1
|
Fernandez Ajó A, Buck CL, Hunt KE, Pirotta E, New L, Dillon D, Bierlich KC, Hildebrand L, Bird CN, Torres LG. Variation in faecal testosterone levels in male gray whales on a foraging ground relative to maturity and timing. CONSERVATION PHYSIOLOGY 2025; 13:coae094. [PMID: 39834348 PMCID: PMC11744369 DOI: 10.1093/conphys/coae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Understanding wildlife reproductive seasonality is crucial for effective management and long-term monitoring of species. This study investigates the seasonal variability of testosterone in male Pacific Coast Feeding Group (PCFG) gray whales, using an eight-year dataset (2016-2023) of individual sightings, drone-based photogrammetry and endocrine analysis of faecal samples. We analyzed the relationship between faecal testosterone levels and total body length (TL), body condition (body area index, BAI), sexual maturity and day of the year using generalized additive mixed models. Our findings reveal a significant increase in faecal testosterone levels in mature males (MM) towards the end of the foraging season. This increase was not observed in JM, highlighting age-dependent development of sexual characteristics. No significant relationship was found between testosterone levels and TL. Additionally, BAI was not significantly associated with testosterone levels. Our results suggest that the increasing testosterone levels in MM gray whales may indicate preparation for mating before the southbound migration. These findings provide valuable insights into the reproductive biology of PCFG gray whales and underscore the importance of non-invasive faecal sampling for studying reproductive seasonality in large whales. Our approach not only provides further insights into the seasonality of male reproduction for the PCFG gray whales but also offers tools to enhance the understanding of male reproduction in baleen whales broadly with non-invasive approaches.
Collapse
Affiliation(s)
- A Fernandez Ajó
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - C L Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - K E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - E Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Buchanan Gardens, St Andrews, KY16 9LZ, UK
| | - L New
- Department of Mathematics, Computer Science and Statistics, Ursinus College, 601 E Main St, Collegeville, PA 19426, USA
| | - D Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
- Wildlife and Ocean Health Program Anderson Cabot Center for Ocean LifeNew England Aquarium, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - K C Bierlich
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - L Hildebrand
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - C N Bird
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - L G Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| |
Collapse
|
2
|
Moullec H, Berger V, Santos DJ, Ukonaho S, Yon L, Briga M, Nyein UK, Lummaa V, Reichert S. Testosterone variation in a semi-captive population of Asian elephants in Myanmar. CONSERVATION PHYSIOLOGY 2024; 12:coae076. [PMID: 39582953 PMCID: PMC11584279 DOI: 10.1093/conphys/coae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Hormones are known to be involved in life-history trade-offs as systemic signals that establish functional links among traits and regulate key behavioural and physiological transitions between states in organisms. Although major functions of many steroid hormones such as testosterone are conserved among vertebrates, circulating concentrations vary widely both within and across species, and the degree to which observed hormone concentrations mediate life-history responses to environmental variation is less understood. In this study, we investigated how faecal testosterone metabolite (FTM) concentrations varied with extrinsic and intrinsic factors. To do so, we took advantage of a 6-year period of longitudinal sampling of FTM, indicators of stress and oxidative status in a semi-captive population of Asian elephants (n = 3163 samples from 173 individuals) in Myanmar. We determined how the variation in FTM is associated with age, sex, origin (captive-born or wild-caught), seasonality of the environment, individual stress level [measured by faecal glucocorticoid metabolite (FGM) and heterophil to lymphocyte ratio (H/L)] and oxidative status (reactive oxygen metabolite concentrations and superoxide dismutase activity). We reported that FTM increased with age from juvenile to adulthood for both sexes, with higher FTM concentrations in males than females. Moreover, elephants showed significantly higher FTM concentrations during the hot season and monsoon than in the cold season. However, for the physiological indicators, we found contrasting results. While FTM concentrations were strongly positively correlated with FGM concentrations, FTM concentrations were not related to H/L ratios. Finally, we found no relationship between FTM and the oxidative status of individuals. Our study provides new insights on the factors associated with variation in testosterone concentrations-a key hormone for reproduction and fitness of individuals-in Asian elephants living in their natural environment, which has relevance for effective conservation measures of this endangered species.
Collapse
Affiliation(s)
- Héloïse Moullec
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - Vérane Berger
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - Diogo J Santos
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - Susanna Ukonaho
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - Lisa Yon
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Michael Briga
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - U Kyaw Nyein
- Myanma Timber Enterprise, MONREC, West gyogone, Insein Township, Yangon, Myanmar
| | - Virpi Lummaa
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| | - Sophie Reichert
- Department of Biology, University of Turku, Vesilinnantie, 5, Turku 20014, Finland
| |
Collapse
|
3
|
Hudson JM, Simonee J, Watt CA. Can blubber steroid hormone measurements reveal reproductive state in narwhals? CONSERVATION PHYSIOLOGY 2024; 12:coae020. [PMID: 40330622 PMCID: PMC11074587 DOI: 10.1093/conphys/coae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2025]
Abstract
Hormone measurements from blubber samples have been used to assess reproduction in cetaceans and are a widely applicable technique, as blubber samples are often collected from necropsied individuals and biopsies are readily collected from live, free-swimming cetaceans. Many studies have assessed reproduction in cetaceans based on blubber hormone concentrations but few have validated their findings with individuals of known reproductive state. The objectives of this study were to use a unique dataset of paired female narwhal (Monodon monoceros) reproductive tracts and blubber samples to: (1) determine narwhal reproductive state based on ovarian analysis; (2) evaluate progesterone, estradiol, testosterone and corticosterone concentrations in paired blubber samples to validate the use of blubber hormone measurements as a technique to assess reproductive state in narwhals; and (3) determine narwhal reproductive rates using reproductive tract and hormone analyses. Female narwhals with complete reproductive tracts or known ages (n = 13) were categorized as: pregnant (fetus or placenta present; n = 5), active (at least one corpus luteum present; n = 2), resting (at least one corpus albicans present; n = 3) or immature (absence of corpora lutea and albicantia or age <8; n = 3), and eight individuals were classified as unknown due to incomplete reproductive tracts. Estradiol, testosterone, and corticosterone concentrations were not useful for assessing reproductive state; however, progesterone concentrations were higher in pregnant narwhals (432.66 ± 182.13 ng/g) than active (1.57 ± 0.42 ng/g), resting (1.52 ± 0.87 ng/g) and immature (1.44 ± 0.71 ng/g) individuals, validating the use of blubber progesterone concentrations in determining pregnancy in narwhals. Using a progesterone threshold for pregnancy, determined in this study, we were able to classify three individuals with incomplete reproductive tracts as pregnant and identify a potential impending pregnancy loss. The results from this study suggest that blubber progesterone concentrations are useful for assessing pregnancy and can help inform reproductive rates of narwhal populations.
Collapse
Affiliation(s)
- Justine M Hudson
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, 501 University Cres, Winnipeg, MB R3T 2N6, Canada
| | | | - Cortney A Watt
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, 501 University Cres, Winnipeg, MB R3T 2N6, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Berghaenel A, Stevens JMG, Hohmann G, Deschner T, Behringer V. Evidence for adolescent length growth spurts in bonobos and other primates highlights the importance of scaling laws. eLife 2023; 12:RP86635. [PMID: 37667589 PMCID: PMC10479963 DOI: 10.7554/elife.86635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Adolescent growth spurts (GSs) in body length seem to be absent in non-human primates and are considered a distinct human trait. However, this distinction between present and absent length-GSs may reflect a mathematical artefact that makes it arbitrary. We first outline how scaling issues and inappropriate comparisons between length (linear) and weight (volume) growth rates result in misleading interpretations like the absence of length-GSs in non-human primates despite pronounced weight-GSs, or temporal delays between length- and weight-GSs. We then apply a scale-corrected approach to a comprehensive dataset on 258 zoo-housed bonobos that includes weight and length growth as well as several physiological markers related to growth and adolescence. We found pronounced GSs in body weight and length in both sexes. Weight and length growth trajectories corresponded with each other and with patterns of testosterone and insulin-like growth factor-binding protein 3 levels, resembling adolescent GSs in humans. We further re-interpreted published data of non-human primates, which showed that aligned GSs in weight and length exist not only in bonobos. Altogether, our results emphasize the importance of considering scaling laws when interpreting growth curves in general, and further show that pronounced, human-like adolescent length-GSs exist in bonobos and probably also many other non-human primates.
Collapse
Affiliation(s)
- Andreas Berghaenel
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine ViennaViennaAustria
| | - Jeroen MG Stevens
- Behavioral Ecology and Ecophysiology, Department of Biology, University of AntwerpAntwerpBelgium
- Centre for Research and Conservation, Royal Zoological Society of AntwerpAntwerpBelgium
- SALTO Agro- and Biotechnology, Odisee University of Applied SciencesSint-NiklaasBelgium
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Max-Planck-Institute of Animal BehaviourRadolfzellGermany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Comparative BioCognition, Institute of Cognitive Science, University of OsnabrückOsnabrückGermany
| | - Verena Behringer
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
5
|
Thierry B, Rebout N, Heistermann M. Hormonal responses to mating competition in male Tonkean macaques. Horm Behav 2023; 154:105395. [PMID: 37390781 DOI: 10.1016/j.yhbeh.2023.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Glucocorticoid and androgen hormones play a prominent role in male reproductive effort. Their production usually increases in non-human primates during mating competition, which may include rivalry for access to receptive females, struggles for high dominance rank, or social pressure on low-ranking individuals. It is generally assumed that glucocorticoids and androgens are associated with mating challenges rather than dominance status, but the involvement of multiple factors makes it difficult to disentangle the two. In this regard, Tonkean macaques provide a suitable model because they are characterized by relaxed dominance and year-round breeding, meaning that there is typically no more than one receptive female in a group, and thus first-ranking males can easily monopolize her. We studied two captive groups of Tonkean macaques over an 80-month period, recording the reproductive status of females, collecting urine from males and sampling behaviors in both sexes. Male urinary hormone concentrations could be affected by increased competition caused by the mating period, the number of males and the degree of female attractiveness. The highest increases in androgens were recorded in males performing female mate-guarding. Despite the importance of dominance status in determining which males can mate, we found no significant effect of male rank on glucocorticoids and only a marginal effect on androgens during mate-guarding. Both types of hormones were more directly involved in the mating effort of males than in their dominance status. Our results show that their function can be understood in light of the particular competitive needs generated by the species-specific social system.
Collapse
Affiliation(s)
- Bernard Thierry
- Laboratoire de Psychologie Sociale et Cognitive, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Nancy Rebout
- UMR Herbivores, INRAE, VetAgro Sup, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
6
|
Cerda-Molina AL, Borráz-León JI, Matamoros-Trejo G, de la O C, Estudillo-Mendoza GR, Mayagoitia-Novales L, Maestripieri D. Testing the Challenge Hypothesis in Stumptail Macaque Males: The Role of Testosterone and Glucocorticoid Metabolites in Aggressive and Mating Behavior. BIOLOGY 2023; 12:813. [PMID: 37372098 DOI: 10.3390/biology12060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
The "challenge hypothesis" predicts higher male-male aggressive behavior along with increases in testosterone levels during times of reproductive challenges and social instability. In addition, in some primate species, higher glucocorticoid levels can be observed as well, but this is usually modulated by dominance rank. We studied rank-related aggressive behavior, mating activity, and fecal testosterone and glucocorticoid metabolites (fTm and fGCm) in male stumptail macaques (Macaca arctoides) in order to test some predictions of the "challenge hypothesis". Over a 20-month period, we collected data on aggressive behavior and copulation, as well as fecal samples (n = 700) to quantify fTm and fGCm in seven adult stumptail males living in captivity. During periods of mating activity, male-to-male aggression increased in higher- and middle-ranking males. Neither fTm nor fGCm levels predicted male-to-male aggression. fGCm levels (but not fTm) were positively associated with male-to-female aggression; however, this association was pronounced during periods of mating activity. fGCm levels differed according to social rank, with middle-ranking males having the highest levels. Both hormones were higher during periods of mating activity, but only in higher- and middle-ranking males. Taken together, our findings partially support the challenge hypothesis in a non-seasonal primate and shed some light on the unique social and mating system of the stumptail macaque.
Collapse
Affiliation(s)
- Ana Lilia Cerda-Molina
- Departamento de Etología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Javier I Borráz-León
- Departamento de Etología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
- Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gilberto Matamoros-Trejo
- Departamento de Neurofisiología Molecular, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Claudio de la O
- FES Zaragoza C-III, Universidad Nacional Autónoma de México, Santa Cruz Tlaxcala 90640, Mexico
- Escuela de Psicología, Universidad Latina, Ciudad de México 4330, Mexico
| | - Gema R Estudillo-Mendoza
- Departamento de Etología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Dario Maestripieri
- Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Comparative Human Development, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Laissez-Faire Stallions? Males' Fecal Cortisol Metabolite Concentrations Do Not Vary with Increased Female Turnover in Feral Horses ( Equus caballus). Animals (Basel) 2023; 13:ani13010176. [PMID: 36611784 PMCID: PMC9817692 DOI: 10.3390/ani13010176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Stress responses can be triggered by several physical and social factors, prompting physiological reactions including increases in glucocorticoid concentrations. In a population of feral horses (Equus caballus) on Shackleford Banks, North Carolina, females previously immunized with the immunocontraceptive agent porcine zona pellucida (PZP) change social groups (bands) more often than unimmunized females, disrupting the social stability within the population. We assessed the effects of increased female group changing behavior (or female turnover) on individual male stress by comparing fecal cortisol metabolite (FCM) concentrations among stallions experiencing varying amounts of female group changing behavior. FCM concentrations did not significantly correlate with female turnover. Similarly, FCM concentrations were not dependent upon the timing of female group changing behavior. These findings suggest that female turnover rate has little influence on physiological measures of stress in associated stallions. That said, Shackleford stallions experiencing increased female turnover do engage in behaviors typically associated with stress (increased vigilance, highly escalated male-male conflicts). Future work should compare FCM concentrations across time within populations and among populations managed under different strategies to better isolate factors influencing stallion stress physiology. Such studies are especially important if we are to determine how changes in female behavior related to immunocontraception impact physiological and behavioral indicators of stress for non-target animals. Finally, our study highlights the importance of considering both physiological and behavioral measures when investigating animal responses to potentially challenging situations.
Collapse
|
8
|
Beehner JC, Alfaro J, Allen C, Benítez ME, Bergman TJ, Buehler MS, Carrera SC, Chester EM, Deschner T, Fuentes A, Gault CM, Godoy I, Jack KM, Kim JD, Kolinski L, Kulick NK, Losch T, Ordoñez JC, Perry SE, Pinto F, Reilly OT, Johnson ET, Wasserman MD. Using an on-site laboratory for fecal steroid analysis in wild white-faced capuchins. Gen Comp Endocrinol 2022; 329:114109. [PMID: 36007549 DOI: 10.1016/j.ygcen.2022.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
Hormone laboratories located "on-site" where field studies are being conducted have a number of advantages. On-site laboratories allow hormone analyses to proceed in near-real-time, minimize logistics of sample permits/shipping, contribute to in-country capacity-building, and (our focus here) facilitate cross-site collaboration through shared methods and a shared laboratory. Here we provide proof-of-concept that an on-site hormone laboratory (the Taboga Field Laboratory, located in the Taboga Forest Reserve, Costa Rica) can successfully run endocrine analyses in a remote location. Using fecal samples from wild white-faced capuchins (Cebus imitator) from three Costa Rican forests, we validate the extraction and analysis of four steroid hormones (glucocorticoids, testosterone, estradiol, progesterone) across six assays (DetectX® and ISWE, all from Arbor Assays). Additionally, as the first collaboration across three long-term, wild capuchin field sites (Lomas Barbudal, Santa Rosa, Taboga) involving local Costa Rican collaborators, this laboratory can serve as a future hub for collaborative exchange.
Collapse
Affiliation(s)
- Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - José Alfaro
- School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cloe Allen
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcela E Benítez
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret S Buehler
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA; Santa Rosa Primate Project, Santa Rosa National Park, Costa Rica; Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Sofia C Carrera
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | - Emily M Chester
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Anthropology, Indiana University, Bloomington, IN 47405, USA
| | - Tobias Deschner
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Alexander Fuentes
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | - Colleen M Gault
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Costa Rica
| | - Irene Godoy
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Costa Rica; Department of Anthropology, University of California, Los Angeles, CA 90095, USA; Department of Animal Behavior, Bielefeld University, 33501 Bielefeld, Germany
| | - Katharine M Jack
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA; Santa Rosa Primate Project, Santa Rosa National Park, Costa Rica
| | - Justin D Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | - Lev Kolinski
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | - Nelle K Kulick
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA; Santa Rosa Primate Project, Santa Rosa National Park, Costa Rica
| | - Teera Losch
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | | | - Susan E Perry
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Costa Rica; Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Pinto
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica
| | - Olivia T Reilly
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; Language Research Center, Georgia State University, Atlanta, GA 30302, USA
| | - Elizabeth Tinsley Johnson
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael D Wasserman
- Capuchins at Taboga Research Project, Taboga Forest Reserve, Costa Rica; Department of Anthropology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Sen S, Carrera SC, Heistermann M, Potter CB, Baniel A, DeLacey PM, Petrullo L, Lu A, Beehner JC. Social correlates of androgen levels and dispersal age in juvenile male geladas. Horm Behav 2022; 146:105264. [PMID: 36155910 DOI: 10.1016/j.yhbeh.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
Androgens offer a window into the timing of important male life history events such as maturation. However, when males are the dispersing sex, piecing together normative androgen profiles across development is challenging because dispersing males are difficult to track. Here, we examined the conditions that may be associated with male androgen status (via fecal androgen metabolites, fAMs) and age at dispersal in wild male geladas (Theropithecus gelada). Gelada male life histories are highly variable - dispersal may occur before sexual maturation, dispersal itself can be immediate or drawn out, and, due to their multi-leveled society, social conditions affecting dispersal can vary for juveniles living in different reproductive units within the same band. Using longitudinal data from known natal males, we examined how androgen levels and age at dispersal were associated with: (1) access to maternal resources (i.e., maternal rank, birth of a younger sibling, experiencing maternal loss), and (2) access to male peers (i.e., number of similar-aged males in their unit). We found that androgens were significantly lower in males with high-ranking mothers (in males >2.5 years of age; infant androgens were unrelated) and that having more male peers in their social group and larger groups overall predicted an earlier age at dispersal. Moreover, dispersal in geladas was not preceded or followed by a surge in androgen levels. Taken together, results suggest that social environments can cause individual variation in androgens and dispersal age. Whether this variation leads to differences in male fitness in later life remains to be determined.
Collapse
Affiliation(s)
- Sharmi Sen
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA.
| | - Sofia C Carrera
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Caitlin Barale Potter
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, St. Paul, MN 55108, USA
| | - Alice Baniel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Patricia M DeLacey
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Jacinta C Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA; Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| |
Collapse
|
10
|
Gielen K, Louwerse AL, Sterck EHM. The Older the Better: Infanticide Is Age-Related for Both Victims and Perpetrators in Captive Long-Tailed Macaques. BIOLOGY 2022; 11:biology11071008. [PMID: 36101389 PMCID: PMC9311617 DOI: 10.3390/biology11071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/05/2022]
Abstract
In wild primates, infanticide is a risk that is especially prevalent when a new male takes over the alpha position. Insight into risk factors related to infanticide may decrease the incidence of infanticide in captivity during male introductions. We investigated several risk factors of infanticide derived from hypotheses explaining infanticide in the wild and tested this in captive long-tailed macaques (Macaca fascicularis) using demographic data spanning a 25.5-year period. Factors that are related to infanticide in the wild explained a large proportion, but not all incidences, of infanticide in captivity. Consistent with the wild data, infants young enough to decrease the interbirth interval (<215 days) were at risk of being killed. In contrast to studies from the wild, infanticidal males were more than 2.5 years younger than non-infanticidal males. This indicates that captive settings can lead to new risks since relatively young males may gain the alpha position, promoting infanticide. Therefore, we propose the adolescent male risk hypothesis as a captive risk factor in which subadult males pose a risk of infanticide. In conclusion, the ages of both males and infants are related to infanticide in captivity and have to be taken into account during male introductions.
Collapse
Affiliation(s)
- Karlijn Gielen
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-30-253-5304
| | - Annet L. Louwerse
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands;
| | - Elisabeth H. M. Sterck
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands;
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands;
| |
Collapse
|
11
|
Hunt KE, Buck CL, Ferguson SH, Fernández Ajo A, Heide-Jørgensen MP, Matthews CJD. Male Bowhead Whale Reproductive Histories Inferred from Baleen Testosterone and Stable Isotopes. Integr Org Biol 2022; 4:obac014. [PMID: 35617113 PMCID: PMC9125798 DOI: 10.1093/iob/obac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales.
Collapse
Affiliation(s)
- Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Steven H Ferguson
- Fisheries and Oceans Canada, Arctic Aquatic Research Division, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Alejandro Fernández Ajo
- Marine Mammal Institute, Fisheries and Wildlife Department, Oregon State University, Newport, OR 97365, USA
| | | | - Cory J D Matthews
- Fisheries and Oceans Canada, Arctic Aquatic Research Division, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
12
|
Siracusa ER, Higham JP, Snyder-Mackler N, Brent LJN. Social ageing: exploring the drivers of late-life changes in social behaviour in mammals. Biol Lett 2022; 18:20210643. [PMID: 35232274 PMCID: PMC8889194 DOI: 10.1098/rsbl.2021.0643] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as 'social ageing'. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.
Collapse
Affiliation(s)
- Erin R Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Milewski TM, Lee W, Champagne FA, Curley JP. Behavioural and physiological plasticity in social hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200443. [PMID: 35000436 PMCID: PMC8743892 DOI: 10.1098/rstb.2020.0443] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- T. M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - W. Lee
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - F. A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - J. P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Greenberg D, Snyder KP, Filazzola A, Mastromonaco GF, Schoof VAM. Hormonal correlates of male dominance rank, age, and genital colouration in vervet monkey (Chlorocebus pygerythrus). Gen Comp Endocrinol 2022; 316:113948. [PMID: 34826430 DOI: 10.1016/j.ygcen.2021.113948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023]
Abstract
Primates are the most colourful members of the Mammalian clade. In vervet monkeys (Chlorocebus pygerythrus), males are characterized by their red penis and blue scrotum. Such colour signals are often used in conspecific communication, and thus could be used to convey signaller condition. We quantified scrotal and penile colour characteristics using digital photographs between May-June 2016 from males in two neighboring groups along the shores of Lake Nabugabo, Uganda. We examined the relationship between fecal hormones, male dominance rank, age (adult vs. immature), and colour. Adult males were higher ranking than immatures, but there were no rank or age differences in fecal hormone levels. Glucocorticoids and androgens were positively correlated in immature, but not adult males. All scrotal characteristics were predicted by age, with adult males having more teal (i.e., less blue, more green) and more luminant scrota. Within adult males, those with higher androgens levels had more saturated blue scrotal colouration and higher-ranking males were more luminant. Penile colouration was also associated with age and rank. High-ranking males had a more saturated red penis, and adult male penile colour was more luminant and bluer than in immature males. Our findings are consistent with previous reports that scrotal colouration advertises sexual or reproductive maturity (i.e., age), but we also find that within adult males, colour also advertises dominance rank and may be mediated by androgen levels. Penile colouration also appears to signal information about male age and dominance rank but does not appear to be mediated by hormones.
Collapse
Affiliation(s)
- D Greenberg
- Department of Biology, Faculty of Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - K P Snyder
- Department of Biology, Faculty of Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - A Filazzola
- Department of Biology, Faculty of Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - G F Mastromonaco
- Reproductive Sciences Unit, Toronto Zoo, 361A Old Finch Avenue, Toronto, ON M1B 5K7, Canada
| | - V A M Schoof
- Department of Biology, Faculty of Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; Bilingual Biology Program, Department of Multidisciplinary Studies, Glendon College, York University, 2275 Bayview Avenue, Toronto, ON M4N 3M6, Canada.
| |
Collapse
|
15
|
Socio-sexual behaviors and fecal hormone metabolites but not age predict female aggressive interactions in Macaca arctoides. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-021-03118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier JC, Yotova V, Jansen D, Gottel N, Gordon JB, Learn NH, Gesquiere LR, Wango TL, Mututua RS, Warutere JK, Siodi L, Gilbert JA, Barreiro LB, Alberts SC, Tung J, Archie EA, Blekhman R. Gut microbiome heritability is nearly universal but environmentally contingent. Science 2021; 373:181-186. [PMID: 34244407 PMCID: PMC8377764 DOI: 10.1126/science.aba5483] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Relatives have more similar gut microbiomes than nonrelatives, but the degree to which this similarity results from shared genotypes versus shared environments has been controversial. Here, we leveraged 16,234 gut microbiome profiles, collected over 14 years from 585 wild baboons, to reveal that host genetic effects on the gut microbiome are nearly universal. Controlling for diet, age, and socioecological variation, 97% of microbiome phenotypes were significantly heritable, including several reported as heritable in humans. Heritability was typically low (mean = 0.068) but was systematically greater in the dry season, with low diet diversity, and in older hosts. We show that longitudinal profiles and large sample sizes are crucial to quantifying microbiome heritability, and indicate scope for selection on microbiome characteristics as a host phenotype.
Collapse
Affiliation(s)
- Laura Grieneisen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trevor J Gould
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Johannes R Björk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jean-Christophe Grenier
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec H3T 1C5, Canada
- Research Center, Montreal Heart Institute, Montréal, Quebec H1T 1C8, Canada
| | - Vania Yotova
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Neil Gottel
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Jacob B Gordon
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Tim L Wango
- Amboseli Baboon Research Project, Amboseli National Park, Kenya
- The Department of Veterinary Anatomy and Animal Physiology, University of Nairobi, Kenya
| | | | | | - Long'ida Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Kenya
| | - Jack A Gilbert
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec H3T 1C5, Canada
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Jaschke N, Wang A, Hofbauer LC, Rauner M, Rachner TD. Late-onset hypogonadism: Clinical evidence, biological aspects and evolutionary considerations. Ageing Res Rev 2021; 67:101301. [PMID: 33610812 DOI: 10.1016/j.arr.2021.101301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The growing life expectancy in modern societies has raised scientific interest in identifying medical interventions to alleviate age-associated pathologies such as vascular calcification, cognitive decline, sarcopenia, osteoporosis and sexual dysfunction. Although no such single treatment has thus far been established in humans, some clinicians and patients have set their hopes on testosterone replacement therapy (TRT) as a potential "fountain of youth" for aging men. While TRT has proven effective in ameliorating distinct symptoms of late-onset hypogonadism (LOH), its safety remains to be demonstrated. Besides humans, multiple other species exhibit age-related reductions in circulating testosterone levels, raising the question whether such changes are an inherent, pathological feature of growing organismal age or rather reflect an adaptive response. In this manuscript, we apply key principles of evolutionary medicine to testosterone biology and LOH to provide a novel perspective on these two fields. Additionally, we discuss insightful data derived from the animal kingdom to illustrate the plasticity of individual testosterone trajectories across the lifespan, outline cost-benefit-considerations of TRT in LOH and highlight potential caveats of such therapies.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Andrew Wang
- Department of Medicine (Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, Petrullo L, Reitsema L, Sams S, Lu A, Snyder-Mackler N. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. MICROBIOME 2021; 9:26. [PMID: 33485388 PMCID: PMC7828014 DOI: 10.1186/s40168-020-00977-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. RESULTS Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas (Theropithecus gelada). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. CONCLUSION Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa. Video abstract.
Collapse
Affiliation(s)
- Alice Baniel
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Rachel F Perlman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Laurie Reitsema
- Department of Anthropology, University of Georgia, Athens, GA, 30602, USA
| | - Sierra Sams
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Hudson JM, Matthews CJD, Watt CA. Detection of steroid and thyroid hormones in mammalian teeth. CONSERVATION PHYSIOLOGY 2021; 9:coab087. [PMID: 36439380 PMCID: PMC8633673 DOI: 10.1093/conphys/coab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 05/21/2023]
Abstract
Endocrine tools can provide an avenue to better understand mammalian life histories and predict how individuals and populations may respond to environmental stressors; however, few options exist for studying long-term endocrine patterns in individual marine mammals. Here, we (i) determined whether hormones could be measured in teeth from four marine mammal species: narwhal (Monodon monoceros), beluga (Delphinapterus leucas), killer whale (Orcinus orca) and Atlantic walrus (Odobenus rosmarus rosmarus); (ii) validated commercially available enzyme immunoassay kits for use with tooth extracts; and (iii) conducted biological validations for each species to determine whether reproductive hormone concentrations in teeth correlated with age of sexual maturity. Tooth extracts from all species had measurable concentrations of progesterone, testosterone, 17β-estradiol, corticosterone, aldosterone and triiodothyronine (T3); however, cortisol was undetectable. Parallelism between the binding curves of assay kit standards and serially diluted pools of tooth extract for each species was observed for all measurable hormones. Slopes of accuracy tests ranged from 0.750 to 1.116, with r2 values ranging from 0.977 to 1.000, indicating acceptable accuracy. Biological validations were inconsistent with predictions for each species, with the exception of female killer whales (n = 2), which assumed higher progesterone and testosterone concentrations in mature individuals than immature individuals. Instead, we observed a decline in progesterone and testosterone concentrations from infancy through adulthood in narwhal (n = 1) and walruses (n = 2) and higher reproductive hormone concentrations in immature individuals than mature individuals in belugas (n = 8 and 10, respectively) and male killer whales (n = 1 and 2, respectively). While unexpected, this pattern has been observed in other taxa; however, further analytical and biological validations are necessary before this technique can be used to assess individual mammalian endocrine patterns.
Collapse
Affiliation(s)
- Justine M Hudson
- Corresponding author: Fisheries and Oceans Canada, Winnipeg, R3T 2N6, Canada. Tel: 1 (204) 984-0550.
| | | | | |
Collapse
|
20
|
Levy EJ, Gesquiere LR, McLean E, Franz M, Warutere JK, Sayialel SN, Mututua RS, Wango TL, Oudu VK, Altmann J, Archie EA, Alberts SC. Higher dominance rank is associated with lower glucocorticoids in wild female baboons: A rank metric comparison. Horm Behav 2020; 125:104826. [PMID: 32758500 PMCID: PMC7541639 DOI: 10.1016/j.yhbeh.2020.104826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
In vertebrates, glucocorticoid secretion occurs in response to energetic and psychosocial stressors that trigger the hypothalamic-pituitary-adrenal (HPA) axis. Measuring glucocorticoid concentrations can therefore shed light on the stressors associated with different social and environmental variables, including dominance rank. Using 14,172 fecal samples from 237 wild female baboons, we test the hypothesis that high-ranking females experience fewer psychosocial and/or energetic stressors than lower-ranking females. We predicted that high-ranking females would have lower fecal glucocorticoid (fGC) concentrations than low-ranking females. Because dominance rank can be measured in multiple ways, we employ an information theoretic approach to compare 5 different measures of rank as predictors of fGC concentrations: ordinal rank; proportional rank; Elo rating; and two approaches to categorical ranking (alpha vs non-alpha and high-middle-low). Our hypothesis was supported, but it was also too simplistic. We found that alpha females exhibited substantially lower fGCs than other females (typical reduction = 8.2%). If we used proportional rank instead of alpha versus non-alpha status in the model, we observed a weak effect of rank such that fGCs rose 4.2% from the highest- to lowest-ranking female in the hierarchy. Models using ordinal rank, Elo rating, or high-middle-low categories alone failed to explain variation in female fGCs. Our findings shed new light on the association between dominance rank and the stress response, the competitive landscape of female baboons as compared to males, and the assumptions inherent in a researcher's choice of rank metric.
Collapse
Affiliation(s)
- Emily J Levy
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA,.
| | - Laurence R Gesquiere
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA,.
| | - Emily McLean
- Oxford College of Emory University, 801 Emory Street, Oxford, GA 30054, USA.
| | - Mathias Franz
- Institute for Biology, Freie Universitaet Berlin, Königin-Luise-Strasse 1-3, D-14195 Berlin, Germany.
| | | | - Serah N Sayialel
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya
| | | | - Tim L Wango
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya; Department of Veterinary Anatomy and Animal Physiology, University of Nairobi, Kenya
| | - Vivian K Oudu
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya,.
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya,; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Susan C Alberts
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA,; Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya,; Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Elton S, Dunn J. Baboon biogeography, divergence, and evolution: Morphological and paleoecological perspectives. J Hum Evol 2020; 145:102799. [DOI: 10.1016/j.jhevol.2020.102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
|
22
|
Fischer J, Higham JP, Alberts SC, Barrett L, Beehner JC, Bergman TJ, Carter AJ, Collins A, Elton S, Fagot J, Ferreira da Silva MJ, Hammerschmidt K, Henzi P, Jolly CJ, Knauf S, Kopp GH, Rogers J, Roos C, Ross C, Seyfarth RM, Silk J, Snyder-Mackler N, Staedele V, Swedell L, Wilson ML, Zinner D. Insights into the evolution of social systems and species from baboon studies. eLife 2019; 8:e50989. [PMID: 31711570 PMCID: PMC6850771 DOI: 10.7554/elife.50989] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Baboons, members of the genus Papio, comprise six closely related species distributed throughout sub-Saharan Africa and southwest Arabia. The species exhibit more ecological flexibility and a wider range of social systems than many other primates. This article summarizes our current knowledge of the natural history of baboons and highlights directions for future research. We suggest that baboons can serve as a valuable model for complex evolutionary processes, such as speciation and hybridization. The evolution of baboons has been heavily shaped by climatic changes and population expansion and fragmentation in the African savanna environment, similar to the processes that acted during human evolution. With accumulating long-term data, and new data from previously understudied species, baboons are ideally suited for investigating the links between sociality, health, longevity and reproductive success. To achieve these aims, we propose a closer integration of studies at the proximate level, including functional genomics, with behavioral and ecological studies.
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology LaboratoryGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
- Department of Primate CognitionGeorg-August-University of GöttingenGöttingenGermany
- Leibniz ScienceCampus for Primate CognitionGöttingenGermany
| | - James P Higham
- Department of AnthropologyNew York UniversityNew YorkUnited States
| | - Susan C Alberts
- Department of BiologyDuke UniversityDurhamUnited States
- Department of Evolutionary AnthropologyDuke UniversityDurhamUnited States
- Institute of Primate ResearchNairobiKenya
| | - Louise Barrett
- Department of PsychologyUniversity of LethbridgeLethbridgeCanada
- Applied Behavioural Ecology and Ecosystems Research UnitUniversity of South AfricaPretoriaSouth Africa
| | - Jacinta C Beehner
- Department of PsychologyUniversity of MichiganAnn ArborUnited States
- Department of AnthropologyUniversity of MichiganAnn ArborUnited States
| | - Thore J Bergman
- Department of PsychologyUniversity of MichiganAnn ArborUnited States
- Department of AnthropologyUniversity of MichiganAnn ArborUnited States
| | - Alecia J Carter
- Institut des Sciences de l’Evolution de MontpellierMontpellierFrance
- Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Anthony Collins
- Gombe Stream Research CentreJane Goodall InstituteKigomaUnited Republic of Tanzania
| | - Sarah Elton
- Department of AnthropologyDurham UniversityDurhamUnited Kingdom
| | - Joël Fagot
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche ScientifiqueMontpellierFrance
| | - Maria Joana Ferreira da Silva
- Organisms and Environment Division, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
- Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoPortoPortugal
- Centro de Administração e Políticas Públicas, School of Social and PoliticalSciencesUniversity of LisbonLisbonPortugal
| | - Kurt Hammerschmidt
- Cognitive Ethology LaboratoryGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
| | - Peter Henzi
- Applied Behavioural Ecology and Ecosystems Research UnitUniversity of South AfricaPretoriaSouth Africa
| | - Clifford J Jolly
- Department of AnthropologyNew York UniversityNew YorkUnited States
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Infection Biology UnitGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
- Division of Microbiology and Animal HygieneGeorg-August-UniversityGöttingenGermany
| | - Gisela H Kopp
- ZukunftskollegUniversity of KonstanzKonstanzGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of MigrationMax Planck Institute for Animal BehaviourKonstanzGermany
| | - Jeffrey Rogers
- Human Genome Sequencing CenterHoustonUnited States
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Christian Roos
- Gene Bank of PrimatesGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
- Primate Genetics LaboratoryGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
| | - Caroline Ross
- Department of Life SciencesRoehampton UniversityLondonUnited Kingdom
| | - Robert M Seyfarth
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Joan Silk
- School of Human Evolution and Social ChangeArizona State UniversityTempeUnited States
- Institute for Human OriginsArizona State UniversityTempeUnited States
| | - Noah Snyder-Mackler
- Department of PsychologyUniversity of WashingtonSeattleUnited States
- Center for Studies in Demography and EcologyUniversity of WashingtonSeattleUnited States
- National Primate Research CenteUniversity of WashingtonSeattleUnited States
| | - Veronika Staedele
- Department of BiologyDuke UniversityDurhamUnited States
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Larissa Swedell
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Department of AnthropologyQueens College, City University of New YorkNew YorkUnited States
- Department of ArchaeologyUniversity of Cape TownCape TownSouth Africa
| | - Michael L Wilson
- Department of AnthropologyUniversity of MinnesotaMinneapolisUnited States
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisUnited States
- Institute on the EnvironmentUniversity of MinnesotaSaint PaulUnited States
| | - Dietmar Zinner
- Cognitive Ethology LaboratoryGerman Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus for Primate CognitionGöttingenGermany
| |
Collapse
|
23
|
Alvarado LC, Valeggia CR, Ellison PT, Lewarch CL, Muller MN. A Comparison of men’s Life History, Aging, and Testosterone Levels among Datoga Pastoralists, Hadza Foragers, and Qom Transitional Foragers. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2019. [DOI: 10.1007/s40750-019-00116-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Cates KA, Atkinson S, Gabriele CM, Pack AA, Straley JM, Yin S. Testosterone trends within and across seasons in male humpback whales (Megaptera novaeangliae) from Hawaii and Alaska. Gen Comp Endocrinol 2019; 279:164-173. [PMID: 30904390 DOI: 10.1016/j.ygcen.2019.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
Abstract
Understanding reproductive profiles and timing of reproductive events is essential in the management and conservation of humpback whales (Megaptera novaeangliae). Yet compared to other parameters and life history traits, such as abundance, migratory trends, reproductive rates, behavior and communication, relatively little is known about variations in reproductive physiology, especially in males. Here, an enzyme immunoassay (EIA) for testosterone was validated for use in biopsy samples from male humpback whales. Analyses were conducted on 277 North Pacific male humpback whale blubber samples, including 268 non-calves and 9 calves that were collected in the Hawaiian breeding grounds and the Southeast Alaskan feeding grounds from 2004 to 2006. Testosterone concentrations (ng/g) were significantly different between non-calves sampled in Hawaii (n = 182) and Alaska (n = 86, p < 0.05) with peak testosterone concentrations occurring in the winter (January-March) and the lowest concentrations occurring in the summer (June-September). Fall and spring showed increasing and decreasing trends in testosterone concentrations, respectively. Blubber testosterone concentrations in non-calves and calves sampled in Alaska were not significantly different. Blubber and skin from the same individual biopsies (n = 37) were also compared, with blubber having significantly higher testosterone concentrations (p < 0.05) than skin samples. We found variability in testosterone concentration with age, suggesting that male humpbacks reach peak lifetime testosterone concentrations in the breeding grounds around age 8-25 years. The testosterone profile of male humpback whales follows a predictable pattern for capital breeders, where testosterone begins to increase prior to the breeding season, stimulating the onset of spermatogenesis. Incorporation of reproductive hormonal profiles into our overall understanding of humpback whale physiology will shed additional light on the timing of reproduction and overall health of the recently delisted Hawaii distinct population segment (DPS).
Collapse
Affiliation(s)
- Kelly A Cates
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, United States
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, United States.
| | | | - Adam A Pack
- Departments of Psychology and Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, HI 96720, United States; The Dolphin Institute, P.O. Box 6279, Hilo, HI 96720, United States
| | - Janice M Straley
- University of Alaska Southeast Sitka Campus, 1332 Seward Ave., Sitka, AK 99835, United States
| | - Suzanne Yin
- Hawai'i Marine Mammal Consortium, P.O. Box 6107 Kamuela, HI 96743, United States
| |
Collapse
|
25
|
Sugianto NA, Newman C, Macdonald DW, Buesching CD. Heterochrony of puberty in the European badger (Meles meles) can be explained by growth rate and group-size: Evidence for two endocrinological phenotypes. PLoS One 2019; 14:e0203910. [PMID: 30840618 PMCID: PMC6402631 DOI: 10.1371/journal.pone.0203910] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/08/2018] [Indexed: 11/18/2022] Open
Abstract
Puberty is a key stage in mammalian ontogeny, involving endocrinological, physiological and behavioural changes, moderated by intrinsic and extrinsic factors. Thus, not all individuals within one population achieve sexual maturity simultaneously. Here, using the European badger (Meles meles) as a model, we describe male testosterone and female oestrone profiles (using Enzyme-immunoassays) from first capture (3 months, post-weaning) until 28 months (attaining sexual maturity and final body size), along with metrics of somatic growth, scent gland development and maturation of external reproductive organs as well as intra-specific competition. In both sexes, endocrinological puberty commenced at ca. 11 months. Thereafter, cub hormone levels followed adult seasonal hormone patterns but at lower levels, with the majority of cubs reaching sexual maturity during their second mating season (22-28 months). Interestingly, there was evidence for two endocrinological phenotypes among male cubs (less evident in females), with early developers reaching sexual maturity at 11 months (first mating season) and late developers reaching sexual maturity at 22-26 months (second mating season). Early developers also attained a greater proportion of their ultimate adult size by 11 months, exhibiting faster growth rates than late developers (despite having similar adult size). Male cubs born into larger social groups tended to follow the late developer phenotype. Our results support the hypothesis that a minimum body size is required to reach sexual maturity, which may be achieved at different ages, even within a single population, where early maturity can confer individual fitness advantages and enhance population growth rate.
Collapse
Affiliation(s)
- Nadine Adrianna Sugianto
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - David Whyte Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Christina Dagmar Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Biological Validations of Fecal Glucocorticoid, Testosterone, and Progesterone Metabolite Measurements in Captive Stumptail Macaques (Macaca arctoides). INT J PRIMATOL 2017. [DOI: 10.1007/s10764-017-9992-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Akinyi MY, Gesquiere LR, Franz M, Onyango PO, Altmann J, Alberts SC. Hormonal correlates of natal dispersal and rank attainment in wild male baboons. Horm Behav 2017; 94:153-161. [PMID: 28720488 PMCID: PMC5849390 DOI: 10.1016/j.yhbeh.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022]
Abstract
In many mammals, maturational milestones such as dispersal and the attainment of adult dominance rank mark stages in the onset of reproductive activity and depend on a coordinated set of hormonal and socio-behavioral changes. Studies that focus on the link between hormones and maturational milestones are uncommon in wild mammals because of the challenges of obtaining adequate sample sizes of maturing animals and of tracking the movements of dispersing animals. We examined two maturational milestones in wild male baboons-adult dominance rank attainment and natal dispersal-and measured their association with variation in glucocorticoids (fGC) and fecal testosterone (fT). We found that rank attainment is associated with an increase in fGC levels but not fT levels: males that have achieved any adult rank have higher fGC than males that have not yet attained an adult rank. This indicates that once males have attained an adult rank they experience greater energetic and/or psychosocial demands than they did prior to attaining this milestone, most likely because of the resulting participation in both agonistic and sexual behaviors that accompany rank attainment. In contrast, natal dispersal does not produce sustained increases in either fGC or fT levels, suggesting that individuals are either well adapted to face the challenges associated with dispersal or that the effects of dispersal on hormone levels are ephemeral for male baboons.
Collapse
Affiliation(s)
- Mercy Y Akinyi
- Department of Biology, Duke University, United States; Institute of Primate Research, National Museums of Kenya, Kenya.
| | | | - Mathias Franz
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Jeanne Altmann
- Institute of Primate Research, National Museums of Kenya, Kenya; Department of Ecology and Evolutionary Biology, Princeton University, United States
| | - Susan C Alberts
- Department of Biology, Duke University, United States; Institute of Primate Research, National Museums of Kenya, Kenya; Department of Evolutionary Anthropology, Duke University, United States
| |
Collapse
|
28
|
Teichroeb JA, Jack KM. Alpha male replacements in nonhuman primates: Variability in processes, outcomes, and terminology. Am J Primatol 2017; 79. [PMID: 28543783 DOI: 10.1002/ajp.22674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/15/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Alpha male replacements occur in all primates displaying a dominance hierarchy but the process can be extremely variable. Here, we review the primate literature to document differences in patterns of alpha male replacements, showing that group composition and dispersal patterns account for a large proportion of this variability. We also examine the consequences of alpha male replacements in terms of sexual selection theory, infanticide, and group compositions. Though alpha male replacements are often called takeovers in the literature, this term masks much of the variation that is present in these processes. We argue for more concise terminology and provide a list of terms that we suggest more accurately define these events. Finally, we introduce the papers in this special issue on alpha male replacements in the American Journal of Primatology and discuss areas where data are still lacking.
Collapse
Affiliation(s)
- Julie A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katharine M Jack
- Department of Anthropology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
29
|
Muller MN. Testosterone and reproductive effort in male primates. Horm Behav 2017; 91:36-51. [PMID: 27616559 PMCID: PMC5342957 DOI: 10.1016/j.yhbeh.2016.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Considerable evidence suggests that the steroid hormone testosterone mediates major life-history trade-offs in vertebrates, promoting mating effort at the expense of parenting effort or survival. Observations from a range of wild primates support the "Challenge Hypothesis," which posits that variation in male testosterone is more closely associated with aggressive mating competition than with reproductive physiology. In both seasonally and non-seasonally breeding species, males increase testosterone production primarily when competing for fecund females. In species where males compete to maintain long-term access to females, testosterone increases when males are threatened with losing access to females, rather than during mating periods. And when male status is linked to mating success, and dependent on aggression, high-ranking males normally maintain higher testosterone levels than subordinates, particularly when dominance hierarchies are unstable. Trade-offs between parenting effort and mating effort appear to be weak in most primates, because direct investment in the form of infant transport and provisioning is rare. Instead, infant protection is the primary form of paternal investment in the order. Testosterone does not inhibit this form of investment, which relies on male aggression. Testosterone has a wide range of effects in primates that plausibly function to support male competitive behavior. These include psychological effects related to dominance striving, analgesic effects, and effects on the development and maintenance of the armaments and adornments that males employ in mating competition.
Collapse
Affiliation(s)
- Martin N Muller
- Department of Anthropology, University of New Mexico, United States.
| |
Collapse
|
30
|
Flasko A, Manseau M, Mastromonaco G, Bradley M, Neufeld L, Wilson P. Fecal DNA, hormones, and pellet morphometrics as a noninvasive method to estimate age class: an application to wild populations of Central Mountain and Boreal woodland caribou (Rangifer tarandus caribou). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Determining age structure of populations is a valuable parameter in wildlife management, but is often difficult to obtain. Here, we tested a noninvasive method via fecal DNA, hormones, and pellet morphometrics to distinguish calf from adult in Central Mountain and Boreal woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)) populations. Annual surveys of fall-sampled Central Mountain caribou were done in Jasper National Park, Alberta, between 2006 and 2011 and winter-sampled Boreal caribou were surveyed in the North Interlake area, Manitoba, between 2004 and 2010. Samples were amplified at 10 microsatellite loci to identify unique individuals and capture histories were used to identify putative calves and adults. Fecal pellets were measured for length, width, depth, dry mass, and analyzed for progesterone, estrogen, and testosterone concentrations. Results showed significant differences in fecal pellet size between putative calves and adults for both sexes and populations–seasons. Progesterone concentration was significantly higher in Jasper–fall and North Interlake–winter adult females. Testosterone was significantly higher in Jasper–fall adult males. North Interlake–winter males exhibited no significant difference in hormone concentrations between age classes. When applied to the entire Jasper data set, 98% of females and 88% of males were assigned to an age class. This study illustrates the possibilities of using noninvasive methods to determine an age class in wild ungulate populations.
Collapse
Affiliation(s)
- Amy Flasko
- Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2M6, Canada
| | - Micheline Manseau
- Office of the Chief Ecosystem Scientist, Parks Canada, 30 Victoria Street, Gatineau, QC J8X 0B3, Canada; Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2M6, Canada
| | | | - Mark Bradley
- Jasper National Park of Canada, Parks Canada, P.O. Box 10, Jasper, AB T0E 1E0, Canada
| | - Lalenia Neufeld
- Jasper National Park of Canada, Parks Canada, P.O. Box 10, Jasper, AB T0E 1E0, Canada
| | - Paul Wilson
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
31
|
Behringer V, Deschner T. Non-invasive monitoring of physiological markers in primates. Horm Behav 2017; 91:3-18. [PMID: 28202354 DOI: 10.1016/j.yhbeh.2017.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
The monitoring of endocrine markers that inform about an animal's physiological state has become an invaluable tool for studying the behavioral ecology of primates. While the collection of blood samples usually requires the animal to be caught and immobilized, non-invasively collected samples of saliva, urine, feces or hair can be obtained without any major disturbance of the subject of interest. Such samples enable repeated collection which is required for matching behavioral information over long time periods with detailed information on endocrine markers. We start our review by giving an overview of endocrine and immune markers that have been successfully monitored in relation to topics of interest in primate behavioral ecology. These topics include reproductive, nutritional and health status, changes during ontogeny, social behavior such as rank relationships, aggression and cooperation as well as welfare and conservation issues. We continue by explaining which hormones can be measured in which matrices, and potential problems with measurements. We then describe different methods of hormone measurements and address their advantages and disadvantages. We finally emphasize the importance of thorough validation procedures when measuring a specific hormone in a new species or matrix.
Collapse
Affiliation(s)
- Verena Behringer
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, D-04103 Leipzig, Germany.
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
32
|
Corkeron P, Rolland RM, Hunt KE, Kraus SD. A right whale pootree: classification trees of faecal hormones identify reproductive states in North Atlantic right whales ( Eubalaena glacialis). CONSERVATION PHYSIOLOGY 2017; 5:cox006. [PMID: 28852509 PMCID: PMC5570057 DOI: 10.1093/conphys/cox006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/03/2017] [Accepted: 02/01/2017] [Indexed: 05/12/2023]
Abstract
Immunoassay of hormone metabolites extracted from faecal samples of free-ranging large whales can provide biologically relevant information on reproductive state and stress responses. North Atlantic right whales (Eubalaena glacialis Müller 1776) are an ideal model for testing the conservation value of faecal metabolites. Almost all North Atlantic right whales are individually identified, most of the population is sighted each year, and systematic survey effort extends back to 1986. North Atlantic right whales number <500 individuals and are subject to anthropogenic mortality, morbidity and other stressors, and scientific data to inform conservation planning are recognized as important. Here, we describe the use of classification trees as an alternative method of analysing multiple-hormone data sets, building on univariate models that have previously been used to describe hormone profiles of individual North Atlantic right whales of known reproductive state. Our tree correctly classified the age class, sex and reproductive state of 83% of 112 faecal samples from known individual whales. Pregnant females, lactating females and both mature and immature males were classified reliably using our model. Non-reproductive [i.e. 'resting' (not pregnant and not lactating) and immature] females proved the most unreliable to distinguish. There were three individual males that, given their age, would traditionally be considered immature but that our tree classed as mature males, possibly calling for a re-evaluation of their reproductive status. Our analysis reiterates the importance of considering the reproductive state of whales when assessing the relationship between cortisol concentrations and stress. Overall, these results confirm findings from previous univariate statistical analyses, but with a more robust multivariate approach that may prove useful for the multiple-analyte data sets that are increasingly used by conservation physiologists.
Collapse
Affiliation(s)
- Peter Corkeron
- National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543, USA
- Corresponding author: National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543, USA. Tel: +1 508 495 2191.
| | - Rosalind M. Rolland
- Anderson Cabot Center for Ocean Life, John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | - Kathleen E. Hunt
- Anderson Cabot Center for Ocean Life, John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | - Scott D. Kraus
- Anderson Cabot Center for Ocean Life, John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
33
|
Higham JP. Field endocrinology of nonhuman primates: past, present, and future. Horm Behav 2016; 84:145-55. [PMID: 27469069 DOI: 10.1016/j.yhbeh.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/29/2023]
Abstract
In the past few decades, research on nonhuman primate endocrinology has moved from the lab to the field, leading to a huge increase in both the breadth and depth of primate field studies. Here, I discuss the past, present, and future of primate field endocrinology. I review the history of the field, and go on to discuss methodological developments and the issues that they sometimes entail. Next, I consider ways in which we might conceptualize the role of hormones, and focus on the need to distinguish proximate from ultimate levels of explanation. Current potentially problematic issues in the field include: 1) an inability to obtain noninvasive measurements of Central Nervous System (CNS) rather than peripheral hormone concentrations; 2) research questions that become stuck (e.g., questions regarding sexual swelling expression mechanisms); 3) data dredging and post-hoc linking of hormones to any plausible variable, leading to a lack of clarity on their role in animal ecology and behavior. I finish by discussing several unanswered questions that might benefit from further research. These are how we might: 1) best obtain measurements for CNS hormone concentrations non-invasively; 2) measure hormone receptor expression alongside hormone concentrations; 3) consider the human endocrinology literature more thoroughly and perhaps take more multimarker approaches; 4) better consider the social environment, including audience and dyadic familiarity effects; and 5) apply our findings to conservation issues.
Collapse
Affiliation(s)
- James P Higham
- Dept. of Anthropology, New York University, 25 Waverly Place, New York, NY 10003.
| |
Collapse
|
34
|
Dantzer B, Westrick SE, van Kesteren F. Relationships between Endocrine Traits and Life Histories in Wild Animals: Insights, Problems, and Potential Pitfalls. Integr Comp Biol 2016; 56:185-97. [DOI: 10.1093/icb/icw051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Sources of variation in hair cortisol in wild and captive non-human primates. ZOOLOGY 2016; 119:119-125. [PMID: 26884274 DOI: 10.1016/j.zool.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/02/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
Abstract
Hair cortisol analysis is a potentially powerful tool for evaluating adrenal function and chronic stress. However, the technique has only recently been applied widely to studies of wildlife, including primates, and there are numerous practical and technical factors that should be considered to ensure good quality data and the validity of results and conclusions. Here we report on various intrinsic and extrinsic sources of variation in hair cortisol measurements in wild and captive primates. Hair samples from both wild and captive primates revealed that age and sex can affect hair cortisol concentrations; these effects need to be controlled for when making comparisons between individual animals or populations. Hair growth rates also showed considerable inter-specific variation among a number of primate species. We describe technical limitations of hair analyses and variation in cortisol concentrations as a function of asynchronous hair growth, anatomical site of collection, and the amount and numbers of hair/s used for cortisol extraction. We discuss these sources of variation and their implications for proper study design and interpretation of results.
Collapse
|
36
|
Kalbitzer U, Heistermann M, Cheney D, Seyfarth R, Fischer J. Social behavior and patterns of testosterone and glucocorticoid levels differ between male chacma and Guinea baboons. Horm Behav 2015; 75:100-10. [PMID: 26344413 DOI: 10.1016/j.yhbeh.2015.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/22/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
In multi-male, multi-female groups of mammals, males usually compete aggressively over access to females. However, species vary in the intensity of male contest competition, which has been linked to differences in testosterone and glucocorticoid profiles. Chacma (Papio ursinus) and Guinea (P. papio) baboons constitute an intriguing model to examine variation in male competition and male endocrine correlates, because of the differences in their social systems. Chacma baboons live in stable female-bonded groups with linear male dominance hierarchies and a high male mating skew, whereas Guinea baboons live in male-bonded, multi-level societies. We recorded male behavior and assayed testosterone (fT) and glucocorticoid metabolite (fGC) levels from fecal samples in one population of each species. Male chacma baboons were more frequently involved in agonistic interactions, and dominance relationships were more consistent than in Guinea baboons, where we could not detect linear hierarchies. Notably, male chacma baboons were also more aggressive towards females, indicating an overall higher aggressiveness in this species. In contrast, male Guinea baboons showed higher levels of affiliative interactions and spatial tolerance. High-ranking and consorting male chacma baboons showed elevated fGC levels and also tended to show elevated fT levels, but there was no effect of consortship in Guinea baboons. Agonism was not related to hormone levels in either species. Thus, predictors of fT and fGC levels in Guinea baboons seem to differ from chacma baboons. Our results support the view that different social systems create differential selection pressures for male aggression, reflected by different hormone profiles.
Collapse
Affiliation(s)
- Urs Kalbitzer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Kellnerweg 4, 37077 Göttingen, Germany; Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center (DPZ), Kellnerweg 4, 37077 Göttingen, Germany
| | - Dorothy Cheney
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Seyfarth
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Setchell JM, Smith TE, Knapp LA. Androgens in a female primate: Relationships with reproductive status, age, dominance rank, fetal sex and secondary sexual color. Physiol Behav 2015; 147:245-54. [DOI: 10.1016/j.physbeh.2015.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
|
38
|
Barale CL, Rubenstein DI, Beehner JC. Juvenile social relationships reflect adult patterns of behavior in wild geladas. Am J Primatol 2015; 77:1086-96. [DOI: 10.1002/ajp.22443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/09/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Caitlin L. Barale
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey
| | - Jacinta C. Beehner
- Department of Psychology; University of Michigan; Ann Arbor Michigan
- Department of Anthropology; University of Michigan; Ann Arbor Michigan
| |
Collapse
|
39
|
Sicotte P, Teichroeb JA, Vayro JV, Fox SA, Bădescu I, Wikberg EC. The influence of male takeovers on female dispersal in Colobus vellerosus. Am J Primatol 2015; 79. [DOI: 10.1002/ajp.22436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Pascale Sicotte
- Department of Anthropology and Archaeology; University of Calgary; Calgary AB Canada
| | - Julie A. Teichroeb
- Department of Evolutionary Anthropology; Duke University; Durham North Carolina
- Department of Anthropology; University of Toronto Scarborough; Toronto ON Canada
| | - Josie V. Vayro
- Department of Anthropology and Archaeology; University of Calgary; Calgary AB Canada
| | - Stephanie A. Fox
- Department of Anthropology and Archaeology; University of Calgary; Calgary AB Canada
| | - Iulia Bădescu
- Department of Anthropology; University of Toronto; Toronto ON Canada
| | - Eva C. Wikberg
- Department of Anthropology and Archaeology; University of Calgary; Calgary AB Canada
- Department of Integrated Biosciences; University of Tokyo; Kashiwa Chiba Japan
| |
Collapse
|
40
|
Cheney DL, Crockford C, Engh AL, Wittig RM, Seyfarth RM. The costs of parental and mating effort for male baboons. Behav Ecol Sociobiol 2015; 69:303-312. [PMID: 25620835 PMCID: PMC4300984 DOI: 10.1007/s00265-014-1843-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sexual selection theory predicts that males in polygynous species of mammals will invest more reproductive effort in mate competition than parental investment. A corollary to this prediction is that males will mount a stress response when their access to mates is threatened. Indeed, numerous studies have shown that males exhibit elevated stress hormones, or glucocorticoids (GCs), when their access to females, or a proxy to this access like dominance rank, is challenged. In contrast, the relationship between stress hormones and paternal effort is less obvious. We report results from a study of wild male chacma baboons indicating that males experienced elevated GC levels during periods of social instability following the immigration of a dominant male. These effects were strongest in males whose mating opportunities were at greatest risk: high-ranking males and males engaged in sexual consortships. Males involved in friendships with lactating females, a form of paternal investment, also experienced high GC levels during these periods of instability. There was a tendency for males with lactating female friends to reduce their time spent in consortships during unstable periods, when the risk of infanticide was high. Thus, even in a highly polygynous mammal, males may have to balance paternal effort with mating effort. Males who invest entirely in mating effort risk losing the infants they have sired to infanticide. Males who invest in paternal care may enhance their offspring's survival, but at the cost of elevated GC levels, the risk of injury, and the loss of mating opportunities.
Collapse
Affiliation(s)
- Dorothy L. Cheney
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig D-04103, Germany
| | - Anne L. Engh
- Department of Biology, Kalamazoo College, Kalamazoo, MI 49006-32954, USA
| | - Roman M. Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig D-04103, Germany
| | - Robert M. Seyfarth
- Deparment of Psychology, University of Pennsylvania, Philadelphia, PA 19104-6241, USA
| |
Collapse
|
41
|
Social correlates of androgen levels in a facultatively monogamous ape (Symphalangus syndactylus): a test of the challenge hypothesis. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1837-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Pappano DJ, Beehner JC. Harem-holding males do not rise to the challenge: androgens respond to social but not to seasonal challenges in wild geladas. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140081. [PMID: 26064526 PMCID: PMC4448764 DOI: 10.1098/rsos.140081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/12/2014] [Indexed: 06/04/2023]
Abstract
The challenge hypothesis has been enormously successful in predicting interspecific androgen profiles for vertebrate males. Nevertheless, in the absence of another theoretical framework, many researchers 'retrofit' the challenge hypothesis, so that its predictions also apply to intraspecific androgen comparisons. We use a wild primate, geladas (Theropithecus gelada), to illustrate several considerations for androgen research surrounding male contests that do not necessarily fit within the challenge hypothesis framework. Gelada society comprises harem-holding males (that can mate with females) and bachelor males (that cannot mate with females until they take over a harem). Using 6 years of data from known males, we measured androgens (i.e. faecal testosterone (fT) metabolites) both seasonally and across specific male contests. Seasonal androgen variation exhibited a very different pattern than variation resulting from male contests. Although harem-holding males had higher testosterone levels than bachelors across the year, bachelors had higher testosterone during the annual 'takeover season'. Thus, harem-holding males did not 'rise to the challenge' exactly when needed most. Yet, androgen profiles across male contests indicated that both sets of males exhibit the expected fT rise in response to challenges. Results from male geladas also support the idea that the context before (e.g. male condition) and after (e.g. contest outcome) a contest are critical variables for predicting hormones and behaviour.
Collapse
Affiliation(s)
- David J. Pappano
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Gettler LT. Applying socioendocrinology to evolutionary models: Fatherhood and physiology. Evol Anthropol 2014; 23:146-60. [DOI: 10.1002/evan.21412] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Gesquiere LR, Ziegler TE, Chen PA, Epstein KA, Alberts SC, Altmann J. Measuring fecal testosterone in females and fecal estrogens in males: comparison of RIA and LC/MS/MS methods for wild baboons (Papio cynocephalus). Gen Comp Endocrinol 2014; 204:141-9. [PMID: 24798581 PMCID: PMC4155009 DOI: 10.1016/j.ygcen.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
The development of non-invasive methods, particularly fecal determination, has made possible the assessment of hormone concentrations in wild animal populations. However, measuring fecal metabolites needs careful validation for each species and for each sex. We investigated whether radioimmunoassays (RIAs) previously used to measure fecal testosterone (fT) in male baboons and fecal estrogens (fE) in female baboons were well suited to measure these hormones in the opposite sex. We compared fE and fT concentrations determined by RIA to those measured by liquid chromatography combined with triple quadropole mass spectrometry (LC/MS/MS), a highly specific method. Additionally, we conducted a biological validation to assure that the measurements of fecal concentrations reflected physiological levels of the hormone of interest. Several tests produced expected results that led us to conclude that our RIAs can reliably measure fT and fE in both sexes, and that within-sex comparisons of these measures are valid: (i) fTRIA were significantly correlated to fTLC/MS/MS for both sexes; (ii) fTRIA were higher in adult than in immature males; (iii) fTRIA were higher in pregnant than non-pregnant females; (iv) fERIA were correlated with 17β-estradiol (fE2) and with estrone (fE1) determined by LC/MS/MS in pregnant females; (v) fERIA were significantly correlated with fE2 in non-pregnant females and nearly significantly correlated in males; (vi) fERIA were higher in adult males than in immature males. fERIA were higher in females than in males, as predicted, but unexpectedly, fTRIA were higher in females than in males, suggesting a difference in steroid metabolism in the two sexes; consequently, we conclude that while within-sex comparisons are valid, fTRIA should not be used for intersexual comparisons. Our results should open the field to important additional studies, as to date the roles of testosterone in females and estrogens in males have been little investigated.
Collapse
Affiliation(s)
- Laurence R Gesquiere
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Duke University, Durham, NC, USA.
| | - Toni E Ziegler
- National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia A Chen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Epstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA; Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya; Department of Veterinary Anatomy and Physiology, University of Nairobi, Chiromo Campus, P.O. Box 30197 00100, Nairobi, Kenya
| |
Collapse
|
45
|
Higham JP, Maestripieri D. The Costs of Reproductive Success in Male Rhesus Macaques (Macaca mulatta) on Cayo Santiago. INT J PRIMATOL 2014. [DOI: 10.1007/s10764-014-9789-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
|
47
|
Jack KM, Schoof VAM, Sheller CR, Rich CI, Klingelhofer PP, Ziegler TE, Fedigan L. Hormonal correlates of male life history stages in wild white-faced capuchin monkeys (Cebus capucinus). Gen Comp Endocrinol 2014; 195:58-67. [PMID: 24184868 PMCID: PMC3894788 DOI: 10.1016/j.ygcen.2013.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
Much attention has been paid to hormonal variation in relation to male dominance status and reproductive seasonality, but we know relatively little about how hormones vary across life history stages. Here we examine fecal testosterone (fT), dihydrotestosterone (fDHT), and glucocorticoid (fGC) profiles across male life history stages in wild white-faced capuchins (Cebus capucinus). Study subjects included 37 males residing in three habituated social groups in the Área de Conservacíon Guanacaste, Costa Rica. Male life history stages included infant (0 to <12months; N=3), early juvenile (1 to <3years; N=10), late juvenile (3 to <6years; N=9), subadult (6 to <10years; N=8), subordinate adult (⩾10years; N=3), and alpha adult (⩾10years; N=4, including one recently deposed alpha). Life history stage was a significant predictor of fT; levels were low throughout the infant and juvenile phases, doubled in subadult and subordinate adults, and were highest for alpha males. Life history stage was not a significant predictor of fDHT, fDHT:fT, or fGC levels. Puberty in white-faced capuchins appears to begin in earnest during the subadult male phase, indicated by the first significant rise in fT. Given their high fT levels and exaggerated secondary sexual characteristics, we argue that alpha adult males represent a distinctive life history stage not experienced by all male capuchins. This study is the first to physiologically validate observable male life history stages using patterns of hormone excretion in wild Neotropical primates, with evidence for a strong association between fT levels and life history stage.
Collapse
Affiliation(s)
- Katharine M Jack
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Valérie A M Schoof
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Claire R Sheller
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Catherine I Rich
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Peter P Klingelhofer
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | - Linda Fedigan
- University of Calgary, Department of Anthropology, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
48
|
Dunn J, Cardini A, Elton S. Biogeographic variation in the baboon: dissecting the cline. J Anat 2013; 223:337-52. [PMID: 24028342 PMCID: PMC3791127 DOI: 10.1111/joa.12085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 11/28/2022] Open
Abstract
All species demonstrate intraspecific anatomical variation. While generalisations such as Bergman's and Allen's rules have attempted to explain the geographic structuring of variation with some success, recent work has demonstrated limited support for these in certain Old World monkeys. This study extends this research to the baboon: a species that is widely distributed across sub-Saharan Africa and exhibits clinal variation across an environmentally disparate range. This study uses trend surface analysis to map the pattern of skull variation in size and shape in order to visualise the main axes of morphological variation. Patterns of shape and size-controlled shape are compared to highlight morphological variation that is underpinned by allometry alone. Partial regression is used to dissociate the effects of environmental terms, such as rainfall, temperature and spatial position. The diminutive Kinda baboon is outlying in size, so analyses were carried out with and without this taxon. Skull size variation demonstrates an east-west pattern, with small animals at the two extremes and large animals in Central and Southern Africa. Shape variation demonstrates the same geographical pattern as skull size, with small-sized animals exhibiting classic paedomorphic morphology. However, an additional north-south axis of variation emerges. After controlling for skull size, the diminutive Kinda baboon is no longer an outlier for size and shape. Also, the east-west component is no longer evident and discriminant function analysis shows an increased misclassification of adjacent taxa previously differentiated by size. This demonstrates the east-west component of shape variation is underpinned by skull size, while the north-south axis is not. The latter axis is explicable in phylogenetic terms: baboons arose in Southern Africa and colonised East and West Africa to the north, diverging in the process, aided by climate-mediated isolating mechanisms. Environmental terms appear poorly correlated with shape variation compared with geography. This might indicate that there is no simple environment-morphology association, but certainly demonstrates that phylogenetic history is an overbearing factor in baboon morphological variation.
Collapse
Affiliation(s)
- Jason Dunn
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of HullHull, UK
| | - Andrea Cardini
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of HullHull, UK
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio EmiliaModena, Italy
- Centre for Forensic Science, The University of Western AustraliaCrawley, WA, Australia
| | - Sarah Elton
- Department of Anthropology, Durham UniversitySouth Road, Durham, UK
| |
Collapse
|
49
|
Onyango PO, Gesquiere LR, Altmann J, Alberts SC. Puberty and dispersal in a wild primate population. Horm Behav 2013; 64:240-9. [PMID: 23998668 PMCID: PMC3764504 DOI: 10.1016/j.yhbeh.2013.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/31/2012] [Accepted: 02/16/2013] [Indexed: 11/25/2022]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". The onset of reproduction is preceded by a host of organismal adjustments and transformations, involving morphological, physiological, and behavioral changes. In highly social mammals, including humans and most nonhuman primates, the timing and nature of maturational processes are affected by the animal's social milieu as well as its ecology. Here, we review a diverse set of findings on how maturation unfolds in wild baboons in the Amboseli basin of southern Kenya, and we place these findings in the context of other reports of maturational processes in primates and other mammals. First, we describe the series of events and processes that signal maturation in female and male baboons. Sex differences in age at both sexual maturity and first reproduction documented for this species are consistent with expectations of life history theory; males mature later than females and exhibit an adolescent growth spurt that is absent or minimal in females. Second, we summarize what we know about sources of variance in the timing of maturational processes including natal dispersal. In Amboseli, individuals in a food-enhanced group mature earlier than their wild-feeding counterparts, and offspring of high-ranking females mature earlier than offspring of low-ranking females. We also report on how genetic admixture, which occurs in Amboseli between two closely related baboon taxa, affects individual maturation schedules.
Collapse
|
50
|
Hormonal Correlates of Divergent Growth Trajectories in Wild Male Anubis (Papio anubis) and Hamadryas (P. hamadryas) Baboons in the Awash River Valley, Ethiopia. INT J PRIMATOL 2013. [DOI: 10.1007/s10764-013-9692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|