiently. This necessitates the need for more research aimed at development of advanced alternative treatment methods which are economical, efficient, and sustainable. This paper focusses on the occurrence, fate, toxicity, and various treatment processes for removal of EDCs. The treatment processes (physical, chemical, biological and hybrid) have been comprehensively studied highlighting their advantages and disadvantages. Additionally, the use of agri-waste based adsorption technologies has been reviewed. The aim of this review article is to understand the prospect of application of agri-waste based adsorbents for efficient removal of EDCs. Interestingly, research findings have indicated that the use of these low-cost and abundantly available agri-waste based adsorbents can efficiently remove the EDCs. Furthermore, the challenges and future perspectives on the use of agri-waste based adsorbents have been discussed.
Collapse
Affiliation(s)
- Deepti Surana
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India; Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Satyawati Sharma
- Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
15
|
Joglekar R, Cauley M, Lipsich T, Corcoran DL, Patisaul HB, Levin ED, Meyer JN, McCarthy MM, Murphy SK. Developmental nicotine exposure and masculinization of the rat preoptic area. Neurotoxicology 2022; 89:41-54. [PMID: 35026373 PMCID: PMC8917982 DOI: 10.1016/j.neuro.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Nicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.
Collapse
Affiliation(s)
- Rashmi Joglekar
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Marty Cauley
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Taylor Lipsich
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Durham, NC 27708 USA
| | - Heather B. Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Margaret M. McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD 21201 USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| |
Collapse
|
16
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
17
|
Seney ML, Glausier J, Sibille E. Large-Scale Transcriptomics Studies Provide Insight Into Sex Differences in Depression. Biol Psychiatry 2022; 91:14-24. [PMID: 33648716 PMCID: PMC8263802 DOI: 10.1016/j.biopsych.2020.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a leading cause of disability, affecting more than 300 million people worldwide. We first review the well-known sex difference in incidence of MDD, with women being twice as likely to be diagnosed as men, and briefly summarize how the impact of MDD varies between men and women, with sex differences in symptoms, severity, and antidepressant drug response. We then attempt to deconstruct the biological bases for MDD and discuss implications for sex differences research. Next, we review findings from human postmortem studies, both from selected candidate gene studies and from well-powered, unbiased transcriptomics studies, which suggest distinct, and possibly opposite, molecular changes in the brains of depressed men and women. We then discuss inherent challenges of research on the human postmortem brain and suggest paths forward that rely on thoughtful cohort design. Although studies indicate that circulating gonadal hormones might underlie the observed sex differences in MDD, we discuss how additional sex-specific factors, such as genetic sex and developmental exposure to gonadal hormones, may also contribute to altered vulnerability, and we highlight various nuances that we believe should be considered when determining mechanisms underlying observed sex differences. Altogether, this review highlights not only how various sex-specific factors might influence susceptibility or resilience to depression, but also how those sex-specific factors might result in divergent pathology in men and women.
Collapse
Affiliation(s)
- Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Renn SC, Hurd PL. Epigenetic Regulation and Environmental Sex Determination in Cichlid Fishes. Sex Dev 2021; 15:93-107. [PMID: 34433170 PMCID: PMC8440468 DOI: 10.1159/000517197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Studying environmental sex determination (ESD) in cichlids provides a phylogenetic and comparative approach to understand the evolution of the underlying mechanisms, their impact on the evolution of the overlying systems, and the neuroethology of life history strategies. Natural selection normally favors parents who invest equally in the development of male and female offspring, but evolution may favor deviations from this 50:50 ratio when environmental conditions produce an advantage for doing so. Many species of cichlids demonstrate ESD in response to water chemistry (temperature, pH, and oxygen concentration). The relative strengths of and the exact interactions between these factors vary between congeners, demonstrating genetic variation in sensitivity. The presence of sizable proportions of the less common sex towards the environmental extremes in most species strongly suggests the presence of some genetic sex-determining loci acting in parallel with the ESD factors. Sex determination and differentiation in these species does not seem to result in the organization of a final and irreversible sexual fate, so much as a life-long ongoing battle between competing male- and female-determining genetic and hormonal networks governed by epigenetic factors. We discuss what is and is not known about the epigenetic mechanism behind the differentiation of both gonads and sex differences in the brain. Beyond the well-studied tilapia species, the 2 best-studied dwarf cichlid systems showing ESD are the South American genus Apistogramma and the West African genus Pelvicachromis. Both species demonstrate male morphs with alternative reproductive tactics. We discuss the further neuroethology opportunities such systems provide to the study of epigenetics of alternative life history strategies and other behavioral variation.
Collapse
Affiliation(s)
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CA
- Department of Psychology, University of Alberta, Edmonton, AB, CA
| |
Collapse
|
20
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
21
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
22
|
OSTATNÍKOVÁ D, LAKATOŠOVÁ S, BABKOVÁ J, HODOSY J, CELEC P. Testosterone and the Brain: From Cognition to Autism. Physiol Res 2021. [DOI: 10.33549/10.33549/physiolres.934592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sex and gender matter in all aspects of life. Humans exhibit sexual dimorphism in anatomy, physiology, but also pathology. Many of the differences are due to sex chromosomes and, thus, genetics, other due to endocrine factors such as sex hormones, some are of social origin. Over the past decades, huge number of scientific studies have revealed striking sex differences of the human brain with remarkable behavioral and cognitive consequences. Prenatal and postnatal testosterone influence brain structures and functions, respectively. Cognitive sex differences include especially certain spatial and language tasks, but they also affect many other aspects of the neurotypical brain. Sex differences of the brain are also relevant for the pathogenesis of neuropsychiatric disorders such as autism spectrum disorders, which are much more prevalent in the male population. Structural dimorphism in the human brain was well-described, but recent controversies now question its importance. On the other hand, solid evidence exists regarding gender differences in several brain functions. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences in healthy individuals and people in the autism spectrum.
Collapse
Affiliation(s)
- D OSTATNÍKOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - S LAKATOŠOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - J BABKOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - J HODOSY
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - P CELEC
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
23
|
Abstract
Recent progress in the identification of genes and genomic regions contributing to autism spectrum disorder (ASD) has had a broad impact on our understanding of the nature of genetic risk for a range of psychiatric disorders, on our understanding of ASD biology, and on defining the key challenges now facing the field in efforts to translate gene discovery into an actionable understanding of pathology. While these advances have not yet had a transformative impact on clinical practice, there is nonetheless cause for real optimism: reliable lists of risk genes are large and growing rapidly; the identified encoded proteins have already begun to point to a relatively small number of areas of biology, where parallel advances in neuroscience and functional genomics are yielding profound insights; there is strong evidence pointing to mid-fetal prefrontal cortical development as one nexus of vulnerability for some of the largest-effect ASD risk genes; and there are multiple plausible paths forward toward rational therapeutics development that, while admittedly challenging, constitute fundamental departures from what was possible prior to the era of successful gene discovery.
Collapse
Affiliation(s)
- Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
24
|
Halievski K, Ghazisaeidi S, Salter MW. Sex-Dependent Mechanisms of Chronic Pain: A Focus on Microglia and P2X4R. J Pharmacol Exp Ther 2020; 375:202-209. [PMID: 32114512 DOI: 10.1124/jpet.120.265017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 03/08/2025] Open
Abstract
For over two decades, purinergic signaling in microglia has persisted in the spotlight as a major pathomechanism of chronic pain. Of the many purinoreceptors, the P2X4R of the ionotropic family, has a well-described causal role underlying chronic neuropathic pain. This review will briefly examine microglial P2X4R signaling in the spinal cord as it relates to chronic pain through a historical lens, followed by a more in-depth examination of recent work, which has revealed major sex differences. We also discuss the generalizability of sex differences in microglial and P2X4R signaling in other pain conditions as well as in nonspinal regions. Finally, we speculate on remaining gaps in the literature as well as what can be done to address them with the ultimate goal of using our collective knowledge to treat chronic pain effectively and in both sexes. SIGNIFICANCE STATEMENT: Effective treatments are lacking for chronic pain sufferers, and this may be explained by the vast sex differences underlying chronic pain mechanisms. In this minireview, we focus on the roles of microglia and P2X4R in chronic pain, with specific attention to the circumstances under which these pathomechanisms differ between males and females. By delineating the ways in which pain occurs differently between the sexes, we can start developing successful therapies for all.
Collapse
Affiliation(s)
- Katherine Halievski
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| | - Shahrzad Ghazisaeidi
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| | - Michael W Salter
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); The University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada (K.H., S.G., M.W.S.); and The Department of Physiology, University of Toronto, Toronto, Ontario, Canada (S.G., M.W.S.)
| |
Collapse
|
25
|
Demeneix B, Vandenberg LN, Ivell R, Zoeller RT. Thresholds and Endocrine Disruptors: An Endocrine Society Policy Perspective. J Endocr Soc 2020; 4:bvaa085. [PMID: 33834149 PMCID: PMC8010901 DOI: 10.1210/jendso/bvaa085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
The concept of a threshold of adversity in toxicology is neither provable nor disprovable. As such, it is not a scientific question but a theoretical one. Yet, the belief in thresholds has led to traditional ways of interpreting data derived from regulatory guideline studies of the toxicity of chemicals. This includes, for example, the use of standard "uncertainty factors" when a "No Adverse Effect Level" (or similar "benchmark dose") is either observed, or not observed. In the context of endocrine-disrupting chemicals (EDCs), this approach is demonstrably inappropriate. First, the efficacy of a hormone on different endpoints can vary by several orders of magnitude. This feature of hormone action also applies to EDCs that can interfere with that hormone. For this reason, we argue that the choice of endpoint for use in regulation is critical, but note that guideline studies were not designed with this in mind. Second, the biological events controlled by hormones in development not only change as development proceeds but are different from events controlled by hormones in the adult. Again, guideline endpoints were also not designed with this in mind, especially since the events controlled by hormones can be both temporally and spatially specific. The Endocrine Society has laid out this logic over several years and in several publications. Rather than being extreme views, they represent what is known about hormones and the chemicals that can interfere with them.
Collapse
Affiliation(s)
- Barbara Demeneix
- UMR 7221, Muséum National d´Histoire Naturelle, Département Régulation Développement et Diversité Moléculaire, Paris, France
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - R Thomas Zoeller
- Morrill Science Center, Department of Biology, University of Massachusetts–Amherst, Amherst Massachusetts
- School of Science and Technology, Örebro University, Örebro Sweden
| |
Collapse
|
26
|
Driscoll RMH, Faber-Hammond JJ, O'Rourke CF, Hurd PL, Renn SCP. Epigenetic regulation of gonadal and brain aromatase expression in a cichlid fish with environmental sex determination. Gen Comp Endocrinol 2020; 296:113538. [PMID: 32585214 DOI: 10.1016/j.ygcen.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
A fit animal must develop testes or ovaries, with brain and physiology to match. In species with alternative male morphs this coordination of development across tissues operates within sexes as well as between. For Pelvicachromis pulcher, an African cichlid in which early pH exposure influences both sex and alternative male morph, we sequence both copies of aromatase (cyp19a1), a key gene for sex determination. We analyze gene expression and epigenetic state, comparing gonad and brain tissue from females, alternative male morphs, and fry. Relative to brain, we find elevated expression of the A-copy in the ovaries but not testes. Methylation analysis suggests strong epigenetic regulation, with one region specifying sex and another specifying tissue. We find elevated brain expression of the B-copy with no sex or male morph differences. B-copy methylation follows that of the A-copy rather than corresponding to B-copy expression. In 30-day old fry, we see elevated B-copy expression in the head, but we do not see the expected elevated A-copy expression in the trunk that would reflect ovarian development. Interestingly, the A-copy epialleles that distinguish ovaries from testes are among the most explanatory patterns for variation among fry, suggesting epigenetic marking of sex prior to differentiation and thus laying the groundwork for mechanistic studies of epigenetic regulation of sex and morph differentiation.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, Reed College, Portland, OR, USA; Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA.
| |
Collapse
|
27
|
Harp SJ, Martini M, Lynch WJ, Rissman EF. Sexual Differentiation and Substance Use: A Mini-Review. Endocrinology 2020; 161:bqaa129. [PMID: 32761086 PMCID: PMC7438703 DOI: 10.1210/endocr/bqaa129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
The organizational/activational hypothesis suggests that gonadal steroid hormones like testosterone (T) and estradiol (E2) are important at 2 different times during the lifespan when they perform 2 different functions. First steroids "organize" brain structures early in life and during puberty, and in adults these same hormones "activate" sexually dimorphic behaviors. This hypothesis has been tested and proven valid for a large number of behaviors (learning, memory, social, and sexual behaviors). Sex differences in drug addiction are well established both for humans and animal models. Previous research in this field has focused primarily on cocaine self-administration by rats. Traditionally, observed sex differences have been explained by the sex-specific concentrations of gonadal hormones present at the time of the drug-related behavior. Studies with gonadectomized rodents establishes an activational role for E2 that facilitates vulnerability in females, and when E2 is combined with progesterone, addiction is attenuated. Literature on organizational actions of steroids is sparse but predicts that T, after it is aromatized to E2, changes aspects of the neural reward system. Here we summarize these data and propose that sex chromosome complement also plays a role in determining sex-specific drug-taking behavior. Future research is needed to disentangle the effects of hormones and sex chromosome complement, and we propose the four core genotype mouse model as an effective tool for answering these questions.
Collapse
Affiliation(s)
- Samuel J Harp
- Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina
| | - Mariangela Martini
- Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Emilie F Rissman
- Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
28
|
Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc Natl Acad Sci U S A 2020; 117:18788-18798. [PMID: 32690678 DOI: 10.1073/pnas.1919091117] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Humans display reproducible sex differences in cognition and behavior, which may partly reflect intrinsic sex differences in regional brain organization. However, the consistency, causes and consequences of sex differences in the human brain are poorly characterized and hotly debated. In contrast, recent studies in mice-a major model organism for studying neurobiological sex differences-have established: 1) highly consistent sex biases in regional gray matter volume (GMV) involving the cortex and classical subcortical foci, 2) a preponderance of regional GMV sex differences in brain circuits for social and reproductive behavior, and 3) a spatial coupling between regional GMV sex biases and brain expression of sex chromosome genes in adulthood. Here, we directly test translatability of rodent findings to humans. First, using two independent structural-neuroimaging datasets (n > 2,000), we find that the spatial map of sex-biased GMV in humans is highly reproducible (r > 0.8 within and across cohorts). Relative GMV is female biased in prefrontal and superior parietal cortices, and male biased in ventral occipitotemporal, and distributed subcortical regions. Second, through systematic comparison with functional neuroimaging meta-analyses, we establish a statistically significant concentration of human GMV sex differences within brain regions that subserve face processing. Finally, by imaging-transcriptomic analyses, we show that GMV sex differences in human adulthood are specifically and significantly coupled to regional expression of sex-chromosome (vs. autosomal) genes and enriched for distinct cell-type signatures. These findings establish conserved aspects of sex-biased brain development in humans and mice, and shed light on the consistency, candidate causes, and potential functional corollaries of sex-biased brain anatomy in humans.
Collapse
|
29
|
Galoppo GH, Tavalieri YE, Schierano-Marotti G, Osti MR, Luque EH, Muñoz-de-Toro MM. Long-term effects of in ovo exposure to an environmentally relevant dose of atrazine on the thyroid gland of Caiman latirostris. ENVIRONMENTAL RESEARCH 2020; 186:109410. [PMID: 32283336 DOI: 10.1016/j.envres.2020.109410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The increased incidence of human thyroid disorders, particularly in women, suggests that the exposure to endocrine-disrupting compounds (EDCs) together with sex-related factors could play a role in thyroid dysregulation. Since the herbicide atrazine (ATZ) is an environmental EDC suspected to behave as a thyroid disruptor, and Caiman latirostris is a crocodilian species highly sensitive to endocrine disruption that can be exposed to ATZ, this study aimed to describe the histoarchitecture and sexually dimorphic features of the thyroid gland of C. latirostris, and to determine the long-term effects of in ovo exposure to an environmentally relevant dose of ATZ (0.2 ppm) on its thyroid gland and growth. Control caimans showed no sexual dimorphisms. In contrast, ATZ-exposed caimans showed altered embryo growth but an unaltered temporal pattern of development and a sexually dimorphic response in the body condition index growth curves postnatally, which suggests a female-related increase in fat storage. Besides, both male and female exposed caimans showed increases in the size of the thyroid stromal compartment, content of interstitial collagen, and follicular hyperplasia, and decreases in the expression of androgen receptor in the follicular epithelium. ATZ-exposed females, but not males, also showed evidences of thyroid enlargement, colloid depletion, increased follicular epithelial height and increased presence of microfollicular structures. Our results demonstrate that prenatal exposure of caimans to ATZ causes thyroid disruption and that females were more vulnerable to ATZ than males. The effects were organizational and observed long after exposure ended. These findings alert on ATZ side-effects on the growth, metabolism, reproduction and development of non-target exposed organisms, particularly females.
Collapse
Affiliation(s)
- Germán Hugo Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Yamil Ezequiel Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mario Raúl Osti
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mónica Milagros Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| |
Collapse
|
30
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
31
|
Wiersielis KR, Samuels BA, Roepke TA. Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol Teratol 2020; 79:106884. [PMID: 32289443 DOI: 10.1016/j.ntt.2020.106884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.
Collapse
Affiliation(s)
- Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA.
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
32
|
Mir FR, Wilson C, Cabrera Zapata LE, Aguayo LG, Cambiasso MJ. Gonadal hormone-independent sex differences in GABA A receptor activation in rat embryonic hypothalamic neurons. Br J Pharmacol 2020; 177:3075-3090. [PMID: 32133616 DOI: 10.1111/bph.15037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptor functions are dependent on subunit composition, and, through their activation, GABA can exert trophic actions in immature neurons. Although several sex differences in GABA-mediated responses are known to be dependent on gonadal hormones, few studies have dealt with sex differences detected before the critical period of brain masculinisation. In this study, we assessed GABAA receptor functionality in sexually segregated neurons before brain hormonal masculinisation. EXPERIMENTAL APPROACH Ventromedial hypothalamic neurons were obtained from embryonic day 16 rat brains and grown in vitro for 2 days. Calcium imaging and electrophysiology recordings were carried out to assess GABAA receptor functional parameters. KEY RESULTS GABAA receptor activation elicited calcium entry in immature hypothalamic neurons mainly through L-type voltage-dependent calcium channels. Nifedipine blocked calcium entry more efficiently in male than in female neurons. There were more male than female neurons responding to GABA, and they needed more time to return to resting levels. Pharmacological characterisation revealed that propofol enhanced GABAA -mediated currents and blunted GABA-mediated calcium entry more efficiently in female neurons than in males. Testosterone treatment did not erase such sex differences. These data suggest sex differences in the expression of GABAA receptor subtypes. CONCLUSION AND IMPLICATIONS GABA-mediated responses are sexually dimorphic even in the absence of gonadal hormone influence, suggesting genetically biased differences. These results highlight the importance of GABAA receptors in hypothalamic neurons even before hormonal masculinisation of the brain.
Collapse
Affiliation(s)
- Franco R Mir
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Fisiología Animal, Departamento de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Carlos Wilson
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigación en Medicina Traslaciona, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Lucas E Cabrera Zapata
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis G Aguayo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Julia Cambiasso
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
33
|
Schuppe ER, Miles MC, Fuxjager MJ. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol Cell Endocrinol 2020; 499:110577. [PMID: 31525432 DOI: 10.1016/j.mce.2019.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Androgenic hormones orchestrate the development and activation of diverse reproductive phenotypes across vertebrates. Although extensive work investigates how selection for these traits modifies individual elements of this signaling system (e.g., hormone or androgen receptor [AR] levels), we know less about natural variation in the AR sequence across vertebrates. Our knowledge of AR sequence mutations is largely limited to work in human patients or cell-lines, providing a framework to contextualize single mutations at the expense of evolutionary timescale. Here we unite both perspectives in a review that explores the functional significance of AR on a domain-by-domain basis, using existing knowledge to highlight how and why each region might evolve. We then examine AR sequence variation on different timescales by examining sequence variation in clades originating in the Cambrian (vertebrates; >500 mya) and Cretaceous (birds; >65 mya). In each case, we characterize how the receptor has changed over time and discuss which regions are most likely to evolve in response to selection. Overall, domains that are required for androgenic signaling to function (e.g., DNA- and ligand-binding) tend to be conserved. Meanwhile, areas that interface with co-regulatory molecules can exhibit notable variation even between closely related species. We propose that accumulating mutations in regulatory regions is one way that AR structure might act as a substrate for selection to guide the evolution of reproductive traits. By synthesizing literature across disciplines and highlighting the evolutionary potential of specific AR regions, we hope to inspire new avenues of integrative research into endocrine system evolution.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Rock KD, Gillera SEA, Devarasetty P, Horman B, Knudsen G, Birnbaum LS, Fenton SE, Patisaul HB. Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. Neurotoxicology 2019; 75:136-147. [PMID: 31541695 PMCID: PMC6935469 DOI: 10.1016/j.neuro.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA) has become a ubiquitous indoor contaminant due to its widespread use as an additive flame retardant in consumer products. Reported evidence of endocrine disruption and accumulation of TBBPA in brain tissue has raised concerns regarding its potential effects on neurodevelopment and behavior. The goal of the present study was to examine the impact of developmental TBBPA exposure, across a wide range of doses, on sexually dimorphic non-reproductive behaviors in male and female Wistar rats. We first ran a pilot study using a single TBBPA dose hypothesized to produce behavioral effects. Wistar rat dams were orally exposed using cookie treats to 0 or 0.1 mg TBBPA/kg bw daily from gestational day (GD) 9 to postnatal day (PND) 21 to assess offspring (both sexes) activity and anxiety-related behaviors. Significant effects were evident in females, with exposure increasing activity levels. Thus, this dose was used as the lowest TBBPA dose in a subsequent, larger study conducted as part of a comprehensive assessment of TBBPA toxicity. Animals were exposed to 0, 0.1, 25, or 250 mg TBBPA/kg bw daily by oral gavage starting on GD 6 through PND 90 (dosed dams GD 6 - PND 21, dosed offspring PND 22 - PND 90). Significant behavioral findings were observed for male offspring, with increased anxiety-like behavior as the primary phenotype. These findings demonstrate that exposure to environmental contaminants, like TBBPA, can have sex-specific effects on behavior highlighting the vulnerability of the developing brain.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pratyush Devarasetty
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gabriel Knudsen
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Linda S Birnbaum
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
35
|
Disruptive effects of neonatal gonadectomy on adult sexual partner preference and brain dimorphism in male rats: partial restoration with pubertal testosterone. Behav Brain Res 2019; 374:112117. [DOI: 10.1016/j.bbr.2019.112117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
|
36
|
Ma C, Wu X, Shen X, Yang Y, Chen Z, Sun X, Wang Z. Sex differences in traumatic brain injury: a multi-dimensional exploration in genes, hormones, cells, individuals, and society. Chin Neurosurg J 2019; 5:24. [PMID: 32922923 PMCID: PMC7398330 DOI: 10.1186/s41016-019-0173-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) is exceptionally prevalent in society and often imposes a massive burden on patients' families and poor prognosis. The evidence reviewed here suggests that gender can influence clinical outcomes of TBI in many aspects, ranges from patients' mortality and short-term outcome to their long-term outcome, as well as the incidence of cognitive impairment. We mainly focused on the causes and mechanisms underlying the differences between male and female after TBI, from both biological and sociological views. As it turns out that multiple factors contribute to the gender differences after TBI, not merely the perspective of gender and sex hormones. Centered on this, we discussed how female steroid hormones exert neuroprotective effects through the anti-inflammatory and antioxidant mechanism, along with the cognitive impairment and the social integration problems it caused. As to the treatment, both instant and long-term treatment of TBI requires adjustments according to gender. A further study with more focus on this topic is therefore suggested to provide better treatment options for these patients.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaotian Shen
- Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| |
Collapse
|
37
|
Vera-Chang MN, St-Jacques AD, Lu C, Moon TW, Trudeau VL. Fluoxetine Exposure During Sexual Development Disrupts the Stress Axis and Results in Sex- and Time- Dependent Effects on the Exploratory Behavior in Adult Zebrafish Danio rerio. Front Neurosci 2019; 13:1015. [PMID: 31607853 PMCID: PMC6761223 DOI: 10.3389/fnins.2019.01015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022] Open
Abstract
The antidepressant fluoxetine (FLX), generally the first line of pharmacological treatment in adolescents and pregnant women with affective disorders, is an emerging endocrine disruptor that is also released to the environment through sewage. Recently, we demonstrated that FLX exposure during the first 6 days of life in zebrafish (ZF; Danio rerio) induced a male-specific reduction in the exploratory behavior in the adult ZF that was linked to a reduction in cortisol production that persisted across three generations. Here we investigated sex differences in the behavioral and stress responses following FLX (0.54 and 54 μg⋅L–1) exposure during two periods of sexual development in ZF; early (0–15 days post-fertilization, dpf) and late (15–42 dpf). Our findings revealed that the stress response in females was reduced compared to that of males independent of the treatment. We also found that FLX reduced total body cortisol levels in the adult ZF regardless of sex and window of exposure. The hypocortisol phenotype of our FLX-treated fish was associated with behavioral alterations in the adult fish, which depended on the window of exposure; males were more sensitive to FLX during early development whereas females were affected during late development. A sexually dimorphic behavioral response induced by the low cortisol phenotype was observed in the FLX-treated ZF; females had higher exploratory activity whereas the males had reduced behavior. In conclusion, FLX results in sex- and window of exposure-specific effects on the behavioral activities in adult ZF. These findings highlight the importance of sex differences and timing on the long-term effects of antidepressant treatments. Knowledge of the sex-specific effects of antidepressants and the importance of early life exposure to chemical stressors may help us understand the impact of highly prescribed drugs such as FLX on the fetus from FLX-treated pregnant women as well as aquatic species in environments receiving sewage effluents.
Collapse
Affiliation(s)
| | - Antony D St-Jacques
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Thomas W Moon
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Witchey SK, Fuchs J, Patisaul HB. Perinatal bisphenol A (BPA) exposure alters brain oxytocin receptor (OTR) expression in a sex- and region- specific manner: A CLARITY-BPA consortium follow-up study. Neurotoxicology 2019; 74:139-148. [PMID: 31251963 PMCID: PMC6750986 DOI: 10.1016/j.neuro.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a well-characterized endocrine disrupting chemical (EDC) used in plastics, epoxy resins and other products. Neurodevelopmental effects of BPA exposure are a major concern with multiple rodent and human studies showing that early life BPA exposure may impact the developing brain and sexually dimorphic behaviors. The CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program was established to assess multiple endpoints, including neural, across a wide dose range. Studies from our lab as part of (and prior to) CLARITY-BPA have shown that BPA disrupts estrogen receptor expression in the developing brain, and some evidence of oxytocin (OT) and oxytocin receptor (OTR) disruption in the hypothalamus and amygdala. While BPA disruption of steroid hormone function is well documented, less is known about its capacity to alter nonapeptide signals. In this CLARITY-BPA follow up study, we used remaining juvenile rat tissues to test the hypothesis that developmental BPA exposure affects OTR expression across the brain. Perinatal BPA exposure (2.5, 25, or 2500 μg/kg body weight (bw)/day) spanned gestation and lactation with dams gavaged from gestational day 6 until birth and then the offspring gavaged directly through weaning. Ethinyl estradiol (0.5 μg/kg bw/day) was used as a reference estrogen. Animals of both sexes were sacrificed as juveniles and OTR expression assessed by receptor binding. Our results demonstrate prenatal exposure to BPA can eliminate sex differences in OTR expression in three hypothalamic regions, and that male OTR expression may be more susceptible. Our data also identify a sub-region of the BNST with sexually dimorphic OTR expression not previously reported in juvenile rats that is also susceptible to BPA.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Joelle Fuchs
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
39
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
40
|
Grissom EM, Hawley WR, Dohanich GP. Organizational effects of testosterone on learning strategy preference and muscarinic receptor binding in prepubertal rats. Horm Behav 2019; 110:1-9. [PMID: 30772326 DOI: 10.1016/j.yhbeh.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Prior to puberty, male rats, but not female rats, prefer a striatum-based stimulus-response learning strategy rather than a hippocampus-based place strategy on a water maze task that can be solved using either strategy. Neurochemically, learning strategy preference has been linked to the ratio of cholinergic muscarinic receptor binding in the hippocampus relative to the striatum, with lower ratios displayed by males compared to females and by stimulus-response learners compared to place learners. Sex differences in a variety of different behaviors are established by the organizational influence of testosterone on brain development. Therefore, the current study investigated the potential organizational effects of neonatal testosterone on learning strategy preference and the hippocampus:striatum ratio of muscarinic receptor binding in prepubertal male and female rats. Similar to vehicle-treated control males, prepubertal females treated with testosterone propionate on the first two days of life preferred a stimulus-response strategy on a dual-solution water maze task. Conversely, vehicle-treated prepubertal females were more likely to use a place strategy. Consistent with previous findings, the hippocampus:striatum ratio of muscarinic receptor binding was lower in rats preferring a stimulus-response strategy compared to those using a place strategy and lower in control males compared to control females. However, the hippocampus:striatum ratio was not reversed by neonatal testosterone treatment of females as predicted. The current study is the first to show that sex differences in how a navigational task is learned prior to puberty is impacted by the presence of testosterone during vulnerable periods in brain development.
Collapse
Affiliation(s)
- Elin M Grissom
- Loyola University New Orleans, Department of Psychological Sciences, New Orleans, LA 70118, United States of America; Tulane University, Department of Psychology, New Orleans, LA 70118, United States of America; Tulane University, Program in Neuroscience, New Orleans, LA 70118, United States of America.
| | - Wayne R Hawley
- Edinboro University of Pennsylvania, Psychology Department, Edinboro, PA 16444, United States of America; Tulane University, Department of Psychology, New Orleans, LA 70118, United States of America
| | - Gary P Dohanich
- Tulane University, Department of Psychology, New Orleans, LA 70118, United States of America; Tulane University, Program in Neuroscience, New Orleans, LA 70118, United States of America
| |
Collapse
|
41
|
Pivik R, Andres A, Tennal KB, Gu Y, Downs H, Bellando BJ, Jarratt K, Cleves MA, Badger TM. Resting gamma power during the postnatal critical period for GABAergic system development is modulated by infant diet and sex. Int J Psychophysiol 2019; 135:73-94. [DOI: 10.1016/j.ijpsycho.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
|
42
|
Osborne BF, Turano A, Caulfield JI, Schwarz JM. Sex- and region-specific differences in microglia phenotype and characterization of the peripheral immune response following early-life infection in neonatal male and female rats. Neurosci Lett 2018; 692:1-9. [PMID: 30367955 DOI: 10.1016/j.neulet.2018.10.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023]
Abstract
Early-life infection has been shown to have profound effects on the brain and behavior across the lifespan, a phenomenon termed "early-life programming". Indeed, many neuropsychiatric disorders begin or have their origins early in life and have been linked to early-life immune activation (e.g. autism, ADHD, and schizophrenia). Furthermore, many of these disorders show a robust sex bias, with males having a higher risk of developing early-onset neurodevelopmental disorders. The concept of early-life programming is now well established, however, it is still unclear how such effects are initiated and then maintained across time to produce such a phenomenon. To begin to address this question, we examined changes in microglia, the immune cells of the brain, and peripheral immune cells in the hours immediately following early-life infection in male and female rats. We found that males showed a significant decrease in BDNF expression and females showed a significant increase in IL-6 expression in the cerebellum following E.coli infection on postnatal day 4; however, for most cytokines examined in the brain and in the periphery we were unable to identify any sex differences in the immune response, at least at the time points examined. Instead, neonatal infection with E.coli increased the expression of a number of cytokines in the brain of both males and females similarly including TNF-α, IL-1β, and CD11b (a marker of microglia activation) in the hippocampus and, in the spleen, TNF-α and IL-1β. We also found that protein levels of GRO-KC, MIP-1a, MCP1, IP-10, TNF-α, and IL-10 were elevated 8-hours postinfection, but this response was resolved by 24-hours. Lastly, we found that males have more thin microglia than females on P5, however, neonatal infection had no effect on any of the microglia morphologies we examined. These data show that sex differences in the acute immune response to neonatal infection are likely gene, region, and even time dependent. Future research should consider these factors in order to develop a comprehensive understanding of the immune response in males and females as these changes are likely the initiating agents that lead to the long-term, and often sex-specific, effects of early-life infection.
Collapse
Affiliation(s)
- Brittany F Osborne
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Alexandra Turano
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jasmine I Caulfield
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
43
|
Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat Commun 2018; 9:2615. [PMID: 29976930 PMCID: PMC6033927 DOI: 10.1038/s41467-018-04921-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Sex differences exist in behaviors, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. Here, we use manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulate findings on canonically dimorphic areas, demonstrating MEMRI’s ability to study neuroanatomical sex differences. We discover, upon whole-brain volume correction, that neuroanatomical regions larger in males develop earlier than those larger in females. Groups of areas with shared sexually dimorphic developmental trajectories reflect behavioral and functional networks, and expression of genes involved with sex processes. Also, post-pubertal neuroanatomy is highly individualized, and individualization occurs earlier in males. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders. Sex differences occur in various aspects of neurodevelopment. Here the authors use manganese-enhanced MRI at nine different postnatal stages to detail the development of structural sex differences in the mouse brain.
Collapse
|
44
|
Fisher AD, Ristori J, Morelli G, Maggi M. The molecular mechanisms of sexual orientation and gender identity. Mol Cell Endocrinol 2018; 467:3-13. [PMID: 28847741 DOI: 10.1016/j.mce.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
Differences between males and females are widely represented in nature. There are gender differences in phenotypes, personality traits, behaviors and interests, cognitive performance, and proneness to specific diseases. The most marked difference in humans is represented by sexual orientation and core gender identity, the origins of which are still controversial and far from being understood. Debates continue on whether sexual behavior and gender identity are a result of biological (nature) or cultural (nurture) factors, with biology possibly playing a major role. The main goal of this review is to summarize the studies available to date on the biological factors involved in the development of both sexual orientation and gender identity. A systematic search of published evidence was performed using Medline (from January 1948 to June 2017). Review of the relevant literature was based on authors' expertise. Indeed, different studies have documented the possible role and interaction of neuroanatomic, hormonal and genetic factors. The sexual dimorphic brain is considered the anatomical substrate of psychosexual development, on which genes and gonadal hormones may have a shaping effect. In particular, growing evidence shows that prenatal and pubertal sex hormones permanently affect human behavior. In addition, heritability studies have demonstrated a role of genetic components. However, a convincing candidate gene has not been identified. Future studies (e.i. genome wide studies) are needed to better clarify the complex interaction between genes, anatomy and hormonal influences on psychosexual development.
Collapse
Affiliation(s)
- Alessandra D Fisher
- Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, Florence, Italy
| | - Jiska Ristori
- Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, Florence, Italy
| | - Girolamo Morelli
- Department of Surgical, Medical, Molecular and of the Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Mario Maggi
- Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
45
|
Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci 2018; 1420:26-45. [PMID: 29363776 PMCID: PMC5991992 DOI: 10.1111/nyas.13564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The sexual differentiation of the mammalian nervous system requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Devanand S. Manoli
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
46
|
Meitzen J, Meisel RL, Mermelstein PG. Sex Differences and the Effects of Estradiol on Striatal Function. Curr Opin Behav Sci 2018; 23:42-48. [PMID: 30221186 DOI: 10.1016/j.cobeha.2018.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The striatal brain regions, including the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell, mediate critical behavioral functions. These functions include but are not limited to motivated behavior, reward, learning, and sensorimotor function in both pathological and normal contexts. The phenotype and/or incidence of all of these behaviors either differ by sex or are sensitive to the presence of gonadal hormones such as 17β-estradiol and testosterone. All three striatal brain regions express membrane-associated estrogen receptors. Here we present a brief review of the recent literature reporting on sex differences and effects of the estrogenic hormone 17β-estradiol on behavioral and neural function across all three striatal regions, focusing upon the most prominent striatal neuron type, the medium spiny neuron. We emphasize recent findings in three broad domains: (1) select striatal-relevant behaviors and disorders, (2) striatal medium spiny neuron dendritic spine density, and (3), striatal medium spiny neuron electrophysiological properties including excitatory synaptic input and intrinsic cellular excitability. These recent advances in behavior, neuroanatomy, and electrophysiology collectively offer insight into the effects of sex and estrogen on striatal function, especially at the level of individual neurons.
Collapse
Affiliation(s)
- John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Robert L Meisel
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
47
|
Fine C, Dupré J, Joel D. Sex-Linked Behavior: Evolution, Stability, and Variability. Trends Cogn Sci 2018; 21:666-673. [PMID: 28821346 DOI: 10.1016/j.tics.2017.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
Abstract
Common understanding of human sex-linked behaviors is that proximal mechanisms of genetic and hormonal sex, ultimately shaped by the differential reproductive challenges of ancestral males and females, act on the brain to transfer sex-linked predispositions across generations. Here, we extend the debate on the role of nature and nurture in the development of traits in the lifetime of an individual, to their role in the cross-generation transfer of traits. Advances in evolutionary theory that posit the environment as a source of trans-generational stability, and new understanding of sex effects on the brain, suggest that the cross-generation stability of sex-linked patterns of behavior are sometimes better explained in terms of inherited socioenvironmental conditions, with biological sex fostering intrageneration variability.
Collapse
Affiliation(s)
- Cordelia Fine
- History and Philosophy of Science Program, School of Historical and Philosophical Studies, University of Melbourne, Melbourne, VIC, Australia.
| | - John Dupré
- The Centre for the Study of Life Sciences (Egenis), University of Exeter, Exeter, UK
| | - Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
48
|
Kranz GS, Hahn A, Kaufmann U, Tik M, Ganger S, Seiger R, Hummer A, Windischberger C, Kasper S, Lanzenberger R. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct Funct 2018; 223:321-328. [PMID: 28819863 PMCID: PMC5772168 DOI: 10.1007/s00429-017-1494-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022]
Abstract
Diffusion-weighted imaging (DWI) is used to measure gray matter tissue density and white matter fiber organization/directionality. Recent studies show that DWI also allows for assessing neuroplastic adaptations in the human hypothalamus. To this end, we investigated a potential influence of testosterone replacement therapy on hypothalamic microstructure in female-to-male (FtM) transgender individuals. 25 FtMs were measured at baseline, 4 weeks, and 4 months past treatment start and compared to 25 female and male controls. Our results show androgenization-related reductions in mean diffusivity in the lateral hypothalamus. Significant reductions were observed unilaterally after 1 month and bilaterally after 4 months of testosterone treatment. Moreover, treatment induced increases in free androgen index and bioavailable testosterone were significantly associated with the magnitude of reductions in mean diffusivity. These findings imply microstructural plasticity and potentially related changes in neural activity by testosterone in the adult human hypothalamus and suggest that testosterone replacement therapy in FtMs changes hypothalamic microstructure towards male proportions.
Collapse
Affiliation(s)
- Georg S Kranz
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Andreas Hahn
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sebastian Ganger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - René Seiger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Allan Hummer
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rupert Lanzenberger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, Sekerovick Z. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol 2017; 47:66-85. [PMID: 28757114 DOI: 10.1016/j.yfrne.2017.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/09/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Age-related changes in sleep and circadian regulation occur as early as the middle years of life. Research also suggests that sleep and circadian rhythms are regulated differently between women and men. However, does sleep and circadian rhythms regulation age similarly in men and women? In this review, we present the mechanisms underlying age-related differences in sleep and the current state of knowledge on how they interact with sex. We also address how testosterone, estrogens, and progesterone fluctuations across adulthood interact with sleep and circadian regulation. Finally, we will propose research avenues to unravel the mechanisms underlying sex differences in age-related effects on sleep.
Collapse
Affiliation(s)
- Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada; Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada; Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lauren Drogos
- Departments of Physiology & Pharmacology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Cyr-Cronier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Catherine Lord
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Zoran Sekerovick
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
50
|
Wu MV, Tollkuhn J. Estrogen receptor alpha is required in GABAergic, but not glutamatergic, neurons to masculinize behavior. Horm Behav 2017; 95:3-12. [PMID: 28734725 PMCID: PMC7011612 DOI: 10.1016/j.yhbeh.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.
Collapse
Affiliation(s)
- Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|